-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsdf_meshing_nocolor.py
executable file
·163 lines (127 loc) · 5.67 KB
/
sdf_meshing_nocolor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
'''From the DeepSDF repository https://github.com/facebookresearch/DeepSDF
'''
#!/usr/bin/env python3
import logging
import numpy as np
import plyfile
import skimage.measure
import time
import torch
import yaml
import os
#########kitti的数据集归一化后z轴占数据很少,会有很多无效计算,增加分辨率,而z轴只用很小一部分,同样的计算资源能够支持地图更高的分辨率#######
high_resolution=False ##用于Kitti数据集,x、y方向的尺度远大于z方向的尺度,所以
high_resolution_voxels=3000 ##3000
z_voxels=200 ##200
center_offset=1340 ###z方向尺度(-2.0~0.3)相对于x、y方向来说基本就在0附近,所以在中心1500的附近取值,1340
#################
def create_mesh(
decoder, filename, N=256, max_batch=64 ** 3, offset=None,scale=None
):
start = time.time()
ply_filename = filename
decoder.eval()
# NOTE: the voxel_origin is actually the (bottom, left, down) corner, not the middle
voxel_origin = [-1, -1, -1]
if (high_resolution):
voxel_size = 2.0 / (high_resolution_voxels - 1)
overall_index = torch.arange(0, high_resolution_voxels*high_resolution_voxels*z_voxels, 1, out=torch.LongTensor())
samples = torch.zeros(high_resolution_voxels*high_resolution_voxels*z_voxels, 4)
labels=torch.zeros(high_resolution_voxels*high_resolution_voxels*z_voxels)
samples[:, 2] = overall_index % (z_voxels)+center_offset
samples[:, 1] = (overall_index.long() // z_voxels) % (high_resolution_voxels)
samples[:, 0] = ((overall_index.long() // z_voxels) // (high_resolution_voxels)) % (high_resolution_voxels)
samples[:, 0] = (samples[:, 0] * voxel_size) + voxel_origin[2]
samples[:, 1] = (samples[:, 1] * voxel_size) + voxel_origin[1]
samples[:, 2] = (samples[:, 2] * voxel_size) + voxel_origin[0]
num_samples = high_resolution_voxels*high_resolution_voxels*z_voxels
else:
voxel_size = 2.0 / (N - 1)
overall_index = torch.arange(0, N ** 3, 1, out=torch.LongTensor())
samples = torch.zeros(N ** 3, 4)
labels = torch.zeros(N ** 3)
samples[:, 2] = overall_index % N
samples[:, 1] = (overall_index.long() // N) % N
samples[:, 0] = ((overall_index.long() // N) // N) % N
samples[:, 0] = (samples[:, 0] * voxel_size) + voxel_origin[2]
samples[:, 1] = (samples[:, 1] * voxel_size) + voxel_origin[1]
samples[:, 2] = (samples[:, 2] * voxel_size) + voxel_origin[0]
num_samples = N ** 3
samples.requires_grad = False
head = 0
while head < num_samples:
print(head)
dim=3
sample_subset = samples[head : min(head + max_batch, num_samples), 0:dim].cuda()
model_out= decoder(sample_subset)
samples[head : min(head + max_batch, num_samples), dim] = (model_out['sdf_out'].squeeze().detach().cpu())
head += max_batch
sdf_values = samples[:, dim]
if (high_resolution):
sdf_values = sdf_values.reshape(high_resolution_voxels, high_resolution_voxels, z_voxels)
else:
sdf_values = sdf_values.reshape(N, N, N)
end = time.time()
print("sampling takes: %f" % (end - start))
convert_sdf_samples_to_ply(
sdf_values.data.cpu(),
voxel_origin,
voxel_size,
ply_filename + ".ply",
)
def convert_sdf_samples_to_ply(
pytorch_3d_sdf_tensor,
voxel_grid_origin,
voxel_size,
ply_filename_out,
offset=None,
scale=None,
):
"""
Convert sdf samples to .ply
:param pytorch_3d_sdf_tensor: a torch.FloatTensor of shape (n,n,n)
:voxel_grid_origin: a list of three floats: the bottom, left, down origin of the voxel grid
:voxel_size: float, the size of the voxels
:ply_filename_out: string, path of the filename to save to
This function adapted from: https://github.com/RobotLocomotion/spartan
"""
start_time = time.time()
numpy_3d_sdf_tensor = pytorch_3d_sdf_tensor.numpy()
verts, faces, normals, values = np.zeros((0, 3)), np.zeros((0, 3)), np.zeros((0, 3)), np.zeros(0)
try:
verts, faces, normals, values = skimage.measure.marching_cubes_lewiner(
numpy_3d_sdf_tensor, level=0.0, spacing=[voxel_size] * 3
)
except:
pass
# transform from voxel coordinates to camera coordinates
# note x and y are flipped in the output of marching_cubes
mesh_points = np.zeros_like(verts)
mesh_points[:, 0] = voxel_grid_origin[0] + verts[:, 0]
mesh_points[:, 1] = voxel_grid_origin[1] + verts[:, 1]
mesh_points[:, 2] = voxel_grid_origin[2] + verts[:, 2]
# apply additional offset and scale
if scale is not None:
mesh_points = mesh_points / scale
if offset is not None:
mesh_points = mesh_points - offset
# try writing to the ply file
num_verts = verts.shape[0]
num_faces = faces.shape[0]
verts_tuple = np.zeros((num_verts,), dtype=[("x", "f4"), ("y", "f4"), ("z", "f4")])
for i in range(0, num_verts):
verts_tuple[i] = tuple(mesh_points[i, :])
faces_building = []
for i in range(0, num_faces):
faces_building.append(((faces[i, :].tolist(),)))
faces_tuple = np.array(faces_building, dtype=[("vertex_indices", "i4", (3,))])
el_verts = plyfile.PlyElement.describe(verts_tuple, "vertex")
el_faces = plyfile.PlyElement.describe(faces_tuple, "face")
ply_data = plyfile.PlyData([el_verts, el_faces])
logging.debug("saving mesh to %s" % (ply_filename_out))
ply_data.write(ply_filename_out)
logging.debug(
"converting to ply format and writing to file took {} s".format(
time.time() - start_time
)
)