-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathencode.py
360 lines (284 loc) · 13.9 KB
/
encode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import numpy as np
import argparse, json, math
import os, glob
import flow, utils, source
import torch, torchvision
from torch import nn
from encoder import rans, coder
from utils import cdfDiscreteLogitstic, cdfMixDiscreteLogistic
parser = argparse.ArgumentParser(description="")
parser.add_argument("-folder", default=None, help="Path to load the trained model")
parser.add_argument("-cuda", type=int, default=-1, help="Which device to use with -1 standing for CPU, number bigger than -1 is N.O. of GPU.")
parser.add_argument("-nbins", type=int, default=4096, help="bin number of ran alg.")
parser.add_argument("-batch", type=int, default=-1, help="batch size")
parser.add_argument("-precision", type=int, default=24, help="precision of CDF")
parser.add_argument("-earlyStop", type=int, default=-1, help="epoches to run")
parser.add_argument("-best", action='store_false', help="if load the best model")
parser.add_argument("-valbest", action='store_true', help="if load the best val. model")
parser.add_argument('-target', type=str, default='original', choices=['original', 'CIFAR', 'ImageNet32', 'ImageNet64', 'MNIST'], metavar='DATASET', help='Dataset choice.')
args = parser.parse_args()
device = torch.device("cpu" if args.cuda < 0 else "cuda:" + str(args.cuda))
if args.folder is None:
raise Exception("No loading")
else:
rootFolder = args.folder
if rootFolder[-1] != '/':
rootFolder += '/'
with open(rootFolder + "parameter.json", 'r') as f:
config = json.load(f)
locals().update(config)
target = config['target']
repeat = config['repeat']
nhidden = config['nhidden']
hchnl = config['hchnl']
nMixing = config['nMixing']
batch = config['batch']
try:
HUE = config['HUE']
except:
HUE = True
if args.batch != -1:
batch = args.batch
if args.target != 'original':
target = args.target
if HUE:
lambd = lambda x: (x * 255).byte().to(torch.float32).to(device)
else:
lambd = lambda x: (x * 255).byte().to(torch.float32).to(device)
#lambd = lambda x: utils.rgb2ycc((x * 255).byte().float(), True).to(torch.float32).to(device)
# Building the target dataset
if target == "CIFAR":
# Define dimensions
targetSize = [3, 32, 32]
dimensional = 2
channel = targetSize[0]
blockLength = targetSize[-1]
# Define nomaliziation and decimal
decimal = flow.ScalingNshifting(256, -128)
rounding = utils.roundingWidentityGradient
# Building train & test datasets
trainsetTransform = torchvision.transforms.Compose([torchvision.transforms.ToTensor(), torchvision.transforms.Lambda(lambd)])
trainTarget = torchvision.datasets.CIFAR10(root='./data/cifar', train=True, download=True, transform=trainsetTransform)
testTarget = torchvision.datasets.CIFAR10(root='./data/cifar', train=False, download=True, transform=trainsetTransform)
targetTrainLoader = torch.utils.data.DataLoader(trainTarget, batch_size=batch, shuffle=False)
targetTestLoader = torch.utils.data.DataLoader(testTarget, batch_size=batch, shuffle=False)
elif target == "ImageNet32":
# Define dimensions
targetSize = [3, 32, 32]
dimensional = 2
channel = targetSize[0]
blockLength = targetSize[-1]
# Define nomaliziation and decimal
decimal = flow.ScalingNshifting(256, -128)
rounding = utils.roundingWidentityGradient
# Building train & test datasets
trainsetTransform = torchvision.transforms.Compose([torchvision.transforms.ToTensor(), torchvision.transforms.Lambda(lambd)])
trainTarget = utils.ImageNet(root='./data/ImageNet32', train=True, download=True, transform=trainsetTransform)
testTarget = utils.ImageNet(root='./data/ImageNet32', train=False, download=True, transform=trainsetTransform)
targetTrainLoader = torch.utils.data.DataLoader(trainTarget, batch_size=batch, shuffle=False)
targetTestLoader = torch.utils.data.DataLoader(testTarget, batch_size=batch, shuffle=False)
elif target == "ImageNet64":
# Define dimensions
targetSize = [3, 64, 64]
dimensional = 2
channel = targetSize[0]
blockLength = targetSize[-1]
# Define nomaliziation and decimal
decimal = flow.ScalingNshifting(256, -128)
rounding = utils.roundingWidentityGradient
# Building train & test datasets
trainsetTransform = torchvision.transforms.Compose([torchvision.transforms.ToTensor(), torchvision.transforms.Lambda(lambd)])
trainTarget = utils.ImageNet(root='./data/ImageNet64', train=True, download=True, transform=trainsetTransform, d64=True)
testTarget = utils.ImageNet(root='./data/ImageNet64', train=False, download=True, transform=trainsetTransform, d64=True)
targetTrainLoader = torch.utils.data.DataLoader(trainTarget, batch_size=batch, shuffle=False)
targetTestLoader = torch.utils.data.DataLoader(testTarget, batch_size=batch, shuffle=False)
elif target == "MNIST":
pass
else:
raise Exception("No such target")
if args.best and not args.valbest:
name = max(glob.iglob(os.path.join(rootFolder, 'best_TrainLoss_model.saving')), key=os.path.getctime)
elif args.valbest:
name = max(glob.iglob(os.path.join(rootFolder, 'best_TestLoss_model.saving')), key=os.path.getctime)
else:
name = max(glob.iglob(os.path.join(rootFolder, 'savings', '*.saving')), key=os.path.getctime)
# load the model
print("load saving at " + name)
f = torch.load(name, map_location=device)
if args.target != 'original':
if 'easyMera' in name:
layerList = f.layerList[:(4 * repeat)]
layerList = [layerList[no] for no in range(4 * repeat)]
elif '1to2Mera' in name:
layerList = f.layerList[:(2 * repeat)]
layerList = [layerList[no] for no in range(2 * repeat)]
else:
raise Exception("model not define")
dimensional = 2
channel = targetSize[0]
blockLength = targetSize[-1]
# Define nomaliziation and decimal
if 'easyMera' in name:
decimal = flow.ScalingNshifting(256, -128)
elif '1to2Mera' in name:
decimal = flow.ScalingNshifting(256, 0)
else:
raise Exception("model not define")
if 'simplePrior_False' in name:
meanNNlist = [f.meanNNlist[0]]
scaleNNlist = [f.scaleNNlist[0]]
else:
meanNNlist = None
scaleNNlist = None
rounding = utils.roundingWidentityGradient
prior = f.prior
prior.depth = int(math.log(targetSize[-1], 2))
if 'simplePrior_False' in name:
pass
else:
prior.priorList = torch.nn.ModuleList([prior.priorList[0] for _ in range(int(math.log(targetSize[-1], 2)) - 1)] + [prior.priorList[-1]])
# Building MERA mode
if 'easyMera' in name:
f = flow.SimpleMERA(blockLength, layerList, meanNNlist, scaleNNlist, repeat, None, nMixing, decimal=decimal, rounding=utils.roundingWidentityGradient).to(device)
elif '1to2Mera' in name:
f = flow.OneToTwoMERA(blockLength, layerList, meanNNlist, scaleNNlist, repeat, None, nMixing, decimal=decimal, rounding=utils.roundingWidentityGradient).to(device)
if 'simplePrior_False' in name:
f.prior.lastPrior = prior.lastPrior
else:
f.prior.priorList = prior.priorList
tmpLine = targetSize[-1] ** 2 // 4
shapeList = []
while tmpLine != 1:
shapeList.append([3, tmpLine, 3])
tmpLine = tmpLine // 4
shapeList.append([3, 1, 4])
def im2grp(t):
return t.reshape(t.shape[0], t.shape[1], t.shape[2] // 2, 2, t.shape[3] // 2, 2).permute([0, 1, 2, 4, 3, 5]).reshape(t.shape[0], t.shape[1], -1, 4)
def grp2im(t):
return t.reshape(t.shape[0], t.shape[1], int(t.shape[2] ** 0.5), int(t.shape[2] ** 0.5), 2, 2).permute([0, 1, 2, 4, 3, 5]).reshape(t.shape[0], t.shape[1], int(t.shape[2] ** 0.5) * 2, int(t.shape[2] ** 0.5) * 2)
def divide(z):
parts = []
ul = z
for no in range(int(math.log(blockLength, 2))):
if no == int(math.log(blockLength, 2)) - 1:
z_ = ul.reshape(*ul.shape[:2], 1, 4) - torch.round(decimal.forward_(f.prior.lastPrior.mean.permute([1, 2, 3, 0])) * torch.softmax(f.prior.lastPrior.mixing, dim=-1)).sum(-1).reshape(1, *f.prior.lastPrior.mean.shape[1:]) + args.nbins // 2
else:
_x = im2grp(ul)
z_ = _x[:, :, :, 1:].contiguous() - torch.round(decimal.forward_(f.meanList[no])) + args.nbins // 2
ul = _x[:, :, :, 0].reshape(*_x.shape[:2], int(_x.shape[2] ** 0.5), int(_x.shape[2] ** 0.5)).contiguous()
parts.append(z_.reshape(z_.shape[0], -1).int().detach())
return torch.cat(parts, -1).numpy()
def join(rcnZ):
zparts = []
for no in range(int(math.log(blockLength, 2))):
rcnZpart = rcnZ[:, :np.prod(shapeList[no])].reshape(rcnZ.shape[0], *shapeList[no])
rcnZ = rcnZ[:, np.prod(shapeList[no]):]
if no == int(math.log(blockLength, 2)) - 1:
rcnZpart = rcnZpart + torch.round(decimal.forward_(f.prior.lastPrior.mean.permute([1, 2, 3, 0])) * torch.softmax(f.prior.lastPrior.mixing, dim=-1)).sum(-1).reshape(1, *f.prior.lastPrior.mean.shape[1:]) - args.nbins // 2
else:
rcnZpart = rcnZpart + torch.round(decimal.forward_(f.meanList[no])) - args.nbins // 2
zparts.append(rcnZpart)
retZ = grp2im(zparts[-1]).contiguous()
for term in reversed(zparts[:-1]):
tmp = term.reshape(*retZ.shape, 3)
retZ = retZ.reshape(*retZ.shape, 1)
tmp = torch.cat([retZ, tmp], -1).reshape(*retZ.shape[:2], -1, 4)
retZ = grp2im(tmp).contiguous()
return retZ
def cdf2int(cdf):
return (cdf * ((1 << args.precision) - args.nbins)).int().detach() + torch.arange(args.nbins).reshape(-1, 1, 1, 1, 1)
def calCDF(batch):
CDF = []
_bins = torch.arange(-args.nbins // 2, args.nbins // 2).reshape(-1, 1, 1, 1, 1)
for no, mean in enumerate(f.meanList):
bins = _bins - 1 + torch.round(decimal.forward_(mean))
cdf = cdfDiscreteLogitstic(bins, mean, f.scaleList[no], decimal=f.decimal)
CDF.append(cdf2int(cdf).reshape(args.nbins, batch, -1))
bins = _bins - 1 + torch.round(decimal.forward_(f.prior.lastPrior.mean.permute([1, 2, 3, 0])) * torch.softmax(f.prior.lastPrior.mixing, dim=-1)).sum(-1).reshape(1, *f.prior.lastPrior.mean.shape[1:])
cdf = cdfMixDiscreteLogistic(bins, f.prior.lastPrior.mean, f.prior.lastPrior.logscale, f.prior.lastPrior.mixing, decimal=f.decimal).repeat(1, batch, 1, 1, 1)
CDF.append(cdf2int(cdf).reshape(args.nbins, batch, -1))
CDF = torch.cat(CDF, -1).numpy()
return CDF
def calPDF(state, CDF):
sumprob = 0
for i in range(state.shape[0]):
logprob = np.log((CDF[:, i][state[i] + 1] - CDF[:, i][state[i]]) / (1 << args.precision))
sumprob += logprob
return -sumprob
def calsinglePDF(state, CDF):
probs = []
for no in range(state.shape[0]):
prob_ = np.log((CDF[state[no] + 1, no] - CDF[state[no], no]) / (1 << args.precision))
probs.append(prob_)
return np.array(probs)
def testBPD(loader, earlyStop=-1):
actualBPD = []
theoryBPD = []
ERR = []
if not HUE:
yccERR = []
count = 0
with torch.no_grad():
for RGBsamples, _ in loader:
if HUE:
samples = RGBsamples
else:
samples = utils.rgb2ycc(RGBsamples, True, True)
count += 1
z, _ = f.inverse(samples)
zparts = divide(z)
CDF = calCDF(samples.shape[0])
state = []
for i in range(samples.shape[0]):
symbols = zparts[i]
s = rans.x_init
for j in reversed(range(symbols.shape[-1])):
cdf = CDF[:, i, j]
s = coder.encoder(cdf, symbols[j], s, precision=args.precision)
state.append(rans.flatten(s))
'''
def compare(idx):
print(calPDF(zparts[idx], CDF[:, idx, :]) / (np.prod(samples.shape[1:]) * np.log(2.)))
print(-f.logProbability(samples[idx:idx + 1]) / (np.prod(samples.shape[1:]) * np.log(2.)))
print(32 / (np.prod(samples.shape[1:])) * (state[idx]).shape[0])
compare(0)
import pdb
pdb.set_trace()
'''
actualBPD.append(32 / (np.prod(samples.shape[1:])) * np.mean([s.shape[0] for s in state]))
theoryBPD.append((-f.logProbability(samples).mean() / (np.prod(samples.shape[1:]) * np.log(2.))).detach().item())
rcnParts = []
for i in range(samples.shape[0]):
s = rans.unflatten(state[i])
symbols = []
for j in range(np.prod(targetSize)):
cdf = CDF[:, i, j]
s, rcnSymbol = coder.decoder(cdf, s, precision=args.precision)
symbols.append(rcnSymbol)
rcnParts.append(torch.tensor(symbols).reshape(1, -1))
rcnParts = torch.cat(rcnParts, 0)
rcnZ = join(rcnParts)
rcnSamples, _ = f.forward(rcnZ.float())
if not HUE:
yccERR.append(torch.abs(RGBsamples - utils.ycc2rgb(rcnSamples, True, True).contiguous()).mean().item())
ERR.append(torch.abs(samples.contiguous() - rcnSamples).sum().item())
else:
ERR.append(torch.abs(samples - rcnSamples).sum().item())
if count >= earlyStop and earlyStop > 0:
break
actualBPD = np.array(actualBPD)
theoryBPD = np.array(theoryBPD)
ERR = np.array(ERR)
if not HUE:
yccERR = np.array(yccERR)
if HUE:
print("===========================SUMMARY==================================")
print("Actual Mean BPD:", actualBPD.mean(), "Theory Mean BPD:", theoryBPD.mean(), "Mean Error:", ERR.mean())
else:
print("===========================SUMMARY==================================")
print("Actual Mean BPD:", actualBPD.mean(), "Theory Mean BPD:", theoryBPD.mean(), "Mean Error:", ERR.mean(), "ycc Mean Error:", yccERR.mean())
return actualBPD, theoryBPD, ERR
print("Train Set:")
#testBPD(targetTrainLoader, earlyStop=args.earlyStop)
print("Test Set:")
testBPD(targetTestLoader, earlyStop=args.earlyStop)