-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
173 lines (162 loc) · 6.06 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
"""Set configuration for the model
"""
import argparse
import multiprocessing
import torch
def str2float(s):
if '/' in s:
s1, s2 = s.split('/')
s = float(s1)/float(s2)
return float(s)
def parser_setting(parser):
"""Set arguments
"""
base_args = parser.add_argument_group('base arguments')
base_args.add_argument(
'--local_rank', type=int, default=-1, metavar='N', help='Local process rank.'
)
base_args.add_argument(
'--save-path', type=str, default='./bestmodel',
help='save path for best model'
)
base_args.add_argument(
'--workers', type=int, default=multiprocessing.cpu_count()-1, metavar='N',
help='dataloader threads'
)
base_args.add_argument(
'--padding', type=int, default=4, help='base padding size'
)
base_args.add_argument(
'--img-size', type=int, default=32, help='cropped image size'
)
base_args.add_argument(
'--dataset', type=str, default='cifar10',
choices=['mnist', 'fmnist', 'cifar10', 'cifar100', 'svhn'],
help='Dataset name'
)
base_args.add_argument(
'--model', type=str, default='34', choices=['vgg', 'baseline', '18', '34', '110']
)
base_args.add_argument(
"--data-root-path", type=str, default='/media/lepoeme20/Data/basics', help='data path'
)
base_args.add_argument(
"--n_cpu", type=int, default=multiprocessing.cpu_count(),
help="number of cpu threads to use during batch generation"
)
base_args.add_argument(
"--device-ids", type=int, nargs='*', help="device id"
)
trn_args = parser.add_argument_group('training hyper params')
trn_args.add_argument(
'--proposed', action='store_true', default=False,
help = 'train with proposed loss'
)
trn_args.add_argument(
'--phase', type=str, choices=['ce', 'inter', 'intra', 'restricted']
)
trn_args.add_argument(
'--epochs', type=int, default=300, metavar='N',
help='number of epochs to train (default: auto)'
)
trn_args.add_argument(
'--ce-epoch', type=int, default=50
)
trn_args.add_argument(
'--batch-size', type=int, default=256,
help='input batch size for training (default: auto)'
)
trn_args.add_argument(
'--test-batch-size', type=int, default=256,
help='input batch size for testing (default: auto)'
)
trn_args.add_argument(
'--seed', type=int, default=22, help='Seed for reproductibility'
)
trn_args.add_argument(
'--resume', action='store_true', default=False, help='if resume or not'
)
trn_args.add_argument(
'--resume-model', type=str, default=None, help='resume model path'
)
opt_args = parser.add_argument_group('optimizer params')
opt_args.add_argument(
'--lr', type=float, default=0.1, metavar='LR', help='learning rate (default: auto)'
)
opt_args.add_argument(
'--lr-shrinkage', type=float, default=0.001, help='lr for shrinkage phase'
)
opt_args.add_argument(
'--b1', type=float, default=0.5, help='momentum (default: 0.9)'
)
opt_args.add_argument(
'--b2', type=float, default=0.99, help='momentum (default: 0.9)'
)
oth_args = parser.add_argument_group('others')
oth_args.add_argument(
"--sample-interval", type=int, default=1000, help="interval between image samples"
)
oth_args.add_argument(
"--dev-interval", type=int, default=500, help="interval between image samples"
)
attack_args = parser.add_argument_group('Attack')
# Deeply Supervised Discriminative Learning for Adversarial Defense (baseline)의
# setting을 최대한 따를 것
attack_args.add_argument(
'--save-adv', action='store_true', default=False, help='if save adversarial examples'
)
attack_args.add_argument(
'--attack-name', type=str, default='FGSM',
choices=['Clean', 'FGSM', 'BIM', 'CW', 'PGD', 'MIM']
)
attack_args.add_argument(
'--test-model', type=str, default='pretrained_model'
)
attack_args.add_argument(
'--eps', type=float, default=8/255, help="For bound eta"
)
# arguments for PGD
attack_args.add_argument(
'--pgd-iters', type=int, default=10, help="# of iteration for PGD attack"
)
attack_args.add_argument(
'--pgd-alpha', type=float, help="Magnitude of perturbation"
)
attack_args.add_argument(
'--pgd-random-start', action='store_true', default=False,
help="If ture, initialize perturbation using eps"
)
# arguments for C&W
attack_args.add_argument(
'--cw-c', type=float, default=0.1, help="loss scaler"
)
attack_args.add_argument(
'--cw-kappa', type=float, default=0, help="minimum value on clamping"
)
attack_args.add_argument(
'--cw-iters', type=int, default=1000, help="# of iteration for CW grdient descent"
)
attack_args.add_argument(
'--cw-lr', type=float, default=0.01, help="learning rate for CW attack"
)
attack_args.add_argument(
'--cw-targeted', action='store_true', default=False, help="d"
)
# arguments for i-FGSM
attack_args.add_argument(
'--bim-step', type=int, default=10, help="Iteration for iterative FGSM"
)
attack_args.add_argument(
'--mim-step', type=int, default=10, help="Iteration for iterative FGSM"
)
return parser
def get_config():
parser = argparse.ArgumentParser(description="PyTorch Defense by distance-based model")
default_parser = parser_setting(parser)
args, _ = default_parser.parse_known_args()
args.device = torch.device(f'cuda:{args.device_ids[0]}' if torch.cuda.is_available else 'cpu')
# number of input classes
# Cifar100: A hundred classes
# The rest: Ten classes
args.num_class = 100 if args.dataset == 'cifar100' else 10
return args