-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathce_loss.py
122 lines (101 loc) · 4.65 KB
/
ce_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import torch
import torch.nn as nn
from utils import network_initialization, get_dataloader
from utils import get_m_s, norm, get_optim, set_seed
from tqdm import tqdm
import datetime
import time
class Trainer():
def __init__(self,args):
set_seed(args.seed)
# dataloader
self.train_loader, self.dev_loader, _ = get_dataloader(args)
# model initialization
self.model = network_initialization(args)
# get mean and std for normalization
self.m, self.s = get_m_s(args)
self.save_path = os.path.join(args.save_path, args.dataset)
os.makedirs(self.save_path, exist_ok=True)
# set criterion
self.criterion_CE = nn.CrossEntropyLoss()
def training(self, args):
# set optimizer & scheduler
optimizer, scheduler = get_optim(self.model, args.lr)
model_path = os.path.join(self.save_path, f"ce_{args.ce_epoch}_model_{args.model}.pt")
best_loss = 1000
current_step = 0
dev_step = 0
trn_loss_log = tqdm(total=0, position=2, bar_format='{desc}')
dev_loss_log = tqdm(total=0, position=4, bar_format='{desc}')
best_epoch_log = tqdm(total=0, position=5, bar_format='{desc}')
outer = tqdm(total=args.ce_epoch, desc="Epoch", position=0, leave=False)
os.makedirs('time_log', exist_ok=True)
f = open(f"time_log/{args.dataset}_{args.phase}.txt", 'w')
start_total = time.time()
# Train target classifier
for epoch in range(args.ce_epoch):
start_epoch = time.time()
_dev_loss = 0.0
train = tqdm(total=len(self.train_loader), desc="[TRN] Step", position=1, leave=False)
dev = tqdm(total=len(self.dev_loader), desc="[DEV] Step", position=3, leave=False)
for step, (inputs, labels) in enumerate(self.train_loader, 0):
self.model.train()
current_step += 1
if inputs.size(1) == 1:
inputs = inputs.repeat(1, 3, 1, 1)
inputs, labels = inputs.to(args.device), labels.to(args.device)
inputs = norm(inputs, self.m, self.s)
# Cross entropy loss
logit, features = self.model(inputs)
loss = self.criterion_CE(logit, labels)
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(self.model.parameters(), 1.)
optimizer.step()
#################### Logging ###################
trn_loss_log.set_description_str(
f"[TRN] Loss: {loss.item():.4f}"
)
train.update(1)
epoch_time = round(time.time() - start_epoch)
epoch_time = str(datetime.timedelta(seconds=epoch_time))
f.write(f"Epoch {epoch+1}: "+str(epoch_time)+'\n')
for idx, (inputs, labels) in enumerate(self.dev_loader, 0):
self.model.eval()
dev_step += 1
if inputs.size(1) == 1:
inputs = inputs.repeat(1, 3, 1, 1)
inputs, labels = inputs.to(args.device), labels.to(args.device)
inputs = norm(inputs, self.m, self.s)
with torch.no_grad():
logit, features = self.model(inputs)
# Cross entropy loss
loss = self.criterion_CE(logit, labels)
# Loss
_dev_loss += loss
dev_loss = _dev_loss/(idx+1)
dev_loss_log.set_description_str(
f"[DEV] Loss: {dev_loss.item():.4f}"
)
dev.update(1)
scheduler.step(dev_loss)
outer.update(1)
if dev_loss < best_loss:
best_epoch_log.set_description_str(
f"Best Epoch: {epoch} / {args.ce_epoch} | Best Loss: {dev_loss}"
)
best_loss = dev_loss
torch.save(
{
"model_state_dict": self.model.module.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"scheduler_state_dict": scheduler.state_dict(),
"trained_epoch": epoch,
},
model_path
)
total_time = round(time.time() - start_total)
total_time = str(datetime.timedelta(seconds=total_time))
f.write(f"Total: "+str(total_time)+'\n')
f.close()