Skip to content

Commit aeb439c

Browse files
author
applewjg
committed
Longest Palindromic Substring
1 parent 890a768 commit aeb439c

File tree

1 file changed

+93
-0
lines changed

1 file changed

+93
-0
lines changed

LongestPalindromicSubstring.java

Lines changed: 93 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,93 @@
1+
/*
2+
Author: King, [email protected]
3+
Date: Dec 13, 2014
4+
Problem: Longest Palindromic Substring
5+
Difficulty: Medium
6+
Source: https://oj.leetcode.com/problems/longest-palindromic-substring/
7+
Notes:
8+
Given a string S, find the longest palindromic substring in S.
9+
You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.
10+
11+
Solution: 1. Time O(n^2), Space O(n^2)
12+
2. Time O(n^2), Space O(n)
13+
3. Time O(n^2), Space O(1) (actually much more efficient than 1 & 2)
14+
4. Time O(n), Space O(n) (Manacher's Algorithm)
15+
*/
16+
public class Solution {
17+
public String longestPalindrome_1(String s) {
18+
int n = s.length();
19+
boolean[][] dp = new boolean[n][n];
20+
int idx = 0, maxLen = 0;
21+
for (int k = 0; k < n; ++k) {
22+
for (int i = 0; i + k < n; ++i) {
23+
if (k == 0 || k == 1) dp[i][i+k] = (s.charAt(i) == s.charAt(i+k));
24+
else dp[i][i+k] = (s.charAt(i) == s.charAt(i+k)) ? dp[i+1][i+k-1] : false;
25+
if (dp[i][i+k] == true && (k+1) > maxLen) {
26+
idx = i; maxLen = k + 1;
27+
}
28+
}
29+
}
30+
return s.substring(idx, idx + maxLen);
31+
}
32+
public String longestPalindrome_2(String s) {
33+
int n = s.length();
34+
boolean[][] dp = new boolean[2][n];
35+
int idx = 0, maxLen = 0;
36+
int cur = 1, last = 0;
37+
for (int i = 0; i < n; ++i) {
38+
cur = cur + last - (last = cur);
39+
for (int j = i; j >=0; --j) {
40+
if (j == i || j == i - 1)
41+
dp[cur][j] = (s.charAt(i) == s.charAt(j));
42+
else dp[cur][j] = (s.charAt(i) == s.charAt(j)) && dp[last][j + 1];
43+
if (dp[cur][j] && (i - j + 1) > maxLen) {
44+
idx = j; maxLen = i - j + 1;
45+
}
46+
}
47+
}
48+
return s.substring(idx, idx + maxLen);
49+
}
50+
public String longestPalindrome_3(String s) {
51+
int n = s.length();
52+
int idx = 0, maxLen = 0;
53+
for (int i = 0; i < n; ++i) {
54+
for (int j = 0; j <= 1; ++j) {
55+
boolean isP = true;
56+
for (int k = 0; i - k >= 0 && i + j + k < n && isP; ++k) {
57+
isP = (s.charAt(i - k) == s.charAt(i + j + k));
58+
if (isP && (j + 1 + k*2) > maxLen) {
59+
idx = i - k; maxLen = j + 1 + k*2;
60+
}
61+
}
62+
}
63+
}
64+
return s.substring(idx, idx + maxLen);
65+
}
66+
public String longestPalindrome_4(String s) {
67+
int n = s.length();
68+
int idx = 0, maxLen = 0;
69+
StringBuffer sb = new StringBuffer();
70+
sb.append('^');
71+
for (int i = 0; i < n; ++i) {
72+
sb.append('#');
73+
sb.append(s.charAt(i));
74+
}
75+
sb.append("#$");
76+
n = 2 * n + 2;
77+
int mx = 0, id = 0;
78+
int[] p = new int[n];
79+
Arrays.fill(p,0);
80+
for (int i = 1; i < n - 1; ++i) {
81+
p[i] = (mx > i) ? Math.min(p[2 * id - i], mx - i): 0;
82+
while (sb.charAt(i + 1 + p[i]) == sb.charAt(i - 1 - p[i])) ++p[i];
83+
if (i + p[i] > mx) {
84+
id = i; mx = i + p[i];
85+
}
86+
if (p[i] > maxLen) {
87+
idx = i; maxLen = p[i];
88+
}
89+
}
90+
idx = (idx - maxLen - 1) / 2;
91+
return s.substring(idx, idx + maxLen);
92+
}
93+
}

0 commit comments

Comments
 (0)