diff --git a/ANALYSIS OF THE MOVIE BOX INDUSTRY (1).pdf b/ANALYSIS OF THE MOVIE BOX INDUSTRY (1).pdf
new file mode 100644
index 00000000..14753c18
Binary files /dev/null and b/ANALYSIS OF THE MOVIE BOX INDUSTRY (1).pdf differ
diff --git a/README.md b/README.md
index b5e02341..db800c8d 100644
--- a/README.md
+++ b/README.md
@@ -1,281 +1,179 @@
-# Phase 2 Project Description
-You've made it through the second phase of this course, and now you will put your new skills to use with a large end-of-Phase project!
-In this project description, we will cover:
+# Data Analysis on Movie Financials
-* [***Project Overview:***](#project-overview) the project goal, audience, and dataset
-* [***Deliverables:***](#deliverables) the specific items you are required to produce for this project
-* [***Grading:***](#grading) how your project will be scored
-* [***Getting Started:***](#getting-started) guidance for how to begin your first project
+This project presents a comprehensive analysis of movie financials, exploring production budgets, box office gross, and Return on Investment (ROI). By analyzing various datasets, we aim to uncover the underlying factors that drive a movie's financial success and provide valuable insights into the correlation between budget size and profitability. This analysis includes detailed visualizations, predictive models, and hypothesis testing.
-## Project Overview
-
-For this project, you will use exploratory data analysis to generate insights for a business stakeholder.
-
-### Business Problem
-
-Your company now sees all the big companies creating original video content and they want to get in on the fun. They have decided to create a new movie studio, but they don’t know anything about creating movies. You are charged with exploring what types of films are currently doing the best at the box office. You must then translate those findings into actionable insights that the head of your company's new movie studio can use to help decide what type of films to create.
-
-### The Data
-
-In the folder `zippedData` are movie datasets from:
-
-* [Box Office Mojo](https://www.boxofficemojo.com/)
-* [IMDB](https://www.imdb.com/)
-* [Rotten Tomatoes](https://www.rottentomatoes.com/)
-* [TheMovieDB](https://www.themoviedb.org/)
-* [The Numbers](https://www.the-numbers.com/)
-
-Because it was collected from various locations, the different files have different formats. Some are compressed CSV (comma-separated values) or TSV (tab-separated values) files that can be opened using spreadsheet software or `pd.read_csv`, while the data from IMDB is located in a SQLite database.
-
-
-
-Note that the above diagram shows ONLY the IMDB data. You will need to look carefully at the features to figure out how the IMDB data relates to the other provided data files.
-
-It is up to you to decide what data from this to use and how to use it. If you want to make this more challenging, you can scrape websites or make API calls to get additional data. If you are feeling overwhelmed or behind, we recommend you use only the following data files:
-
-* `im.db.zip`
- * Zipped SQLite database (you will need to unzip then query using SQLite)
- * `movie_basics` and `movie_ratings` tables are most relevant
-* `bom.movie_gross.csv.gz`
- * Compressed CSV file (you can open without expanding the file using `pd.read_csv`)
-
-### Key Points
-
-* **Your analysis should yield three concrete business recommendations.** The ultimate purpose of exploratory analysis is not just to learn about the data, but to help an organization perform better. Explicitly relate your findings to business needs by recommending actions that you think the business should take.
-
-* **Communicating about your work well is extremely important.** Your ability to provide value to an organization - or to land a job there - is directly reliant on your ability to communicate with them about what you have done and why it is valuable. Create a storyline your audience (the head of the new movie studio) can follow by walking them through the steps of your process, highlighting the most important points and skipping over the rest.
-
-* **Use plenty of visualizations.** Visualizations are invaluable for exploring your data and making your findings accessible to a non-technical audience. Spotlight visuals in your presentation, but only ones that relate directly to your recommendations. Simple visuals are usually best (e.g. bar charts and line graphs), and don't forget to format them well (e.g. labels, titles).
-
-## Deliverables
-
-There are three deliverables for this project:
-
-* A **non-technical presentation**
-* A **Jupyter Notebook**
-* A **GitHub repository**
-
-### Non-Technical Presentation
-
-The non-technical presentation is a slide deck presenting your analysis to business stakeholders.
-
-* ***Non-technical*** does not mean that you should avoid mentioning the technologies or techniques that you used, it means that you should explain any mentions of these technologies and avoid assuming that your audience is already familiar with them.
-* ***Business stakeholders*** means that the audience for your presentation is the company, not the class or teacher. Do not assume that they are already familiar with the specific business problem.
-
-The presentation describes the project ***goals, data, methods, and results***. It must include at least ***three visualizations*** which correspond to ***three business recommendations***.
-
-We recommend that you follow this structure, although the slide titles should be specific to your project:
-
-1. Beginning
- * Overview
- * Business Understanding
-2. Middle
- * Data Understanding
- * Data Analysis
-3. End
- * Recommendations
- * Next Steps
- * Thank You
- * This slide should include a prompt for questions as well as your contact information (name and LinkedIn profile)
+## Datasets Used
-You will give a live presentation of your slides and submit them in PDF format on Canvas. The slides should also be present in the GitHub repository you submit with a file name of `presentation.pdf`.
+The project utilizes the following datasets:
-The graded elements of the presentation are:
+1. **IMDB Data**:
+ - Metadata about movies, including titles, release years, genres, and IMDB ratings.
-* Presentation Content
-* Slide Style
-* Presentation Delivery and Answers to Questions
+2. **Box Office Mojo Data**:
+ - Detailed financial information like production budgets, domestic and worldwide gross earnings.
-See the [Grading](#grading) section for further explanation of these elements.
+3. **Supplementary Data**:
+ - Additional information such as actor/actress names, directors, and other variables influencing a movie's financial performance.
-For further reading on creating professional presentations, check out:
-
-* [Presentation Content](https://github.com/learn-co-curriculum/dsc-project-presentation-content)
-* [Slide Style](https://github.com/learn-co-curriculum/dsc-project-slide-design)
-
-### Jupyter Notebook
-
-The Jupyter Notebook is a notebook that uses Python and Markdown to present your analysis to a data science audience.
-
-* ***Python and Markdown*** means that you need to construct an integrated `.ipynb` file with Markdown (headings, paragraphs, links, lists, etc.) and Python code to create a well-organized, skim-able document.
- * The notebook kernel should be restarted and all cells run before submission, to ensure that all code is runnable in order.
- * Markdown should be used to frame the project with a clear introduction and conclusion, as well as introducing each of the required elements.
-* ***Data science audience*** means that you can assume basic data science proficiency in the person reading your notebook. This differs from the non-technical presentation.
-
-Along with the presentation, the notebook also describes the project ***goals, data, methods, and results***. It must include at least ***three visualizations*** which correspond to ***three business recommendations***.
-
-You will submit the notebook in PDF format on Canvas as well as in `.ipynb` format in your GitHub repository.
-
-The graded elements for the Jupyter Notebook are:
-
-* Business Understanding
-* Data Understanding
-* Data Preparation
-* Data Analysis
-* Visualization
-* Code Quality
-
-See the [Grading](#grading) section for further explanation of these elements.
-
-### GitHub Repository
-
-The GitHub repository is the cloud-hosted directory containing all of your project files as well as their version history.
-
-This repository link will be the project link that you include on your resume, LinkedIn, etc. for prospective employers to view your work. Note that we typically recommend that 3 links are highlighted (out of 5 projects) so don't stress too much about getting this one to be perfect! There will also be time after graduation for cosmetic touch-ups.
-
-A professional GitHub repository has:
-
-1. `README.md`
- * A file called `README.md` at the root of the repository directory, written in Markdown; this is what is rendered when someone visits the link to your repository in the browser
- * This file contains these sections:
- * Overview
- * Business Understanding
- * Include stakeholder and key business questions
- * Data Understanding and Analysis
- * Source of data
- * Description of data
- * Three visualizations (the same visualizations presented in the slides and notebook)
- * Conclusion
- * Summary of conclusions including three relevant findings
-2. Commit history
- * Progression of updates throughout the project time period, not just immediately before the deadline
- * Clear commit messages
- * Commits from all team members (if a group project)
-3. Organization
- * Clear folder structure
- * Clear names of files and folders
- * Easily-located notebook and presentation linked in the README
-4. Notebook(s)
- * Clearly-indicated final notebook that runs without errors
- * Exploratory/working notebooks (can contain errors, redundant code, etc.) from all team members (if a group project)
-5. `.gitignore`
- * A file called `.gitignore` at the root of the repository directory instructs Git to ignore large, unnecessary, or private files
- * Because it starts with a `.`, you will need to type `ls -a` in the terminal in order to see that it is there
- * GitHub maintains a [Python .gitignore](https://github.com/github/gitignore/blob/master/Python.gitignore) that may be a useful starting point for your version of this file
- * To tell Git to ignore more files, just add a new line to `.gitignore` for each new file name
- * Consider adding `.DS_Store` if you are using a Mac computer, as well as project-specific file names
- * If you are running into an error message because you forgot to add something to `.gitignore` and it is too large to be pushed to GitHub [this blog post](https://medium.com/analytics-vidhya/tutorial-removing-large-files-from-git-78dbf4cf83a?sk=c3763d466c7f2528008c3777192dfb95)(friend link) should help you address this
-
-You wil submit a link to the GitHub repository on Canvas.
-
-See the [Grading](#grading) section for further explanation of how the GitHub repository will be graded.
-
-For further reading on creating professional notebooks and `README`s, check out [this reading](https://github.com/learn-co-curriculum/dsc-repo-readability-v2-2).
-
-## Grading
-
-***To pass this project, you must pass each project rubric objective.*** The project rubric objectives for Phase 2 are:
-
-1. Data Communication
-2. Authoring Jupyter Notebooks
-3. Data Manipulation and Analysis with `pandas`
-
-### Data Communication
-
-Communication is a key "soft skill". In [this survey](https://www.payscale.com/data-packages/job-skills), 46% of hiring managers said that recent college grads were missing this skill.
-
-Because "communication" can encompass such a wide range of contexts and skills, we will specifically focus our Phase 2 objective on Data Communication. We define Data Communication as:
-
-> Communicating basic data analysis results to diverse audiences via writing and live presentation
+## Project Overview
-To further define some of these terms:
+### Key Objectives
+This project has several core objectives aimed at understanding the financial landscape of the movie industry:
-* By "basic data analysis" we mean that you are filtering, sorting, grouping, and/or aggregating the data in order to answer business questions. This project does not involve inferential statistics or machine learning, although descriptive statistics such as measures of central tendency are encouraged.
-* By "results" we mean your ***three visualizations and recommendations***.
-* By "diverse audiences" we mean that your presentation and notebook are appropriately addressing a business and data science audience, respectively.
+1. **Analyze Movie Financial Success**:
+ - Investigate how production budgets correlate with worldwide box office gross and profit margins.
+ - Explore ROI behavior across different budget ranges to identify any patterns in profitability.
-Below are the definitions of each rubric level for this objective. This information is also summarized in the rubric, which is attached to the project submission assignment.
+2. **Correlation and Causality**:
+ - Identify the relationships between key financial variables: production budgets, worldwide gross, domestic gross, profit, and ROI.
-#### Exceeds Objective
-Creates and describes appropriate visualizations for given business questions, where each visualization fulfills all elements of the checklist
+3. **Hypothesis Testing**:
+ - Test assumptions such as whether higher-budget films generate higher ROI or how critical other factors like genre or release timing are to financial outcomes.
-> This "checklist" refers to the Data Visualization checklist within the larger Phase 2 Project Checklist
+4. **Predictive Analysis**:
+ - Build predictive models using machine learning algorithms to forecast a movie’s financial success based on input variables like budget and genre.
-#### Meets Objective (Passing Bar)
-Creates and describes appropriate visualizations for given business questions
+## Tools & Technologies
-> This objective can be met even if all checklist elements are not fulfilled. For example, if there is some illegible text in one of your visualizations, you can still meet this objective
+The following tools and libraries were used in the analysis:
-#### Approaching Objective
-Creates visualizations that are not related to the business questions, or uses an inappropriate type of visualization
+- **Python**: The main programming language used for data manipulation and analysis.
+- **Pandas**: Essential for managing and cleaning the datasets.
+- **Matplotlib & Seaborn**: Used for visualizing data trends and insights.
+- **Jupyter Notebook**: Served as the environment for conducting the analysis.
+
+## Steps and Workflow
-> Even if you create very compelling visualizations, you cannot pass this objective if the visualizations are not related to the business questions
+### 1. Data Cleaning
+ - The first step was to load and clean the datasets. This involved:
+ - Handling missing values by either filling them appropriately or dropping them.
+ - Removing duplicate entries to ensure data integrity.
+ - Formatting columns correctly (e.g., converting dates, numerical values).
+
+### 2. Exploratory Data Analysis (EDA)
+ - Visualized relationships between different financial metrics (e.g., budget vs. worldwide gross).
+ - Generated correlation heatmaps and scatterplots to investigate patterns.
+ - Analyzed the distribution of ROI and profit across various budget sizes.
-> An example of an inappropriate type of visualization would be using a line graph to show the correlation between two independent variables, when a scatter plot would be more appropriate
+### 3. ROI Analysis
+ - Examined the distribution of ROI across movies to understand which types of films (based on budget) yield the highest returns.
+ - Investigated whether smaller-budget films are more likely to provide higher ROI due to lower production costs.
-#### Does Not Meet Objective
-Does not submit the required number of visualizations
+## Analysis Results
-### Authoring Jupyter Notebooks
+### 1. Correlation Analysis
+- **Strong Positive Correlation**:
+ - There is a significant positive correlation between **Worldwide Gross** and **Production Budget** (0.73). Generally, higher-budget movies tend to perform better globally.
+
+- **Weak Relationship with ROI**:
+ - The correlation between **Production Budget** and **ROI** is weak (0.05). This suggests that big-budget films don’t always have proportionally higher returns on investment.
+
+- **Negative Correlation Between ROI and Production Budget**:
+ - As production budgets increase, ROI tends to slightly decrease (-0.05). This could imply that big-budget films involve more financial risk compared to smaller-budget films.
-According to [Kaggle's 2020 State of Data Science and Machine Learning Survey](https://www.kaggle.com/kaggle-survey-2020), 74.1% of data scientists use a Jupyter development environment, which is more than twice the percentage of the next-most-popular IDE, Visual Studio Code. Jupyter Notebooks allow for reproducible, skim-able code documents for a data science audience. Comfort and skill with authoring Jupyter Notebooks will prepare you for job interviews, take-home challenges, and on-the-job tasks as a data scientist.
+### 2. Return on Investment (ROI) Insights
+ - **High ROI for Lower-Budget Films**: Smaller-budget films often yield the highest ROI due to their lower production costs.
+ - **Larger Budgets Aren't Always Profitable**: While larger-budget films earn more gross revenue, they also come with higher costs, which doesn’t always translate into better profitability.
-The key feature that distinguishes *authoring Jupyter Notebooks* from simply *writing Python code* is the fact that Markdown cells are integrated into the notebook along with the Python cells in a notebook. You have seen examples of this throughout the curriculum, but now it's time for you to practice this yourself!
+## Return on Investment (ROI) Calculation
-Below are the definitions of each rubric level for this objective. This information is also summarized in the rubric, which is attached to the project submission assignment.
+### Overview
+The **ROI** helps stakeholders understand the financial benefits of a project relative to its cost.
-#### Exceeds Objective
-Uses Markdown and code comments to create a well-organized, skim-able document that follows all best practices
+### ROI Formula
+The formula for calculating ROI is as follows:
-> Refer to the [repository readability reading](https://github.com/learn-co-curriculum/dsc-repo-readability-v2-2) for more tips on best practices
+$$
+\text{ROI} = \frac{\text{Net Profit} - \text{Total Investment}}{\text{Total Investment}} \times 100
+$$
-#### Meets Objective (Passing Bar)
-Uses some Markdown to create an organized notebook, with an introduction at the top and a conclusion at the bottom
+### Definitions
+- **Net Profit:** The financial gain from improved student performance and retention rates.
+- **Total Investment:** The costs incurred during the project, which may include:
+## Conclusion
+By using the ROI formula, stakeholders can evaluate the effectiveness and financial viability of the project.
-#### Approaching Objective
-Uses Markdown cells to organize, but either uses only headers and does not provide any explanations or justifications, or uses only plaintext without any headers to segment out sections of the notebook
-> Headers in Markdown are delineated with one or more `#`s at the start of the line. You should have a mixture of headers and plaintext (text where the line does not start with `#`)
+- **Net Profit**: The financial gain from improved student performance and retention rates.
+- **Total Investment**: The costs incurred during the project (software, data analysis tools, salaries, etc.).
-#### Does Not Meet Objective
-Does not submit a notebook, or does not use Markdown cells at all to organize the notebook
+### 3. Predictive Analysis
+ - The predictive models created as part of the project show that **production budget** is a significant predictor of a movie's gross revenue. However, it is not a perfect predictor, as other factors (e.g., marketing, cast) play crucial roles in determining success.
+
+## Insights and Takeaways
-### Data Manipulation and Analysis with `pandas`
+- **Larger budgets contribute to better box office performance but do not guarantee higher ROI**.
+- **Smaller-budget films often yield higher ROI**, making them potentially more profitable investments.
+- Factors such as **genre, marketing, and timing** can significantly influence a movie’s financial success.
-`pandas` is a very popular data manipulation library, with over 2 million downloads on Anaconda (`conda install pandas`) and over 19 million downloads on PyPI (`pip install pandas`) at the time of this writing. In our own internal data, we see that the overwhelming majority of Flatiron School DS grads use `pandas` on the job in some capacity.
+## Future Improvements
-Unlike in base Python, where the Zen of Python says "There should be one-- and preferably only one --obvious way to do it", there is often more than one valid way to do something in `pandas`. However there are still more efficient and less efficient ways to use it. Specifically, the best `pandas` code is *performant* and *idiomatic*.
+- **Incorporate Talent Data**: By integrating actor and director popularity data, we could explore how cast and crew influence a movie's financial performance.
+- **More Advanced Machine Learning Models**: Further experiments with models such as Random Forests or Neural Networks could help better predict the financial outcomes of films.
+- **Time-Series Analysis**: Investigate the impact of release timing (e.g., summer blockbusters vs. holiday films) on box office success.
-Performant `pandas` code utilizes methods and broadcasting rather than user-defined functions or `for` loops. For example, if you need to strip whitespace from a column containing string data, the best approach would be to use the [`pandas.Series.str.strip` method](https://pandas.pydata.org/docs/reference/api/pandas.Series.str.strip.html) rather than writing your own function or writing a loop. Or if you want to multiply everything in a column by 100, the best approach would be to use broadcasting (e.g. `df["column_name"] * 100`) instead of a function or loop. You can still write your own functions if needed, but only after checking that there isn't a built-in way to do it.
-Idiomatic `pandas` code has variable names that are meaningful words or abbreviations in English, that are related to the purpose of the variables. You can still use `df` as the name of your DataFrame if there is only one main DataFrame you are working with, but as soon as you are merging multiple DataFrames or taking a subset of a DataFrame, you should use meaningful names. For example, `df2` would not be an idiomatic name, but `movies_and_reviews` could be.
+ ```
-We also recommend that you rename all DataFrame columns so that their meanings are more understandable, although it is fine to have acronyms. For example, `"col1"` would not be an idiomatic name, but `"USD"` could be.
+## Visualizations
-Below are the definitions of each rubric level for this objective. This information is also summarized in the rubric, which is attached to the project submission assignment.
+The project includes several key visualizations:
+- Correlation heatmaps for financial metrics
+- Scatterplots illustrating the relationship between budget and box office performance
+- ROI distribution histograms
-#### Exceeds Objective
-Uses `pandas` to prepare data and answer business questions in an idiomatic, performant way
+### Visualizations
-#### Meets Objective (Passing Bar)
-Successfully uses `pandas` to prepare data in order to answer business questions
+| Image 1 | Image 2 |
+|-----------------------------|-----------------------------|
+|  |  |
+|  |  |
+|  |  |
-> This includes projects that _occasionally_ use base Python when `pandas` methods would be more appropriate (such as using `enumerate()` on a DataFrame), or occasionally performs operations that do not appear to have any relevance to the business questions
+## Description of Images
-#### Approaching Objective
-Uses `pandas` to prepare data, but makes significant errors
+- **Studio by Gross**: A visual representation of the studio's performance.
+- **Heatmap**: A heatmap showcasing data trends.
+- **Movies by Rating**: A chart illustrating movie ratings.
+- **Genres Pie Chart**: A pie chart displaying genre distribution.
+- **Movies by Votes**: A graph of votes received by movies.
+- **Movies by Gross**: A chart showing gross revenue of movies.
-> Examples of significant errors include: the result presented does not actually answer the stated question, the code produces errors, the code _consistently_ uses base Python when `pandas` methods would be more appropriate, or the submitted notebook contains significant quantities of code that is unrelated to the presented analysis (such as copy/pasted code from the curriculum or StackOverflow)
-#### Does Not Meet Objective
-Unable to prepare data using `pandas`
+# Movie Studio Recommendations
+### 1. Emulate Successful Franchises
+- **Action:** Analyze franchise models from leading studios.
+- **Goal:** Create original content with franchise potential.
-> This includes projects that successfully answer the business questions, but do not use `pandas` (e.g. use only base Python, or use some other tool like R, Tableau, or Excel)
+### 2. Diversify Genre Offerings
+- **Action:** Explore a variety of genres like horror, action, and animation.
+- **Goal:** Appeal to a broader audience base.
-## Getting Started
+### 3. Leverage Strong IPs
+- **Action:** Acquire or develop strong intellectual properties.
+- **Goal:** Utilize existing IP libraries for expansion.
-Please start by reviewing the contents of this project description. If you have any questions, please ask your instructor ASAP.
+### 4. Innovate Marketing Strategies
+- **Action:** Implement engaging marketing campaigns.
+- **Goal:** Build audience anticipation using digital platforms.
-Next, you will need to complete the [***Project Proposal***](#project_proposal) which must be reviewed by your instructor before you can continue with the project.
+### 5. Collaborate for Success
+- **Action:** Form strategic partnerships with other studios.
+- **Goal:** Enhance production quality and distribution reach.
-Then, you will need to create a GitHub repository. There are three options:
+## Conclusion
-1. Look at the [Phase 2 Project Templates and Examples repo](https://github.com/learn-co-curriculum/dsc-project-template) and follow the directions in the MVP branch.
-2. Fork the [Phase 2 Project Repository](https://github.com/learn-co-curriculum/dsc-phase-2-project-v3), clone it locally, and work in the `student.ipynb` file. Make sure to also add and commit a PDF of your presentation to your repository with a file name of `presentation.pdf`.
-3. Create a new repository from scratch by going to [github.com/new](https://github.com/new) and copying the data files from one of the above resources into your new repository. This approach will result in the most professional-looking portfolio repository, but can be more complicated to use. So if you are getting stuck with this option, try one of the above options instead.
+- These recommendations aim to position the new movie studio competitively in the evolving film industry landscape.
+---
+## Contributors
-## Summary
+- [Abdihakim Issack](https://github.com/zaenhakeem)
+- [Imran](https://github.com/malvadaox)
+- [Boniface Ngechu](https://github.com/bonie99)
+- [Linet Lydia](https://github.com/linetlydia)
+- [Batuli Abdullah](https://github.com/batuli'02)
+- [Tableau Dashboard Links](https://public.tableau.com/shared/XMQHJR676?:display_count=n&:origin=viz_share_link)
+ ---
-This project will give you a valuable opportunity to develop your data science skills using real-world data. The end-of-phase projects are a critical part of the program because they give you a chance to bring together all the skills you've learned, apply them to realistic projects for a business stakeholder, practice communication skills, and get feedback to help you improve. You've got this!
diff --git a/aven.png b/aven.png
new file mode 100644
index 00000000..5618dba7
Binary files /dev/null and b/aven.png differ
diff --git a/genrebyrating.png b/genrebyrating.png
new file mode 100644
index 00000000..e362a27f
Binary files /dev/null and b/genrebyrating.png differ
diff --git a/genrespie.png b/genrespie.png
new file mode 100644
index 00000000..f0c1fb7a
Binary files /dev/null and b/genrespie.png differ
diff --git a/grs.png b/grs.png
new file mode 100644
index 00000000..aff26c12
Binary files /dev/null and b/grs.png differ
diff --git a/heatmapfinal.png b/heatmapfinal.png
new file mode 100644
index 00000000..c910aac6
Binary files /dev/null and b/heatmapfinal.png differ
diff --git a/index.ipynb b/index.ipynb
deleted file mode 100644
index 3623bc14..00000000
--- a/index.ipynb
+++ /dev/null
@@ -1,643 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "id": "5d35b2b4",
- "metadata": {},
- "source": [
- "# Phase 2 Project Description"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "b5e9e179",
- "metadata": {},
- "source": [
- "You've made it through the second phase of this course, and now you will put your new skills to use with a large end-of-Phase project!\n",
- "\n",
- "In this project description, we will cover:\n",
- "\n",
- "* [***Project Overview:***](#project-overview) the project goal, audience, and dataset\n",
- "* [***Deliverables:***](#deliverables) the specific items you are required to produce for this project\n",
- "* [***Grading:***](#grading) how your project will be scored\n",
- "* [***Getting Started:***](#getting-started) guidance for how to begin your first project"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "58851385",
- "metadata": {},
- "source": [
- "## Project Overview"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "6f37995f",
- "metadata": {},
- "source": [
- "For this project, you will use exploratory data analysis to generate insights for a business stakeholder."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "8b0f1668",
- "metadata": {},
- "source": [
- "### Business Problem"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "dce55d1d",
- "metadata": {},
- "source": [
- "Your company now sees all the big companies creating original video content and they want to get in on the fun. They have decided to create a new movie studio, but they don’t know anything about creating movies. You are charged with exploring what types of films are currently doing the best at the box office. You must then translate those findings into actionable insights that the head of your company's new movie studio can use to help decide what type of films to create."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "d3d557bf",
- "metadata": {},
- "source": [
- "### The Data"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "ca34efb7",
- "metadata": {},
- "source": [
- "In the folder `zippedData` are movie datasets from:\n",
- "\n",
- "* [Box Office Mojo](https://www.boxofficemojo.com/)\n",
- "* [IMDB](https://www.imdb.com/)\n",
- "* [Rotten Tomatoes](https://www.rottentomatoes.com/)\n",
- "* [TheMovieDB](https://www.themoviedb.org/)\n",
- "* [The Numbers](https://www.the-numbers.com/)\n",
- "\n",
- "Because it was collected from various locations, the different files have different formats. Some are compressed CSV (comma-separated values) or TSV (tab-separated values) files that can be opened using spreadsheet software or `pd.read_csv`, while the data from IMDB is located in a SQLite database.\n",
- "\n",
- "\n",
- "\n",
- "Note that the above diagram shows ONLY the IMDB data. You will need to look carefully at the features to figure out how the IMDB data relates to the other provided data files.\n",
- "\n",
- "It is up to you to decide what data from this to use and how to use it. If you want to make this more challenging, you can scrape websites or make API calls to get additional data. If you are feeling overwhelmed or behind, we recommend you use only the following data files:\n",
- "\n",
- "* `im.db.zip`\n",
- " * Zipped SQLite database (you will need to unzip then query using SQLite)\n",
- " * `movie_basics` and `movie_ratings` tables are most relevant\n",
- "* `bom.movie_gross.csv.gz`\n",
- " * Compressed CSV file (you can open without expanding the file using `pd.read_csv`)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "5ace6e4f",
- "metadata": {},
- "source": [
- "### Key Points"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "c9d2edeb",
- "metadata": {},
- "source": [
- "* **Your analysis should yield three concrete business recommendations.** The ultimate purpose of exploratory analysis is not just to learn about the data, but to help an organization perform better. Explicitly relate your findings to business needs by recommending actions that you think the business should take.\n",
- "\n",
- "* **Communicating about your work well is extremely important.** Your ability to provide value to an organization - or to land a job there - is directly reliant on your ability to communicate with them about what you have done and why it is valuable. Create a storyline your audience (the head of the new movie studio) can follow by walking them through the steps of your process, highlighting the most important points and skipping over the rest.\n",
- "\n",
- "* **Use plenty of visualizations.** Visualizations are invaluable for exploring your data and making your findings accessible to a non-technical audience. Spotlight visuals in your presentation, but only ones that relate directly to your recommendations. Simple visuals are usually best (e.g. bar charts and line graphs), and don't forget to format them well (e.g. labels, titles)."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "474e2ec3",
- "metadata": {},
- "source": [
- "## Deliverables"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "eaeda85f",
- "metadata": {},
- "source": [
- "There are three deliverables for this project:\n",
- "\n",
- "* A **non-technical presentation**\n",
- "* A **Jupyter Notebook**\n",
- "* A **GitHub repository**"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a7f8e274",
- "metadata": {},
- "source": [
- "### Non-Technical Presentation"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "540d5c27",
- "metadata": {},
- "source": [
- "The non-technical presentation is a slide deck presenting your analysis to business stakeholders.\n",
- "\n",
- "* ***Non-technical*** does not mean that you should avoid mentioning the technologies or techniques that you used, it means that you should explain any mentions of these technologies and avoid assuming that your audience is already familiar with them.\n",
- "* ***Business stakeholders*** means that the audience for your presentation is the company, not the class or teacher. Do not assume that they are already familiar with the specific business problem.\n",
- "\n",
- "The presentation describes the project ***goals, data, methods, and results***. It must include at least ***three visualizations*** which correspond to ***three business recommendations***.\n",
- "\n",
- "We recommend that you follow this structure, although the slide titles should be specific to your project:\n",
- "\n",
- "1. Beginning\n",
- " * Overview\n",
- " * Business Understanding\n",
- "2. Middle\n",
- " * Data Understanding\n",
- " * Data Analysis\n",
- "3. End\n",
- " * Recommendations\n",
- " * Next Steps\n",
- " * Thank You\n",
- " * This slide should include a prompt for questions as well as your contact information (name and LinkedIn profile)\n",
- "\n",
- "You will give a live presentation of your slides and submit them in PDF format on Canvas. The slides should also be present in the GitHub repository you submit with a file name of `presentation.pdf`.\n",
- "\n",
- "The graded elements of the presentation are:\n",
- "\n",
- "* Presentation Content\n",
- "* Slide Style\n",
- "* Presentation Delivery and Answers to Questions\n",
- "\n",
- "See the [Grading](#grading) section for further explanation of these elements.\n",
- "\n",
- "For further reading on creating professional presentations, check out:\n",
- "\n",
- "* [Presentation Content](https://github.com/learn-co-curriculum/dsc-project-presentation-content)\n",
- "* [Slide Style](https://github.com/learn-co-curriculum/dsc-project-slide-design)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "d27915ba",
- "metadata": {},
- "source": [
- "### Jupyter Notebook"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "2d5d45ea",
- "metadata": {},
- "source": [
- "The Jupyter Notebook is a notebook that uses Python and Markdown to present your analysis to a data science audience.\n",
- "\n",
- "* ***Python and Markdown*** means that you need to construct an integrated `.ipynb` file with Markdown (headings, paragraphs, links, lists, etc.) and Python code to create a well-organized, skim-able document.\n",
- " * The notebook kernel should be restarted and all cells run before submission, to ensure that all code is runnable in order.\n",
- " * Markdown should be used to frame the project with a clear introduction and conclusion, as well as introducing each of the required elements.\n",
- "* ***Data science audience*** means that you can assume basic data science proficiency in the person reading your notebook. This differs from the non-technical presentation.\n",
- "\n",
- "Along with the presentation, the notebook also describes the project ***goals, data, methods, and results***. It must include at least ***three visualizations*** which correspond to ***three business recommendations***.\n",
- "\n",
- "You will submit the notebook in PDF format on Canvas as well as in `.ipynb` format in your GitHub repository.\n",
- "\n",
- "The graded elements for the Jupyter Notebook are:\n",
- "\n",
- "* Business Understanding\n",
- "* Data Understanding\n",
- "* Data Preparation\n",
- "* Data Analysis\n",
- "* Visualization\n",
- "* Code Quality\n",
- "\n",
- "See the [Grading](#grading) section for further explanation of these elements."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "2027aa4c",
- "metadata": {},
- "source": [
- "### GitHub Repository"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "b8057390",
- "metadata": {},
- "source": [
- "The GitHub repository is the cloud-hosted directory containing all of your project files as well as their version history.\n",
- "\n",
- "This repository link will be the project link that you include on your resume, LinkedIn, etc. for prospective employers to view your work. Note that we typically recommend that 3 links are highlighted (out of 5 projects) so don't stress too much about getting this one to be perfect! There will also be time after graduation for cosmetic touch-ups.\n",
- "\n",
- "A professional GitHub repository has:\n",
- "\n",
- "1. `README.md`\n",
- " * A file called `README.md` at the root of the repository directory, written in Markdown; this is what is rendered when someone visits the link to your repository in the browser\n",
- " * This file contains these sections:\n",
- " * Overview\n",
- " * Business Understanding\n",
- " * Include stakeholder and key business questions\n",
- " * Data Understanding and Analysis\n",
- " * Source of data\n",
- " * Description of data\n",
- " * Three visualizations (the same visualizations presented in the slides and notebook)\n",
- " * Conclusion\n",
- " * Summary of conclusions including three relevant findings\n",
- "2. Commit history\n",
- " * Progression of updates throughout the project time period, not just immediately before the deadline\n",
- " * Clear commit messages\n",
- " * Commits from all team members (if a group project)\n",
- "3. Organization\n",
- " * Clear folder structure\n",
- " * Clear names of files and folders\n",
- " * Easily-located notebook and presentation linked in the README\n",
- "4. Notebook(s)\n",
- " * Clearly-indicated final notebook that runs without errors\n",
- " * Exploratory/working notebooks (can contain errors, redundant code, etc.) from all team members (if a group project)\n",
- "5. `.gitignore`\n",
- " * A file called `.gitignore` at the root of the repository directory instructs Git to ignore large, unnecessary, or private files\n",
- " * Because it starts with a `.`, you will need to type `ls -a` in the terminal in order to see that it is there\n",
- " * GitHub maintains a [Python .gitignore](https://github.com/github/gitignore/blob/master/Python.gitignore) that may be a useful starting point for your version of this file\n",
- " * To tell Git to ignore more files, just add a new line to `.gitignore` for each new file name\n",
- " * Consider adding `.DS_Store` if you are using a Mac computer, as well as project-specific file names\n",
- " * If you are running into an error message because you forgot to add something to `.gitignore` and it is too large to be pushed to GitHub [this blog post](https://medium.com/analytics-vidhya/tutorial-removing-large-files-from-git-78dbf4cf83a?sk=c3763d466c7f2528008c3777192dfb95)(friend link) should help you address this\n",
- "\n",
- "You wil submit a link to the GitHub repository on Canvas.\n",
- "\n",
- "See the [Grading](#grading) section for further explanation of how the GitHub repository will be graded.\n",
- "\n",
- "For further reading on creating professional notebooks and `README`s, check out [this reading](https://github.com/learn-co-curriculum/dsc-repo-readability-v2-2)."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "f19694e7",
- "metadata": {},
- "source": [
- "## Grading"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "06e9cfb7",
- "metadata": {},
- "source": [
- "***To pass this project, you must pass each project rubric objective.*** The project rubric objectives for Phase 2 are:\n",
- "\n",
- "1. Data Communication\n",
- "2. Authoring Jupyter Notebooks\n",
- "3. Data Manipulation and Analysis with `pandas`"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a4c04769",
- "metadata": {},
- "source": [
- "### Data Communication"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "0834a4ee",
- "metadata": {},
- "source": [
- "Communication is a key \"soft skill\". In [this survey](https://www.payscale.com/data-packages/job-skills), 46% of hiring managers said that recent college grads were missing this skill.\n",
- "\n",
- "Because \"communication\" can encompass such a wide range of contexts and skills, we will specifically focus our Phase 2 objective on Data Communication. We define Data Communication as:\n",
- "\n",
- "> Communicating basic data analysis results to diverse audiences via writing and live presentation\n",
- "\n",
- "To further define some of these terms:\n",
- "\n",
- "* By \"basic data analysis\" we mean that you are filtering, sorting, grouping, and/or aggregating the data in order to answer business questions. This project does not involve inferential statistics or machine learning, although descriptive statistics such as measures of central tendency are encouraged.\n",
- "* By \"results\" we mean your ***three visualizations and recommendations***.\n",
- "* By \"diverse audiences\" we mean that your presentation and notebook are appropriately addressing a business and data science audience, respectively.\n",
- "\n",
- "Below are the definitions of each rubric level for this objective. This information is also summarized in the rubric, which is attached to the project submission assignment."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "276dff7c",
- "metadata": {},
- "source": [
- "#### Exceeds Objective"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "e87c2713",
- "metadata": {},
- "source": [
- "Creates and describes appropriate visualizations for given business questions, where each visualization fulfills all elements of the checklist\n",
- "\n",
- "> This \"checklist\" refers to the Data Visualization checklist within the larger Phase 2 Project Checklist"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "b4e8a4c7",
- "metadata": {},
- "source": [
- "#### Meets Objective (Passing Bar)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "bc4e21d0",
- "metadata": {},
- "source": [
- "Creates and describes appropriate visualizations for given business questions\n",
- "\n",
- "> This objective can be met even if all checklist elements are not fulfilled. For example, if there is some illegible text in one of your visualizations, you can still meet this objective"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "d0403eb9",
- "metadata": {},
- "source": [
- "#### Approaching Objective"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "22dd4ad6",
- "metadata": {},
- "source": [
- "Creates visualizations that are not related to the business questions, or uses an inappropriate type of visualization\n",
- "\n",
- "> Even if you create very compelling visualizations, you cannot pass this objective if the visualizations are not related to the business questions\n",
- "\n",
- "> An example of an inappropriate type of visualization would be using a line graph to show the correlation between two independent variables, when a scatter plot would be more appropriate"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "aa1b808d",
- "metadata": {},
- "source": [
- "#### Does Not Meet Objective"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a8a64869",
- "metadata": {},
- "source": [
- "Does not submit the required number of visualizations"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "db2e0ce8",
- "metadata": {},
- "source": [
- "### Authoring Jupyter Notebooks"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "91cc89b5",
- "metadata": {},
- "source": [
- "According to [Kaggle's 2020 State of Data Science and Machine Learning Survey](https://www.kaggle.com/kaggle-survey-2020), 74.1% of data scientists use a Jupyter development environment, which is more than twice the percentage of the next-most-popular IDE, Visual Studio Code. Jupyter Notebooks allow for reproducible, skim-able code documents for a data science audience. Comfort and skill with authoring Jupyter Notebooks will prepare you for job interviews, take-home challenges, and on-the-job tasks as a data scientist.\n",
- "\n",
- "The key feature that distinguishes *authoring Jupyter Notebooks* from simply *writing Python code* is the fact that Markdown cells are integrated into the notebook along with the Python cells in a notebook. You have seen examples of this throughout the curriculum, but now it's time for you to practice this yourself!\n",
- "\n",
- "Below are the definitions of each rubric level for this objective. This information is also summarized in the rubric, which is attached to the project submission assignment."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "b9272672",
- "metadata": {},
- "source": [
- "#### Exceeds Objective"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "efc937e5",
- "metadata": {},
- "source": [
- "Uses Markdown and code comments to create a well-organized, skim-able document that follows all best practices\n",
- "\n",
- "> Refer to the [repository readability reading](https://github.com/learn-co-curriculum/dsc-repo-readability-v2-2) for more tips on best practices"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "d01725ea",
- "metadata": {},
- "source": [
- "#### Meets Objective (Passing Bar)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "2c854f50",
- "metadata": {},
- "source": [
- "Uses some Markdown to create an organized notebook, with an introduction at the top and a conclusion at the bottom"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "3e0b3385",
- "metadata": {},
- "source": [
- "#### Approaching Objective"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "67767f89",
- "metadata": {},
- "source": [
- "Uses Markdown cells to organize, but either uses only headers and does not provide any explanations or justifications, or uses only plaintext without any headers to segment out sections of the notebook\n",
- "\n",
- "> Headers in Markdown are delineated with one or more `#`s at the start of the line. You should have a mixture of headers and plaintext (text where the line does not start with `#`)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "195ef62a",
- "metadata": {},
- "source": [
- "#### Does Not Meet Objective"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "709181b9",
- "metadata": {},
- "source": [
- "Does not submit a notebook, or does not use Markdown cells at all to organize the notebook"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "290335d1",
- "metadata": {},
- "source": [
- "### Data Manipulation and Analysis with `pandas`"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "2c0aae32",
- "metadata": {},
- "source": [
- "`pandas` is a very popular data manipulation library, with over 2 million downloads on Anaconda (`conda install pandas`) and over 19 million downloads on PyPI (`pip install pandas`) at the time of this writing. In our own internal data, we see that the overwhelming majority of Flatiron School DS grads use `pandas` on the job in some capacity.\n",
- "\n",
- "Unlike in base Python, where the Zen of Python says \"There should be one-- and preferably only one --obvious way to do it\", there is often more than one valid way to do something in `pandas`. However there are still more efficient and less efficient ways to use it. Specifically, the best `pandas` code is *performant* and *idiomatic*.\n",
- "\n",
- "Performant `pandas` code utilizes methods and broadcasting rather than user-defined functions or `for` loops. For example, if you need to strip whitespace from a column containing string data, the best approach would be to use the [`pandas.Series.str.strip` method](https://pandas.pydata.org/docs/reference/api/pandas.Series.str.strip.html) rather than writing your own function or writing a loop. Or if you want to multiply everything in a column by 100, the best approach would be to use broadcasting (e.g. `df[\"column_name\"] * 100`) instead of a function or loop. You can still write your own functions if needed, but only after checking that there isn't a built-in way to do it.\n",
- "\n",
- "Idiomatic `pandas` code has variable names that are meaningful words or abbreviations in English, that are related to the purpose of the variables. You can still use `df` as the name of your DataFrame if there is only one main DataFrame you are working with, but as soon as you are merging multiple DataFrames or taking a subset of a DataFrame, you should use meaningful names. For example, `df2` would not be an idiomatic name, but `movies_and_reviews` could be.\n",
- "\n",
- "We also recommend that you rename all DataFrame columns so that their meanings are more understandable, although it is fine to have acronyms. For example, `\"col1\"` would not be an idiomatic name, but `\"USD\"` could be.\n",
- "\n",
- "Below are the definitions of each rubric level for this objective. This information is also summarized in the rubric, which is attached to the project submission assignment."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "e070c91b",
- "metadata": {},
- "source": [
- "#### Exceeds Objective"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "20092dcd",
- "metadata": {},
- "source": [
- "Uses `pandas` to prepare data and answer business questions in an idiomatic, performant way"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "882b158d",
- "metadata": {},
- "source": [
- "#### Meets Objective (Passing Bar)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "c2c426e6",
- "metadata": {},
- "source": [
- "Successfully uses `pandas` to prepare data in order to answer business questions\n",
- "\n",
- "> This includes projects that _occasionally_ use base Python when `pandas` methods would be more appropriate (such as using `enumerate()` on a DataFrame), or occasionally performs operations that do not appear to have any relevance to the business questions"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "88d1667b",
- "metadata": {},
- "source": [
- "#### Approaching Objective"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "ec132034",
- "metadata": {},
- "source": [
- "Uses `pandas` to prepare data, but makes significant errors\n",
- "\n",
- "> Examples of significant errors include: the result presented does not actually answer the stated question, the code produces errors, the code _consistently_ uses base Python when `pandas` methods would be more appropriate, or the submitted notebook contains significant quantities of code that is unrelated to the presented analysis (such as copy/pasted code from the curriculum or StackOverflow)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "c5e3c86b",
- "metadata": {},
- "source": [
- "#### Does Not Meet Objective"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "d9566206",
- "metadata": {},
- "source": [
- "Unable to prepare data using `pandas`\n",
- "\n",
- "> This includes projects that successfully answer the business questions, but do not use `pandas` (e.g. use only base Python, or use some other tool like R, Tableau, or Excel)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "b0923637",
- "metadata": {},
- "source": [
- "## Getting Started"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "8e37e815",
- "metadata": {},
- "source": [
- "Please start by reviewing the contents of this project description. If you have any questions, please ask your instructor ASAP.\n",
- "\n",
- "Next, you will need to complete the [***Project Proposal***](#project_proposal) which must be reviewed by your instructor before you can continue with the project.\n",
- "\n",
- "Then, you will need to create a GitHub repository. There are three options:\n",
- "\n",
- "1. Look at the [Phase 2 Project Templates and Examples repo](https://github.com/learn-co-curriculum/dsc-project-template) and follow the directions in the MVP branch.\n",
- "2. Fork the [Phase 2 Project Repository](https://github.com/learn-co-curriculum/dsc-phase-2-project-v3), clone it locally, and work in the `student.ipynb` file. Make sure to also add and commit a PDF of your presentation to your repository with a file name of `presentation.pdf`.\n",
- "3. Create a new repository from scratch by going to [github.com/new](https://github.com/new) and copying the data files from one of the above resources into your new repository. This approach will result in the most professional-looking portfolio repository, but can be more complicated to use. So if you are getting stuck with this option, try one of the above options instead."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "290d61a5",
- "metadata": {},
- "source": [
- "## Summary"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "ac002279",
- "metadata": {},
- "source": [
- "This project will give you a valuable opportunity to develop your data science skills using real-world data. The end-of-phase projects are a critical part of the program because they give you a chance to bring together all the skills you've learned, apply them to realistic projects for a business stakeholder, practice communication skills, and get feedback to help you improve. You've got this!"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python (learn-env)",
- "language": "python",
- "name": "learn-env"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.16"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
diff --git a/moviesbyrating.png b/moviesbyrating.png
new file mode 100644
index 00000000..ffb905b4
Binary files /dev/null and b/moviesbyrating.png differ
diff --git a/moviesbyvoytes.png b/moviesbyvoytes.png
new file mode 100644
index 00000000..f20cca24
Binary files /dev/null and b/moviesbyvoytes.png differ
diff --git a/student.ipynb b/student.ipynb
index d3bb34af..93bc5681 100644
--- a/student.ipynb
+++ b/student.ipynb
@@ -7,28 +7,4419 @@
"## Final Project Submission\n",
"\n",
"Please fill out:\n",
- "* Student name: \n",
- "* Student pace: self paced / part time / full time\n",
- "* Scheduled project review date/time: \n",
- "* Instructor name: \n",
- "* Blog post URL:\n"
+ "\n",
+ "- **Student Names:**\n",
+ " - Boniface Ngechu\n",
+ " - Abdihakim Isaack\n",
+ " - Imran Mahfoudh\n",
+ " - Batuli Abdallah\n",
+ " - Linet Lydia\n",
+ " \n",
+ "- **Student Pace:** **Full Time**\n",
+ "- **Instructor Name:** **Maryann Mwikali**\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# **Business Understanding**\n",
+ "\n",
+ "The movie industry is a rapidly evolving and highly competitive sector, with thousands of films released each year. As major companies are investing heavily in original video content, the need for effective strategic planning has never been more critical. Studios and production companies strive to create films that not only attract large audiences but also maximize profitability. Given the multitude of factors influencing a movie’s success such as genre, budget, and marketing strategic decision making is crucial for any new studio entering this dynamic market.\n",
+ "\n",
+ "### **Objective** \n",
+ "The objective of this project is to equip a newly established film production company with data-driven insights that inform movie production decisions. By analyzing historical box office data and identifying trends in genres, budget ranges, and production strategies associated with high revenue and profitability, the company can guide its investments and improve success rates in an increasingly competitive landscape.\n",
+ "\n",
+ "---\n",
+ "\n",
+ "# **Business Problem**\n",
+ "\n",
+ "### **Problem Statement** \n",
+ "As the company prepares to launch its new movie studio, the primary goal is to maximize return on investment (ROI) while ensuring high audience satisfaction. However, with the vast array of genres, varying budget sizes, and intense competition among existing studios, predicting what will make a movie successful both financially and in terms of popularity poses a significant challenge.\n",
+ "\n",
+ "### **Key Questions to Address**\n",
+ "1. **Which genres have historically generated the highest revenues and profitability?** \n",
+ " Understanding which genres perform well can help the company make informed decisions and tailor its offerings to meet audience demand.\n",
+ "\n",
+ "2. **What budget range is most likely to yield a positive ROI?** \n",
+ " Identifying the optimal budget range for movie production can help mitigate financial risks while maximizing potential revenue.\n",
+ "\n",
+ "3. **Which studios have a proven track record of producing high-grossing or popular movies?** \n",
+ " Analyzing the performance of established studios could reveal best practices and inform potential collaborations or partnerships.\n",
+ "\n",
+ "4. **How do movie ratings and popularity scores correlate with financial success?** \n",
+ " Exploring the relationship between critical acclaim and audience reception can assist in prioritizing quality filmmaking alongside financial performance.\n",
+ "\n",
+ "5. **What factors influence international versus domestic success?** \n",
+ " For the new studio targeting both domestic and global markets, understanding the drivers of success in different regions is essential for strategic planning.\n",
+ "\n",
+ "---\n",
+ "\n",
+ "# **Analytical Approach**\n",
+ "\n",
+ "To address the business problem and key questions, we will conduct exploratory data analysis (EDA) on several datasets, focusing on identifying patterns and trends in:\n",
+ "- **Genre profitability**: Evaluating which genres yield the highest box office returns.\n",
+ "- **Studio performance**: Analyzing how different studios perform in terms of revenue and profitability.\n",
+ "- **Budget impact on ROI**: Understanding how varying budget levels affect return on investment.\n",
+ "- **Audience preferences**: Investigating correlations between movie ratings, popularity scores, and financial success.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Import necessary libraries** that will be utilized for data manipulation, analysis, and visualization:\n",
+ "These libraries provide essential tools for data analysis and visualization tasks.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Importing the necessary libraries.\n",
+ "import pandas as pd \n",
+ "import numpy as np\n",
+ "import sqlite3\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Use **Pandas** to read a CSV file named `bom.movie_gross.csv` into a DataFrame called `bom_df`. This DataFrame will contain the data from the CSV file for further analysis and manipulation.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Histogram of average ratings\n",
+ "sns.histplot(imdb_data['averagerating'], bins=20, kde=True)\n",
+ "plt.title('Distribution of Average Ratings')\n",
+ "plt.xlabel('Average Rating')\n",
+ "plt.ylabel('Frequency')\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Distribution of Movie Ratings\n",
+ "Analysis: Create a histogram or density plot to visualize the distribution of average ratings across all movies.\n",
+ "Insights: Understand how ratings are distributed (e.g., are most movies rated highly, or is there a wide spread of ratings?). \n",
+ "This can help identify what might be considered a “good” or “bad” rating."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Runtime Analysis\n",
+ "Analysis: Explore the distribution of movie runtimes and how they relate to ratings. You can also categorize runtimes into short, average, and long categories.\n",
+ "Insights: Determine if longer movies generally receive higher ratings or if there’s an optimal runtime for successful films."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAGDCAYAAAD6aR7qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAA9lUlEQVR4nO3dd5xcV33//9fn3pmd2d5Ud1fdkm25Vww2WDamYwKBgB1aSMAQeiCPUNLI9xcSSkhCIAFMC6GXUAwB3GIZCAYb2QbbsiVZlqyyVlvtStrVtpn7+f0xd+W1rF3NStqZPfb7+XjMY2dum8+d44f1eXzOueeYuyMiIiIi0y+qdgAiIiIiTxZKvEREREQqRImXiIiISIUo8RIRERGpECVeIiIiIhWixEtERESkQpR4icgTgpk93czWVTuO0JjZ+83sc9WOQ+TJQomXSEDMbLWZ9ZpZrtqxHC8z+4CZjZpZv5n1mdkvzeypUzjfzeyksc/u/nN3P3l6oq0cM1tlZkn6uxwws3Vm9roTeO1t47e5+z+4++tPxPVF5OiUeIkEwswWA08HHHjRNFw/c6KvWYZvunsDMAu4Bfh2FWKYibrT36UJ+DPgs2YWfFIpIkq8RELyGuBXwH8CrwUws1xaLTp97CAzm21mg2Y2J/38QjO7e1xV6cxxx242s/eY2e+AATPLmNl7zWxjWm1Za2YvGXd8bGYfM7M9ZrbJzN6aVp4y6f5mM/u8mT1iZtvN7O/NLD7ajbl7Afgq0Glms9NrXWhmt6VxP2JmnzSzmnTfz9JTf5tWhl5xeDUnvbc/N7Pfmdk+M/ummeXH7f+L9LrdZvb68RU0M3t+eu8H0vv488NjPtpvb2azzOxH6TF7zeznZjal/+d6yY+BvcCZ6Xf8p5n9/bjvLOu+zawe+AnQkf5m/WbWkVYev5Keuzj9HV5nZlvT6uqbzOyC9Hp9ZvbJw36HPzaz+9NjrzezRVO5R5EnGyVeIuF4DaXk5KvAc8xsrrsPA98Frh533MuBW919l5mdC3wBeCPQDnwGuM4e21V5NfACoCVNgDZSqqw1A38HfMXM5qfHvgF4HnA2cC7w4sNi/BJQAE4CzgGeDRy1GytNqF4D9AC96eYipWrPLOCpwDOBNwO4+zPSY85y9wZ3/+YEl3458FxgCaXE5Y/S73su8C7gijTWSw877/PAG929ETgd+N/DL3y03x54N7ANmA3MBd5PqVpZNjOLzOxFlH6DB6dw6uPu290HKLVdd/qbNbh79wTnPwVYDrwC+FfgLyn9VqcBLzezS9P4Xpze1+9Tus+fA1+fyj2KPNko8RIJgJldAiwCvuXuayglR3+Y7v4aj/3H/w/TbVBKlD7j7r9296K7fwkYBi4ad/y/uftWdx8EcPdvu3u3uydpQrMBuDA99uXAx919m7v3Ah8aF+NcSv+wv9PdB9Lk41+Aqya5tZebWR8wmMb6sjT5w93XuPuv3L3g7pspJY2HJ0hH82/pvewFfkgpYRy7jy+6+33ufpBSgjneKLDSzJrcvdfd75zg+pP99qPAfGCRu4+mY9DKTbw6xv0u3wPe5e53lXkuTHzf5fr/3H3I3W8ABoCvu/sud99OKbk6Jz3ujcA/uvv9abv9A3C2ql4iE1PiJRKG1wI3uPue9PPX0m1QqsbUmtlT0n/wzqb0jzWUkrV3p11Efek/5guAjnHX3jr+i8zsNeO6JvsoVXxmpbs7Djt+/PtFQBZ4ZNy5nwHmTHJf33L3FkoVoXuB88bFsSLtqtthZvsp/aM+68iXmdCOce8PAg1l3AfAS4HnAw+b2a028aD/yX77j1KqUt1gZg+Z2XunEHd3+rs0Af8GXD6Fc2Hi+y7XznHvB4/weex6i4CPj2vvvYABnVP8PpEnjWoMphWRKTCzWkoVmtjMxv5BzQEtZnaWu//WzL5FqfKyE/iRux9Ij9sKfNDdPzjJVxyqwqTJw2cpdevd5u5FM7ub0j+mAI8AXePOXTDu/VZK1bRZY1Wrcrn7HjN7I3CHmX3N3R8BPgXcBVzt7gfM7J3Ay6Zy3UlMdh+4+x3A75lZFngr8K3Dj0mPSyb67dO/76aU+J4G3GJmd7j7zeUG6e7DZvYeYJ2Zvdjdv0+pAlU37rB55V6PKXZ1lmHsv6+vnuDrijxhqeIlMvO9mNJ4p5WUKipnA6dS6vJ5TXrM1yiNx3klj3Z1QSmJelNakTEzqzezF5hZ4wTfVU/pH+fdAFaaxuD0cfu/BbzDzDrNrAV4z9iONFm6AfiYmTWl45OWjY0HOhp3fwC4HviLdFMjsB/oN7NTgD897JSdwNJyrn0E3wJeZ2anmlkd8DdjO8ysxsxeaWbN7j6axlCc5FpH/O2t9FDDSWZm464x2XWOyN1HgI+Ni/Fu4Plm1mZm84B3TuFyO4F2M2ueahwT+DTwvjSxHHu44g9O0LVFnpCUeInMfK+lNB5pi7vvGHsBnwReaWYZd/81pUpIB6Un1wBw999QGjv1SUqD1h8kHWB+JO6+ltI/8rdR+kf6DOD/xh3yWUrJ1e8oVaN+TGkw/VhC8RqgBlibft93KI1zKtdHgWus9ETmn1MaM3Ug/d7DB9B/APhS2s318il8B+7+E0pdeLdQ+k1uS3cNp39fDWxOuzjfBLxqkmsd8benNDj9JqA/vf5/uPtqADP7iZm9fwohfwFYaGZXAl8GfgtsptQWEz1YcKRYH6A0+P2h9HfrONo5R7ne94APA99If6t7KY3zE5EJWPljPUVEHsvMngd82t2DHkxtZqdSShpyU+0mFRGZClW8RKRsZlZrpTmuMmbWCfwtjw4mD4qZvSTtVmylVLX5oZIuEZlu05Z4mdkXzGyXmd07blubmd1oZhvSv63T9f0iMi2M0tQLvZS6Gu9n3PiowLyR0li2jZS6Sg8fQyYicsJNW1ejmT2D0tiG/3L309NtHwH2uvuH0kerW939PZNdR0REROSJYlrHeFlpbbkfjUu81gGr3P2RdCbs1U+ERW1FREREylHpMV5z00fOxx49n2xiRREREZEnlBk7gaqZXQNcA5DP58/r6FqAAYXEiSMjE9nkF5CqSZKEKNJzGyFRm4VF7RUetVlYjre91q9fv8fdZx9pX6UTr51mNn9cV+OuiQ5092uBawEWLj3Jiy/9F3IZ452XL+eCBU08ZfncSsUsU7R69WpWrVpV7TBkCtRmYVF7hUdtFpbjbS8ze3iifZVOv6/j0fXlXgv8YConDxecf79lA4NTnvtZREREpPqmczqJr1OarflkM9tmZn8CfAh4lpltAJ6Vfi7veulreNTZ1jc4HSGLiIiITKtp62p096sn2PXMY7pe+jefNbpaao8tKBEREZEqCmqkXy5jvOWy5dTG1Y5EREREZOpm7FON49XEEX915UrmNuX4yW+30lSb5SnLqx2ViIiIyNQEkXiNFBM+8MO1ZGPjped2saA5h7tjpiklREREJBxBdTUWE+eOTXsZTZztvRpgLyIiImEJIvEyjK7WWjpbatnae5Dt+4boGRipdlgiIiIiUxJEV6MZzG7IkY0jGnMx85vytNfXVDssERERkSkJIvFK3Llrax+5jPHmVcugWKCjJV/tsERERESmJIiuxtiMy06ezdOWzeLLt21m24FRuvuGqh2WiIiIyJQEkXhhUJuNqauJcYd9QwWN8RIREZHgBNHVWEycH9+7g5rYeN7p8+lqqtEYLxEREQlOGBWvVCFxHtrdT1tDjs5WLRskIiIiYQmi4hWZceq8RuLI2Ll/iEf2j2jyVBEREQlOEIlX4s79Ow4AMKehhq7mHEmSEEVBFexERETkSS6ozKW+JuKl53WRj+G+7v3VDkdERERkSoKoeNXEEe96zgqa8lm+u+Zh5jblmTcKrXU19AyM0F5fQ2drrbofRUREZEYLIvEaKSZ85Pr1ZGPj+afPZ1l7ngMjzqdv3UjRS/N8XbFyDpeumK3kS0RERGasoLoai4mzcXc/RYd1j/Sxf6hQ2u7OTWt3aeFsERERmdGCSLwiM1bMbWDF3Ea27B1gS98wOw6MMjxaPHRM0V2TqoqIiMiMFkRXI0BDLkNtNoakSEdzjmzUwv3d+xn10v7YTJOqioiIyIwWRMUrcefOLX2s2bKXF57dRZ4Cd27eRXtjjuZ8fGiMlyZVFRERkZksiMQrNmPVybO5aOksvvTLh+hPMly8ooMf/rabi0+axZsuXaqB9SIiIjLjBdHV6EBP/zCZOGKkCDv2DVFIEhzj4EiRrra6aocoIiIiclRBJF6JO/ds309kcEZnM4ta8+wbTsjGRkeLuhdFREQkDEF0NY6JI2NBay1mcM+WPbzmqYs4raOp2mGJiIiIlCWIilc2injdJUvIZyJ+cu92tvS1c+bCNq48q1PrNYqIiEgwgki8RpOEz/1iE9nYeN7p85hVl+FAOnmqiIiISCiCKhcVE2fT7gFqsjE/XbtLC2WLiIhIUIJIvCIzTp3XyMr5TWza08+23iH2D47S3aclgkRERCQcQXQ1AmTiiGxs1NXEzGvK01SbpbUui7tPOH+Xu7O9d5CegRHa62vobK3VXF8iIiJSNUEkXqXpJPaRyxhvu3w5Bw8e4OkntbF63S4OjiZHnDzV3bl1/W5uWruLovuh2e010aqIiIhUSxBdjbEZzzxlDk9fPpsv/3ITDQ2NRFFEXS7LTWt3sb338V2O23sHDyVdUFpEe6JjRURERCohmIrXHZv3Ukic4dEi3X1D9AyMAEbRnZ6BkcfNXt8zMHIo6Roz0bEiIiIilRBE4uXA/qEC9TUxjfkMC1vzgDM86vTaKO31NY87p72+htjsMclXbHbEY0VEREQqIYiuxjGFJOH1lywlF8PshixxBFesnENn6+OXDepsreWKlXOI0/FcY2O8jnSsiIiISCUEUfGqiSPe/8JTmdOY46Gd+9iwZ4g4MlbMa+Lpy2cdcbC8mXHpitmcNLtBTzWKiIjIjBBE4jVSTPh/P7r/0FONJ8/Oc7AA5smk55kZXW11GtMlIiIiM0JQXY3FBD61+kEOFuDgSIHufcN6SlFERESCEUTFC6AmU8oRhwsJ2/cNk7hTKCZs6z14qAtRE6aKiIjITBZM4jVSKHUrNuZiuppzbNy5j5vX93Jf9wGGCgnPWD6Ln23YowlTRUREZMYKqqsxlzH+5JIl5GOY09JIPhuRz0bclC6YrQlTRUREZCYLouKVjSP+7NkraMxl+Mbtm2mpq6GQJBQTGJtEtbtvUBOmioiIyIwWRMXLHfb0D3Pbph72DIzQ2ZJnVkOeupqYYjGhvS5LMXEWtObJZx69JU2YKiIiIjNJEBWvQpLwX7c9zKK2Ov744qV01BX40UM9JEkRLMvPNuzhf9ftork2y7kLWwEYLbomTBUREZEZJYjEyzDa6msYHE34yT2PsHzucs5ZOpdFc0f5xu1bGCoUKSawd2CETT0DvOaiRXS11umpRhEREZlRgki8MpHxknM6yWcifrN5L937hkkS5+BIgT39I+SyMQCFBIpFp7Ymo3FdIiIiMuMEkXiNJgmf/fkmchnj9ZcsZVlrDaNu9A4VS+O80jH1ZlCXy2hcl4iIiMxIQQyuH1NM4Bt3bOFgsdR9uL2nnxef00EmMsxgUVsdLzqrQ+O6REREZEYKouJlPPp04sBwge19Q0QRNNXlWTGnnnMXtjJadBbPqqdL47pERERkhgoi8XJK83EBtNdn6WrJs61vkOvv20HbRYt4wRnzlWyJiIjIjBdUV2MuY/zBeQuoiaBvYITRYsLN92t2ehEREQlDEBWvsZnrm/JZvrvmYTpaa9nVP0Kh6OwfHOW+7n0Amj5CREREZrQgEq/RYsI/3bCebGw8Z+VcFrXkGBjMsfYR4+GeATbs6ufnG3q0KLaIiIjMaEF1NRYTZ1vvIBjMaqplb/8wzz5tLj39I1oUW0RERGa8ICpekRlndDaRiSMe2t3Ppp4hosh44ZkdDI4UGSokgBbFFhERkZktiMQrExnPP2MerXU5br53O12teQDu2tJHPp21HrQotoiIiMxsQSReI8WED/90PbmM8bbLlzO/tkBNBl501nxuvn83RXdiMy2KLSIiIjNaVRIvM/sz4PWAA/cAr3P3ocnOyURGMYF/v2UDJ889B4BT5zewfE4jPQMjtNfX6KlGERERmdEqPrjezDqBtwPnu/vpQAxcdbTzEncSdwZHne19Q2zvG6JnYJSutjrOWtBCV1udki4RERGZ0arV1ZgBas1sFKgDuo92QpIuhF2bjehqzZMxaNN4LhEREQlIxSte7r4d+CdgC/AIsM/dbyjn3FzGePOqk2jMlAI3fBojFRERETmxzL2yyYuZtQL/DbwC6AO+DXzH3b9y2HHXANcAzJ49+7xPfeErZGKjd2CExtosAHU1MbXjnmqUmaG/v5+GhoZqhyFToDYLi9orPGqzsBxve1122WVr3P38I+2rRlfjFcAmd98NYGbfBZ4GPCbxcvdrgWsBFi49yd/9i1GysXHFqXN5+WmdGNA/6lyqBbJnnNWrV7Nq1apqhyFToDYLi9orPGqzsExne1Vj5votwEVmVmeljOmZwP3lnFhMnJ37h8lnIDL41cYezVQvIiIiwah4xcvdf21m3wHuBArAXaSVrYlkooirnrKAumyGjTv38dCeYUYTZ2FrLd29BzWdhIiIiAShKk81uvvfAn9b7vGFJOFrv95KNjb+4Lwu2uuytNZFfGPNDn6xsYfO1lpii7RItoiIiMxowS2SfdvGHoYT58AorN6wm809AwwMF7VItoiIiMx4QSwZZBjzm0vrM27rG2TXgWGyByMGhgrk4pjh0SL1uYwWyRYREZEZLYzEy0pTR8SRMVIoMKu+hoZ8hkxsZDNGLp1SQotki4iIyEwWROKVuLNx98ChRbJn18KixgIvPbeL7X2D1OdiLZItIiIiM14QiVccGS88cz6RGV//1WZOefHpPLAfrjq/i6a6HHv1VKOIiIgEIIjEC4cDwwUADowmdO8bpjYTMaeplgVtdSzQmC4REREJQBCJV9Gd1et2k42NZ506hwUtOTbuOUh7vZYLEhERkXAEN53Ejv3DZAy+fNvDdPcNVzskERERkbIFUfGKzDh3YQu12ZjNPf1s6h1mYKTI1t5BLqx2cCIiIiJlCiLxSty5c0sfkcGitjo6m3Msbq1lQYueYBQREZFwBNXVGEfGU5e1UxvDK5+2BCepdkgiIiIiZQui4lUTR7z7uStorctx/e+2sX5PI3FkbBot8JRl1Y5OREREpDxBJF4jxYQP/3Q9uYzxJ5cs4eTZeUaKMDDqJElCFAVVuBMREZEnqaAyluGC8/U7tnKwAO7w37/Zwn3d+6sdloiIiEhZgkm86mpi6mpi9h0cZWvvEFv2DbNu10G6+warHZqIiIhIWYLoaozNeOrSNgDu2dZLZ0seM2ivz9KhJxtFREQkEEEkXkV3bn5g96FFshc2FegbgFc9ZQEr5zdWOzwRERGRsgTR1RiZcWZXM6d3NvPlX25i64EMmw84FkU8sk+z14uIiEgYgki8ANydxGGo6GzrHWLvwAh7B0bpGRipdmgiIiIiZQmiqzFx557t+4kMzuxsZkl7nv6hAiOJ0V5fU+3wRERERMoSROI1Jo6MrtZaDMhmMtRG0NmqwfUiIiIShiASr9iMZ54yB4uMXz64hwuXtpONjFn1NZhZtcMTERERKUsQiVfRnZse2AVAYy6moynHzgPDmkpCREREghLM4HqAXMb440uWkI/h1nW7aKzNVjskERERkbIFUfGqiSP+6sqVzGnK8T93baG1roa+wQK9B0dZ2F7t6ERERETKE0TiNVJM+MAP11Kfi3nDJUtYMSvPjXFEm55oFBERkYAE1dU4MFzki/+3icEiXLC4FcOrHZKIiIhI2YJJvCIrvQZGErbvG2bfUIGegdFqhyUiIiJStoASLyMyI5+NmN+UIxsbrXUaXC8iIiLhCCbxKiRONjbevGoZpzQVuKCzjl8/1EOSJNUOTURERKQsQQyur4kj3vWcFTTms3zvzodZMXcFUTbD52/ZwCnzmzijq6XaIYqIiIgcVRCJ12jifHvNNiKM7n2DbOsdAuD0zmZ27htU4iUiIiJBCKKr0d3ZtOcgm3oGWNhWx+K2PIta8/x8/S72Dxdx19ONIiIiMvMFkXiNiSPjjM5mYoOaGBa213Pn5l629w5WOzQRERGRowqiq7EmU5q5vqMlz6/WP8Km3mGSxDmjswl3o2dghK62umqHKSIiIjKpICpeI4XSzPVv+/pdtDU3cubcHIva8tx8/y7qajK012taCREREZn5gki8xgwXnE/esoE9Q5AxyMYRD+zYj2PVDk1ERETkqILoahxvaNQPPdW4sqOZ+lzM3oERFqirUURERGa4YBKvmtgAI46crtY8BqzbGRNbRLsWyxYREZEABNPVOFJ0zJy3XLacZY0FDg4O0z80yjNPnUNna221wxMRERE5qiAqXtk44p3PWkFjPua6u7Zy8twV3LPzAJefMpflc+ox0xgvERERmfmCSLySxFmzpReAB3uG2N43RP9QgR37h+gZGKWrrcoBioiIiJQhiMSr6M7qdbvJxsYVp85hUWuePQeGacpnNb5LREREghFE4jWmmDg79w+Ti+HU+fW01uU0vktERESCEUTiFZlx3sIW6moydPf18+DeYSLgzAX11Q5NREREpGxBPNWYuLNmSx//t3EPTsSC5hzL2nN84/Zt/GLDbi2SLSIiIkEIIvEaE0fGRUvbqYlhsAA33b+Te7bv1yLZIiIiEoQguhqzccSbL19GYz7Ljfd0s3F+E0niFBJncLSoRbJFREQkCEEkXqPFhE/870aysfEH53VxUluOyCATGbXZWE82ioiISBCC6mosJs6vHuphsAgDBbji1Lmc0dmkJxtFREQkCEFUvAyjoyUPwNbeQbb2DhFFxtUXdtHZWqeZ60VERCQIQSRemdi46oKFNORivn/nFjpb8phFdLVpOgk5cdyd7b2D9AyM0F5fQ2drrZJ6ERE5oYJIvEaLCf9843pyGeNtly9nVk2BWXlIkoQoCqq3VGYod+fW9bu5ae0uiu7EZlyxcg6Xrpit5EtERE6YYLKWmkwEGP9xy4PsHMrwwP4M93Xvr3ZY8gSxvXfwUNIFpWWqblq7S1OViIjICRVE4mVALhORy0SMFBN27C8tlL2l56AmT5UTomdg5FDSNaboTs/ASJUiEhGRJ6IgEi8HDgwV2D9UoLk2S1dLnoWteTbs6ufW9Zq5Xo5fe30N8WFdirGZpioREZET6qhjvMzsXUfYvA9Y4+53n/CIJpHLGH9w3gJyMUQG+wZHuGntLk6a3aAJVOW4dLbWcsXKOY8b46WpSkRE5EQqZ3D9+enrh+nnFwB3AG8ys2+7+0em+qVm1gJ8DjidUkHrj939tomOz8YR11y6lNqaDD+4awsdrbVEwFChVOnSzPVyvMyMS1fM5qTZDXqqUUREpk05iVc7cK679wOY2d8C3wGeAawBppx4AR8HfuruLzOzGmDSrGm0mPCpWx8CYE5DDQtbcgwVEvKxMZqg7iA5IcyMrrY6JfEiIjJtykm8FgLjRxiPAovcfdDMhqf6hWbWRClp+yMAdx857PoTymWM3zunk4xB/3CR+nyG8xe3qTtIREREgmBHG5huZn8NvAT4QbrpSuA64GPAte7+yil9odnZwLXAWuAsSlWzd7j7wGHHXQNcAzBr9uzzPvHZ/8IM+g6OMqsxR+JONopoqctO5eulAvr7+2loaKh2GDIFarOwqL3CozYLy/G212WXXbbG3c8/0r6jJl4AZnY+cDGlmR1+4e6/OdZg0mv9CrjY3X9tZh8H9rv7X090zsKlJ3n08o8D0FqX5aMvO4N9B0dZ0FbHhUtnHWsoMk1Wr17NqlWrqh2GTIHaLCxqr/CozcJyvO1lZhMmXuXOXH8X0D12vJktdPctxxjPNmCbu/86/fwd4L3lnJjLGFdfuIDmHBQKMectaj3GEEREREQqr5zpJN4G/C2wEyhSqno5cOaxfKG77zCzrWZ2sruvA55JqdtxQtk44s2XL6Mpn+Wm+7qZ05gnExlxHB9LCCIiIiJVUU7F6x3Aye7ecwK/923AV9MnGh8CXne0E5IERgoJ/cPFQ4tki4iIiISknMRrK6UJU0+YdOLVI/Z9HsloMeHfV28knzXefvlyTmkqAFokW0RERMJSTuL1ELDazP4HODR9hLv/87RFdQT1NaVuxU/e8iAr5p6NO/TZfs7oaqlkGCIiIiLHrJzEa0v6qklfFWcY+WxMHBn7B0fZ1jsEQOIo8RIREZFgHDXxcve/q0Qgk8aA0zNQmmN1bmOOxW15ANobNXGqiIiIhGPCxMvM/tXd32lmP6T0FONjuPuLpjWyI8hljCvP6iAyiIDTOpoqHYKIiIjIMZus4vXl9O8/VSKQyWTjiDc8Yyn5bMQP7trGwvbSWnqXaGC9iIiIBGTCxMvd16Rvz3b3j4/fZ2bvAG6dzsDGGy0mfPpnDxEZLGmvZ2FLjpySLhEREQlMOdnLa4+w7Y9OcBxliSPjgiVtxAYHi9WIQEREROTYTTbG62rgD4ElZnbduF2NwImcTPWoMpHx++d2komMWx7YwSnzGokiq2QIIiIiIsdtsjFevwQeAWYBHxu3/QDwu+kM6nCFxPnOndsBqM1GdLXmicoq1omIiIjMHJON8XoYeBh4auXCmVwuY7x51Um01MCIuhpFREQkMOUskn0R8AngVEoTqMbAgLtXbC6HmjjiPc8/hVkNNXx3zRaa67IAPK1SAYiIiIicAOXMXP9J4Crg25TWV3wNcNJ0BnUkI4WEgeEiQ6NFOppzlPdcgIiIiMjMUU7ihbs/aGaxuxeBL5rZL6c5rscYKSZ89Ib15DLG2y5fzsmNBZqaNHmqiIiIhKWcxOugmdUAd5vZRygNuK+f3rAeLxMZxQT+/ZYNnDz3HOzAEFc0N1c6DBEREZFjVk5/3avT494KDAALgN+fzqAOZxizG3PMbsxRSGB73xDd+wYrGYKIiIjIcStnkeyH07dDwN+ZWSvwZuCD0xnYY2LAeWTfEJHBorY6FrTmyWrmehEREQnMhNmLmS0ws2vN7Edm9nozqzOzjwHrgDmVC/FRcWQ8dVk79Vnwxy3bLSIiIjKzTVbx+i9K6zH+N/Bc4FfAfcCZ7r6jArEdko0j3vzMk2jMZbh9424e3DNMUskARERERE6AyRKvNnf/QPr+ejPbCVzg7sPTH9ZjFYoJn7j5QbKx8fzT59FcF9NUk8HdMdPSQSIiIhKGSQdKmVmrmbWZWRuwA6gb97lixnoVi4nzu237WLdjgOGis71XA+xFREQkHJNVvJqBNcD4ktKd6V8Hlk5XUIczMxa01oJB975B9h4cZfu+IeY2j9DVVlepMERERESOy2RrNS6uYByTcne2ptWt+lxMYy5mQUue9vqaKkcmIiIiUr6yZq6vNjMjstJTjc87bR5LZ9URm9HZWlvt0ERERETKFkTilYmMdz97BTVxxP079jFUSNi6b1gD60VERCQoYcxC6tB7cJS+wVHu2dpHS22OjmZVu0RERGTmcHe27T1I65x58yc6pqyKl5ldAix39y+a2Wygwd03nahAj2Y0SfjszzcdWiS7oy5hxbx8pb5eREREZFLuzq3rd3PT2l0cGPYJB6EfteJlZn8LvAd4X7opC3zlxIRZHgOaa7PU1mT49K0P0lfIcMf2oUqGICIiIjKh7b2D3LR2F8WjLK1TTsXrJcA5pFNJuHu3mTUef4jlMzM6mvPEkbF5Tz/b+4aIIo3vEhERkZmhZ2DkqEkXlJd4jbi7m5kDmFn98QY3VYk79+84QGRw2vwmFrflSTyM4WkiIiLyxNdeX0NsdtTkq5zs5Vtm9hmgxczeANwEfPYExDhlcWQsmV2PGdTG1YhARERE5PE6W2u5YuUc4qPMuHDUipe7/5OZPQvYD5wM/I2733hiwixPHBnPPX0uZsb/bdjN+YtLKxY9tZJBiIiIiEzAzLh0xWxOmt3Af+RsZKLjynqqMU20KppsjVdMnJ/cuxOA1vosnc05MhFaJFtERERmDDOjq62O3l07HpnomHKeajxgZvsPe201s++ZWcXWawTIZYyrL1hAXQYSR4tki4iISFDKqXj9M9ANfI3SzA5XAfOAdcAXgFXTFdyYbBzxp6uWUZ+P+f5d25jblMcd2hpqtUi2iIiIBKOcxOu57v6UcZ+vNbNfufv/M7P3T1dg47k7u/uH2T8UUSwmdLbkKSZokWwREREJSjmJV2JmLwe+k35+2bh9R5+w4gQoJM43f7ONfNZ462XL6awvkI+0SLaIiIiEpZzpJF4JvBrYBexM37/KzGqBt05jbIcYRkdLnrb6HJ+59UG29WfYeCCrgfUiIiISlHKmk3gIuHKC3b84seEcWSY2rr5gIY35mG/e/rBmrhcREZEgHTXxMrM88CfAacChland/Y+nMa7HGC0mfOzG9eQyxpsuXcbJs/IMFDVzvYiIiISlnOzly5SeYnwOcCvQBRyYzqAmMlxwvvCLTRwsQqvG1YuIiEhgykm8TnL3vwYG3P1LwAuAM6Y3rMfLZSLy2YihQsL2fcPct1tzeImIiEhYynmqcTT922dmpwM7gMXTFtEEhgsJAPW5mDkNNeQyWqxRREREwlJOxetaM2sF/gq4DlgLfHhao5pALmO8/pIlbOs5QI2GeImIiEhgJq14mVkE7Hf3XuBnQEWXCBpTE0f8xfNOoa0+y/fWbGHRnGZqcoNcXI1gRERERI7RpImXuydm9lbgWxWK54hGign/8JMHyMbG806fx+y6DEtacyRJQhSp9CUiIiJhKCdrudHM/tzMFphZ29hr2iMbZ2zGrmLi3Lt9H0vnNFJwuK97fyXDEBERETku5QyuH5uv6y3jtjmV7HY045R5jURmHBgaZf9Qgd6Do4wU4YyuloqFISIiInI8ypm5fkklAplMbMY5C1rIZSN+uWEX85pyAMxr1lqNIiIiEo5yZq6vA94FLHT3a8xsOXCyu/9o2qNLFZKEr9+xlXzWePvlyzmlqcBBYHlHU6VCEBERETlu5Yzx+iIwAjwt/bwN+Ptpi+gIDKOjubRI9qdWb2TdgQxbD9RoYL2IiIgEpZzMZZm7f4R0IlV3H+TR8e4VEUVwemczZ3Y2E0dG975huvcNsm3vQdy9kqGIiIiIHLNyBtePmFktpQH1mNkyYHhaozpMMXFuWLvz0HQSi1pyZA0+fetDXLFyDpeumI1ZRXNBERERkSkrp+L1AeCnwAIz+ypwM/AX0xnURIqJs3n3AGYwmEDRnZvW7mJ7r9ZtFBERkZmvnKcabzCzNcBFlLoY3+Hue6Y9snGicU81bt7Tz+beYZKk1MVYdKdnYISutrpKhiQiIiIyZeU81Xgd8HXgOncfmP6QHi9x566tfUQGK+c3sbA5hxus29lPbEZ7fU01whIRERGZknK6Gj8GPB1Ya2bfNrOXmVl+muM6ojgyls2uJ6GUjMVmXLFyDp2tms9LREREZr5yuhpvBW41sxi4HHgD8AXguCbRSq/3G2C7u79w0iCjiFdcuIC6bMzP1+/knIWtRJHxpkuX0tlaq4H1IiIiEoRynmokfarxSuAVwLnAl07Ad78DuJ8yErhCkvD127cSGZy9oIWl7XlGE5R0iYiISFCO2tVoZt+klCBdDvw7pXm93nY8X2pmXcALgM9N5bw4MuY15Sg6gOtpRhEREQmKHW0CUjN7LnCjuxfTzxcDf+jub5n0xMmv+R3gH4FG4M+P1NVoZtcA1wDMmj37vI9+6j8BODhSYG5TaYhZXU1MbTY+1jBkmvT399PQ0FDtMGQK1GZhUXuFR20WluNtr8suu2yNu59/pH3ljPH6qZmdbWZXU+pq3AR891iDMbMXArvcfY2ZrZrke68FrgVYsmy5r94/C4D7tvfyDy85g5GCc8aCFk0jMQOtXr2aVatWVTsMmQK1WVjUXuFRm4VlOttrwsTLzFYAVwFXAz3ANylVyC47zu+8GHiRmT0fyANNZvYVd3/VRCcU3Vm9bvehRbIXNRU4OJrR04wiIiISlMnGeD0APBO40t0vcfdPAMXj/UJ3f5+7d7n7YkqJ3f9OlnRBaQLVcxe2cO7CNr51xxa2HMjQX4w1sF5ERESCMllX40spJUa3mNlPgW9Q4cWxxyTurO3ej5lRSBK29Q6Ry5YzBZmIiIjIzDFh4uXu3wO+Z2b1wIuBPwPmmtmngO+5+w3H++XuvhpYXc6xQ4UEgKZ8zOL2PNlYiZeIiIiE5ajZi7sPuPtX0ycPu4C7gfdOd2BHkssYr714CVmD5Lg7PUVEREQqq6wJVMe4+17gM+mrYmriiHc/dwUttTV8f80WZjfkgNI6RiIiIiKhmFLiVS0jxYQP/3R9aeb6rhaWtOZIXF2NIiIiEpagspc4MuY15yk46IFGERERCU0QFa/YjFUnzwbgFxv3cOGSNqLIeEaV4xIRERGZiiASr6I7t6zbDUA+a3S15slYUMU6ERERkbC6GnMZ462XLaelBmJ1NYqIiEhggqh41cQRf3nlSuY05Pj+XQ/TVJsF9FSjiIiIhCWIxAtKA+vjyDi7q5mu5hxJWMU6ERERkTASr5Fiwt/84D5yGeNtly0n9lHO62qudlgiIiIiUxJU2Wi44Hzilg30jcTcsX2o2uGIiIiITEkQFa/xhgvO7v4h9g3F1Q5FREREZEqCS7zyWWN2Q57W2uBCFxERkSe5oLoacxnjLauWk48TvNrBiIiIiExREGWjXCbiL1+0ks7mPAMHB+gdTBgZGKx2WCIiIiJTEkTiNVxI+MB1a0tPNV6+nDPnR2A11Q5LREREZEqC6mocLjifvGUD/SMaWC8iIiLhCSLxMoyOljydLXmSBHb2D7G5V12NIiIiEpYguhodp7tviMhgcXsdHc15crGqXiIiIhKWICpeY+LIuGhpO7lYi2SLiIhIeIKoeGUi4w/O7yKXibh13U5Omd8EaJFsERERCUsQiRfA4GjCSCGhkDjzm3KYBVWsExEREQkj8SokznW/7T40ncQpTQVaW1urHZaIiIjIlARRNjIzls6qZ0FbPZ/7xUbWHciwqa9Q7bBEREREpiSIipe7s7X3IAaMFp3ufcMkDqd3NmOmUfYiIiIShiAqXlBKuEaKTkMupqs5x10P7+XW9btx16qNIiIiEoZgEi8oLZL9J5csoTaGU+a3cNPaXWzXRKoiIiISiCC6GmsyEX915UrmNee5de021tXVUEycojs9AyN0tdVVO0QRERGRowoi8RopJHzgh6VFst962XJOm5tn10DCpj0Haa/XYtkiIiIShqC6GocLzn+sfpB9IzA8WuCKlXPobK2tdlgiIiIiZQmi4gUQpQ8vDo4mdO8bJhsbl66YracaRUREJBjBJF5J+vBibTaiozlHa22spEtERESCElRXYy5jvGXVSbTWOL2DmkZCREREwhJExasmjnjvC06hvSHPT3+7hfp8TBwFlTOKiIiIhJF4OdDTP8LgSMKWviFe1JAnl42rHZaIiIjIlASReI0WEz5160Pks6XpJJY0FVk4u6naYYmIiIhMSRD9dQY05DJkophPrX6Q7kEtki0iIiLhCSLxiiPjeafP4/fO7qClNkP3vmG6+7RUkIiIiIQliK7GQuJ8e802srHx0nO7WNaWo71eE6eKiIhIWIKoeI0pJs7tm/YyXITdB0eqHY6IiIjIlARR8TIzFrfXEZmxY/8gW3qHyGWDyhlFREREwki83J3NPQcBmFWfZXFbnkxG00mIiIhIWIIqG+UyxsvOW0DGYFGbxniJiIhIWIKoeGWjiNc/Ywn5TMz37tpKR2stjfW1LGivdmQiIiIi5Qsi8So91bidyGC0UKSjOUd7fU21wxIRERGZkiC6Gh1n78AI/cOjvPHSZZzcWGBuY7baYYmIiIhMSRAVr0wU8dqLF1ETR3znNw+zfM5pPDzUyyXL51Q7NBEREZGyBZF4mUFLbQ11uZhsJmZ7n6aTEBERkfAEkXiNFhP+5aYN5DLGNZcuY/msPB5pOgkREREJS1Blo+GC86X/28RoAhctaat2OCIiIiJTEkTFK46MZ6+cSxTB7Q/1sKVvmEwmiNBFREREDgkieykmzvVrd5KNjeeeNo8FLTncHTOrdmgiIiIiZQuqq7GYOA/3DJAx2N47WO1wRERERKYkiIpXJjJedn4XuTjito272dQ7TFP9CF1tddUOTURERKRsQSRehcT51m+2kY2N558+nyWtOdrrgwhdRERE5JDguho37u6nkEDvwUK1wxERERGZkoonXma2wMxuMbP7zew+M3vH0c6JzFgxt4GT5zby0J5+Hu4dortPY7xEREQkLNXorysA73b3O82sEVhjZje6+9rJTspnYrKx0ZSL6WjJM7+5tjLRioiIiJwgFU+83P0R4JH0/QEzux/oBCZMvBJ3frd9H7mM8bbLl7OgocDJHU0VilhERETkxKjqCHUzWwycA/x6suNiMy4/ZTZg/NcvH+KUeWdzahTU8DQRERERzN2r88VmDcCtwAfd/btH2H8NcA3ArFmzz/ubf/3soX0dLbW019dUKlSZov7+fhoaGqodhkyB2iwsaq/wqM3Ccrztddlll61x9/OPtK8qiZeZZYEfAde7+z8f7fiFS0/y6OUfB6A2G/GJq88mE8dcumK2Zq+fgVavXs2qVauqHYZMgdosLGqv8KjNwnK87WVmEyZe1Xiq0YDPA/eXk3SNl8sYb1l1Es01cNPaXZq9XkRERIJSjTFeFwOvBu4xs7vTbe939x9PdEJNHPGe55/CrMYc3//NwzTVZcnGRs+AZq8XERGRcFTjqcZfAFPqHxwpJnzwxw8A0Faf5dUX5+jtH6a9PjsdIYqIiIhMi6AeDcxljFdcsIAMCXdt3YdPLX8TERERqaogFjzMZSL+8sqVdLbk2bxjLw/2DDFcKLJ3YIQF6moUERGRQARR8RouJHzgh2t569fvYthqOL8jT1M+qyklREREJChBJF5jhgvOJ2/ZwO6hiCvPmk9nq5YNEhERkXAElXgBDI06j+wfZlFbvebwEhERkaAEl3jls0ZHc45WdTOKiIhIYIJKvHIZ462XLWdurkBHS77a4YiIiIhMSRCJVy4T8YErV/LJq8/BCsP8888eobtvqNphiYiIiExJEImXe+nJxt6Do9y8YS8Hhgr0DIxUOywRERGRKQliHq+RYsI//uSB0lqNly2nr39QU0mIiIhIcIKoeI0ZLjifWr2BpyybrakkREREJDhBVLyyccTrn7GEfDbmB3dtY+eBYU0lISIiIsEJIvEaLSZ85mebyGWM1z1tCctU7RIREZEABdfV+J01Wxn2akciIiIiMnVBVLzMjKWz6okiY8e+Qbb1DVY7JBEREZEpCyLxcnce2jNAZHDS7AYWqqtRREREAhRUV2McGWctaCZSV6OIiIgEKIiKVyYyXnRWB3Fs3PLATs7oauEZ1Q5KREREZIqCSLwShy29B8lnY+pzGTqa1dUoIiIi4Qkk8XLu3NJHPmu8/fLlnNxYGvelubxEREQkJEEkXrEZl548G4Av/t9DLJ9zJtY7SFdbXZUjExERESlfEIlX0Z3bN+0FYGi0yPa+IeY01SrxEhERkaAEkXgBHBwpAtBan2VBa16LZIuIiEhwgppOIpcxrr5gAfWZSItki4iISHCCqHjVxBHvfcEpzGrIc9v6R3iwp5aLVmhgvYiIiIQliMRrpJjw9//zAPU1EX/0tMV0NGVJkoQoCqpgJyIiIk9yQWUuAyMJ3/rNNkY94r7u/dUOR0RERGRKgkm86mpi6mpiDo4UeWTfEN1aKFtEREQCE0zidXCkyMGRItmMMa8pT0eLBteLiIhIWIIY4zWmtS7LG56+hOZMgdM6mqodjoiIiMiUBJF41cQRH3jxacxryrGwsYaTOls1sF5ERESCE0TiFUfGqy5aXO0wRERERI6LykYiIiIiFaLES0RERKRClHiJiIiIVIgSLxEREZEKUeIlIiIiUiFKvEREREQqRImXiIiISIUo8RIRERGpECVeIiIiIhWixEtERESkQpR4iYiIiFSIEi8RERGRClHiJSIiIlIhSrxEREREKkSJl4iIiEiFKPESERERqRAlXiIiIiIVosRLREREpEKUeImIiIhUiBIvERERkQpR4iUiIiJSIUq8RERERCpEiZeIiIhIhSjxEhEREamQqiReZvZcM1tnZg+a2XurEYOIiIhIpVU88TKzGPh34HnASuBqM1tZ6ThEREREKq0aFa8LgQfd/SF3HwG+AfxeFeIQERERqahqJF6dwNZxn7el20RERESe0DJV+E47wjZ/3EFm1wDXpB+HzezeaY1KTqRZwJ5qByFTojYLi9orPGqzsBxvey2aaEc1Eq9twIJxn7uA7sMPcvdrgWsBzOw37n5+ZcKT46X2Co/aLCxqr/CozcIyne1Vja7GO4DlZrbEzGqAq4DrqhCHiIiISEVVvOLl7gUzeytwPRADX3D3+yodh4iIiEilVaOrEXf/MfDjKZxy7XTFItNC7RUetVlY1F7hUZuFZdray9wfN65dRERERKaBlgwSERERqZAZnXhpaaHqMrMvmNmu8VN5mFmbmd1oZhvSv63j9r0vbat1ZvaccdvPM7N70n3/ZmaWbs+Z2TfT7b82s8UVvcEnGDNbYGa3mNn9Znafmb0j3a42m4HMLG9mt5vZb9P2+rt0u9prBjOz2MzuMrMfpZ/VXjOYmW1Of+u7zew36bbqtpm7z8gXpYH3G4GlQA3wW2BlteN6Mr2AZwDnAveO2/YR4L3p+/cCH07fr0zbKAcsSdsuTvfdDjyV0hxuPwGel25/M/Dp9P1VwDerfc8hv4D5wLnp+0ZgfdouarMZ+Ep/24b0fRb4NXCR2mtmv4B3AV8DfpR+VnvN4BewGZh12LaqtlnVf5RJfqynAteP+/w+4H3VjuvJ9gIW89jEax0wP30/H1h3pPah9NTqU9NjHhi3/WrgM+OPSd9nKE1WZ9W+5yfKC/gB8Cy12cx/AXXAncBT1F4z90Vp3smbgct5NPFSe83gF0dOvKraZjO5q1FLC81Mc939EYD075x0+0Tt1Zm+P3z7Y85x9wKwD2iftsifRNJy9zmUqihqsxkq7ba6G9gF3Ojuaq+Z7V+BvwCScdvUXjObAzeY2RorrYgDVW6zqkwnUaaylhaSGWOi9pqsHdXG08DMGoD/Bt7p7vvToQhHPPQI29RmFeTuReBsM2sBvmdmp09yuNqriszshcAud19jZqvKOeUI29RelXexu3eb2RzgRjN7YJJjK9JmM7niVdbSQlJxO81sPkD6d1e6faL22pa+P3z7Y84xswzQDOydtsifBMwsSynp+qq7fzfdrDab4dy9D1gNPBe110x1MfAiM9sMfAO43My+gtprRnP37vTvLuB7wIVUuc1mcuKlpYVmpuuA16bvX0tpHNHY9qvSJzyWAMuB29My7gEzuyh9CuQ1h50zdq2XAf/raUe5TF36+34euN/d/3ncLrXZDGRms9NKF2ZWC1wBPIDaa0Zy9/e5e5e7L6b079H/uvurUHvNWGZWb2aNY++BZwP3Uu02q/bAt6MMins+pSezNgJ/We14nmwv4OvAI8Aopaz+Tyj1Xd8MbEj/to07/i/TtlpH+sRHuv389D/2jcAneXTi3jzwbeBBSk+MLK32PYf8Ai6hVOL+HXB3+nq+2mxmvoAzgbvS9roX+Jt0u9prhr+AVTw6uF7tNUNflGZF+G36um8sj6h2m2nmehEREZEKmcldjSIiIiJPKEq8RERERCpEiZeIiIhIhSjxEhEREakQJV4iIiIiFaLES0RERKRClHiJyAlhZkUzu9vM7jWzH45NDnqM13r/YZ9/edwBHvl7zjGzz6Xv/8jM3MyeOW7/S9JtL0s/f87MVh7jdy02sz88jlhvMrPWYz1fRGYGJV4icqIMuvvZ7n46pSUz3nIc13pM4uXuTzuuyCb/nk+M+3wPcPW4z1dRmnxxLI7Xu/vaY/yuxcAxJ17Al4E3H8f5IjIDKPESkelwG9AJYGarzez89P2sdK27sQrTd83sp2a2wcw+km7/EFCbVs++mm7rT/+uMrNbzexbZrbezD5kZq80s9vN7B4zW5YeN9vM/tvM7khfFx8eYLqUyJnu/ttxm38OXGhm2XSx8ZMorQAwds74e+k3sw+a2W/N7FdmNjfd/p9jFbLxsQMfAp6e3tefmVlsZh9N4/udmb0xPX6+mf1sXPXw6en51/HYpFBEAqTES0ROKDOLgWdS3tqqZwOvAM4AXmFmC9z9vTxaPXvlEc45C3hHes6rgRXufiHwOeBt6TEfB/7F3S8AXpruO9zYEiDjOXAT8Bzg945yD/XAr9z9LOBnwBuOcq/vBX6e3te/UFqCa18a4wXAG9L14f4QuN7dz07v9W4Ad+8FcmbWfpTvEZEZLFPtAETkCaPWzO6m1KW2BrixjHNudvd9AGa2FlgEbD3KOXd4adFazGwjcEO6/R7gsvT9FcDK0nq2ADSZWaO7Hxh3nfnA7iNc/xvA24Fm4N0c1u05zgjwo/T9GuBZR4n7cM8GzhxXHWumtCjvHcAXzCwLfN/d7x53zi6gA+iZ4neJyAyhxEtETpRBdz/bzJopJSRvAf4NKPBodT1/2DnD494XKe//SePPScZ9TsadHwFPdffByeI9Qjy4++1mdjql+1k/Lnk73Kg/utjt+NgP3a+VTq6Z4HwD3ubu1z9uh9kzgBcAXzazj7r7f6W78mncIhIodTWKyAmVVrDeDvx5WrXZDJyX7n7ZROcdZjQ991jdALx17IOZnX2EY+6nNIbrSN7HxJWuo9nMo/f7e8DYfRwAGscddz3wp2P3aWYrzKzezBYBu9z9s8DngXPT/QbMS68vIoFS4iUiJ5y730XpacCrgH+ilGD8EphV5iWuBX43Nrj+GLwdOD8dtL4WeNMRYnwAaE4H2R++7yfufssxfvdngUvN7HbgKcBAuv13QCEdjP9nlMadrQXuNLN7gc9QqpqtAu42s7sojU/7eHr+eZTGlBWOMS4RmQHs0Uq5iMiTS5oAHXD3Iw2+n1HM7OPAde5+c7VjEZFjp4qXiDyZfYrHjhmbye5V0iUSPlW8RERERCpEFS8RERGRClHiJSIiIlIhSrxEREREKkSJl4iIiEiFKPESERERqZD/H7QrRrbM7ax2AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10, 6))\n",
+ "sns.scatterplot(data=imdb_data, x='runtime_minutes', y='averagerating', alpha=0.6)\n",
+ "plt.title('Average Ratings vs. Runtime')\n",
+ "plt.xlabel('Runtime (Minutes)')\n",
+ "plt.ylabel('Average Rating')\n",
+ "plt.grid(True)\n",
+ "plt.xlim(0, imdb_data['runtime_minutes'].max() + 10) # Set x-limit to improve visibility\n",
+ "plt.ylim(0, 10) # Average rating range\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Trend Analysis Over Time\n",
+ "Analysis: Analyze how average ratings and the number of votes have changed over the years. Create line plots to visualize these trends.\n",
+ "Insights: Identify if there are particular years where movie quality (as indicated by ratings) improved or declined. This can highlight shifts in audience preferences or industry changes."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAA0a0lEQVR4nO3deXxU1fn48c+ThLAkQEjCIoQQFkHZwbCj0qrV1qUoKgpfFa1av63+sO3XpZultdbW2lZb21rFYhdBK+5ate6VsMmugEgCIYkskg1IQvbn98e9wSFOkgmZm5nJPO/Xa16Z3HvnzjMnk/vcc86954iqYowxJnrFhDoAY4wxoWWJwBhjopwlAmOMiXKWCIwxJspZIjDGmChnicAYY6KcJQITNURkq4jMCnUcACJSJiJDQh2HMWCJIKKJyLsiUiIinUMdS1uJyCIRURH5f42W3+ouX9TW91DVUar67gnENktE6t2D9xER2SEi17bi9e+KyPWNYklU1V2tjaUtRKSziNwrInkiclREdorIbSIi7fDeo0TkkIgMb7T8LRG51+v3N82zRBChRCQDOB1Q4CIP9h8X7H0G4BPgmkbLrnaXh9peVU0EegDfAR4VkREhjqm1ngbOAr4GdAeuAm4EHgz2GzX+/qjqVuB+4LGGxCMi3wAGAD8N0nuKiNgx7QRYoUWuq4HVwOO4B0/3jK9UREY3bCQivd2zvz7u7xeIyCZ3u5UiMtZn21wRuUNEtgDlIhInIneKSI57JrxNRC722T5WRH4jIoUisltEbnbP3uPc9T1F5DER2Scin4rIz0UktpnP9AHQTURGua8fBXR1lx8jIjeISLaIFIvIiyLS313+sIjc32jbF0Tkuz6f72z3eYzPZysSkX+JSHJLha6OfwPFwFh3X71E5GUROejW0F4WkTR33T04Cfsht0bxkLtcRWSY+/xxEfmjiLzilvMaERnq8xm+4tZCDonIn0TkvYYahogMc38/5P4dnvIXt4icBXwFmKOqH6lqraquBv4H+La7nytEZF2j131HRF50n3cWkfvdGsUBt7y7uutmiUiB+/3ZDyzxE8a9QCLwLRHpC/wKuA7QZvbbZNm6698VkXtEJAuoAIaIyAIR2eWW5W4Rmd/S3zXqqao9IvABZAPfAk4DaoC+7vK/Avf4bPdt4DX3+UTgM2AKEIuTQHKBzu76XGATMBDo6i67DOiPc9IwFygHTnLX3QRsA9KAXsCbODWUOHf988BfgASgD7AW+GYTn2cR8E/gB8Cv3GX3Ad93ly9yl30ZKHQ/S2fgD8B/3XVnAPmAuL/3Ao4C/X0+39nu81txEmmau5+/AMuaiG0WUOA+j8GpgdUDE9xlKcAcoBvOmfbTwPM+r38XuL7RPhUY5j5/HCexTAbigCeAJ911qcBh4BJ33UL37329u34Z8EM3ri7AzCY+wy+B95pYtwf4phv/EeBkn3UfAFe4zx8AXgSS3c/5EnCvTxnV4hzcO+N+f/y81wT3s74BPBDAfgMp2zxglFs+Pd3yGuGuPwkYFer/13B/hDwAe5zAHw1mugeDVPf3j4HvuM/PBnb5bJsFXO0+/zNwd6N97QDOdJ/nAte18N6bgK+7z9/G58Duvre6/5B9gSrfAwJwJfBOE/tdhHPAT3f/sTu5PwdyfCJ4DLjP53WJbllkAOK+5gx33Q3A2z7b5vJ5ItgOnOWz7iR3P3F+YpuFc+AvdT9THXBrM2U0Hijx+f1dWk4Ei33WfQ342H1+NbDKZ53gJLuGRPB34BEgrYW/22Lc5OJn3Wrgh+7zfwJ3uc9PxkkM3dz3LQeG+rxuGrDbp4yqgS4BfH9/DRQEst8Ay/ZnPr8nuH+nOTSRjOzxxYc1DUWma4D/qGqh+/tSPm9bfxvoKiJTRGQQzj/Oc+66QcD33GahUhEpxTnQ9vfZd77vG4nI1T5NSaXAaJyzVNzX5Tfx2kE4B/N9Pq/9C07NoEmqmodT2/kFsFNV8xtt0h/nDLZh+zKgCBigzpHgSZyEAzAP5+zan0HAcz6xbcc5wPdtYvu9qpqE00fwe5yaCQAi0k1E/iIie0TkMPBfIKmFZrDG9vs8r8BJcNCojN3PWOCz7e04B9O14lwVdV0T+y/ESXb+nOSuB+e75Ft+z6tqBdAb58C93qfMXnOXNzioqpVNfsLPbQVyA9lvgGXrWz7lODXXm3C+e6+IyCkBxBTVQtEhaNrAbTu9HIh122LBqYonicg4Vd0sIv/C+Wc+ALysqkfc7fJxmo3uaeYtjg1H6yaSR3E6GFepap2IbMI58ADsw2laaTDQ53k+ztlzqqrWtvJj/h2nicvflTl7cQ7iDTEm4DQffOouWgb8R0R+idMEdvEX9vB5fNepalZrAlPVKhG5A9ghIrNV9Xnge8AIYIqq7heR8cBGPi+ntgzxe1wZi4j4/q6q+3FqPojITOBNEfmvqmY32s+bwK0iMtA3uYrIZJy/29vuov8Aqe5nuBKnYxycRHEUp5nlU/w7kc/Z0n5bKtsvvK+qvg687v6v/BznO3z6CcQWNaxGEHlm45y5jsQ52x8PnAq8j9OMAM5Z3Vxgvvu8waPATW5tQUQkQUTOF5HuTbxXAs4/2UEAcS6ZHO2z/l/AQhEZICJJwB0NK1R1H85B5Tci0kOcztmhInJmAJ/xKZyOzX/5WbcUuFZExotz2ewvgDWqmuu+70Y33sXA66pa2sR7PAzc4ya7hk71rwcQG6paDfwGuMtd1B3nYFYqTofzTxq95ABwovcMvAKMEZHZ4nTCfxvo17BSRC7z6Twtwfl71fmJ+U3gLeAZcS7ljBWRqTg1pj+r6k53u1pgOU7zTTJOWz6qWo/z/fmdfH7hwQAROfcEP1dDXC3tt6WyPY6I9BWRi9wThCqgDD/lYY5niSDyXAMsUdU8Vd3f8AAeAuaLSJyqrsFpd+0PvNrwQlVdh3P2+BDOQSMbWNDUG6nqNpwD3iqcg9kYnD6HBo/iHOy34Jyl/Runw7DhH+9qIB6nQ7kE5wDTVPOE7/seVdU3VfWon3VvAT8GnsE5Wx4KXNFos2U4/RVLadqDOB2U/xGRIzjt5FNais3HX4F0EbkQp7OzK87Z7Wqcpo3G73Wpe9XL71vxHrjNf5fhdJwX4ZwArMM5yAFMAtaISJn7eRaq6u4mdjcHeMeNrwynP+Ax4JZG2y3FKb+nG9Xm7sD5zqx2m2nexDlbb6vm9vsAzZdtYzE4tYi9OJ3SZ+JcVGGa0XB1hTFtJiJfBR5W1UEtbmxOiDjXyRcA81X1nVDHYzoGqxGYEyYiXUXka+LcbzAAp9r+XEuvM60jIueKSJLbFPYDnPbx1SEOy3QglghMWwjOXaElOE1D2/m83dwEzzQgB6d55EJgtr9mM2NOlDUNGWNMlLMagTHGRLmIu48gNTVVMzIyQh2GMcZElPXr1xeqam9/6yIuEWRkZLBu3bqWNzTGGHOMiOxpap01DRljTJSzRGCMMVHOEoExxkS5iOsj8KempoaCggIqKwMZ+NCciC5dupCWlkanTp1CHYoxJsg6RCIoKCige/fuZGRkIN5Pvxp1VJWioiIKCgoYPHhwqMMxxgRZh2gaqqysJCUlxZKAR0SElJQUq3EZ00F1iEQAWBLwmJWvMR2Xp4nAHShruYh8LCLbRWRao/W3ubNfbRKRj0SkTgKYQNwYY6LNA29+wsrswpY3PAFe1wgexJk4/RRgHM6gZMeo6q9VdbyqjseZpPw9VS32OCbPPPfcc4gIH3/8cVD29/jjj9O7d2/Gjx/PKaecwu9+97uAXrN3795jv19//fVs27YtKPEYY0KjpLyaB9/aybo9JZ7s37NEICI9gDNwJr5AVaubmS0KnGnxlnkVT3tYtmwZM2fO5MknnwzaPufOncumTZvIysrinnvuIT+/8RS+x2ucCBYvXszIkSODFo8xpv2t2lWEKswYluLJ/r2sEQzBmTJwiYhsFJHF7vRxXyAi3YDzcGad8rf+RhFZJyLrDh486F3EbVBWVkZWVhaPPfbYsUTw6quvcvnllx/b5t133+XCCy8E4LHHHmP48OHMmjWLG264gZtvvrnZ/aekpDBs2DD27dsHwM9+9jMmTZrE6NGjufHGG1FVli9fzrp165g/fz7jx4/n6NGjzJo169iQHImJifzwhz9k3LhxTJ06lQMHDgCQk5PD1KlTmTRpEnfddReJiYlNxmGMaX8rsgtJ7BzH2LQkT/bv5eWjccBE4BZVXSMiDwJ34kwz2NiFQFZTzUKq+gjwCEBmZmaz42b/9KWtbNt7uE2BNzayfw9+cuGoZrd5/vnnOe+88xg+fDjJycls2LCBc845h29+85uUl5eTkJDAU089xdy5c9m7dy933303GzZsoHv37nz5y19m3Lhxze4/Ly+PyspKxo4dC8DNN9/MXXc5Q/9fddVVvPzyy1x66aU89NBD3H///WRmZn5hH+Xl5UydOpV77rmH22+/nUcffZQf/ehHLFy4kIULF3LllVfy8MMPn2ApGWO8sjK7kCmDk+kU6825u5c1ggKgwJ0/F5z5aic2se0VdIBmoSuucKbOveKKK1i2bBlxcXGcd955vPTSS9TW1vLKK6/w9a9/nbVr13LmmWeSnJxMp06duOyyy5rc71NPPcWoUaMYMmQICxcupEuXLgC88847TJkyhTFjxvD222+zdevWFmOMj4/nggsuAOC0004jNzcXgFWrVh2LYd68eW0pBmNMkBWUVJBbVMGMYamevYdnNQJV3S8i+SIyQlV3AGfhTGJ+HBHpiTPB9P8E431bOnP3QlFREW+//TYfffQRIkJdXR0iwn333cfcuXP54x//SHJyMpMmTaJ79+60ZjKguXPn8tBDD7Fq1SrOP/98vvrVr5KUlMS3vvUt1q1bx8CBA1m0aFFA1/h36tTp2GWgsbGx1NbWtvAKY0yorcwuAvA0EXh91dAtwBMisgUYD/xCRG4SkZt8trkY+I+qlnsci2eWL1/O1VdfzZ49e8jNzSU/P5/BgwezYsUKZs2axYYNG3j00UeZO3cuAJMnT+a9996jpKSE2tpannnGb9fIcaZNm8ZVV13Fgw8+eOygn5qaSllZGcuXLz+2Xffu3Tly5Eir4p86deqxGILZ0W2MabsV2YWkJnZmeF/v+u48TQSquklVM1V1rKrOVtUSVX1YVR/22eZxVb3Cyzi8tmzZMi6++OLjls2ZM4elS5cSGxvLBRdcwKuvvnqsWWbAgAH84Ac/YMqUKZx99tmMHDmSnj17tvg+d9xxB0uWLCE2NpYbbriBMWPGMHv2bCZNmnRsmwULFnDTTTcd6ywOxAMPPMBvf/tbJk+ezL59+wKKxRjjPVVlZU4hM4Z5O3JCxM1ZnJmZqY0nptm+fTunnnpqiCI6MWVlZSQmJlJbW8vFF1/Mdddd94Vk0l4qKiro2rUrIsKTTz7JsmXLeOGFF76wXSSWszGR7OP9hznvgfe579KxXJ45sE37EpH1qvrFq0joIIPORaJFixbx5ptvUllZyVe+8hVmz54dsljWr1/PzTffjKqSlJTEX//615DFYoz53Iqdzp3EXvYPgCWCkLn//vtDHcIxp59+Ops3bw51GMaYRlbmFDE4NYEBSV09fZ8OM+hcpDVxRRorX2PaV01dPWt2FTF9qDd3E/vqEImgS5cuFBUV2cHKIw3zETTcw2CM8d7m/FLKq+uY6XGzEHSQpqG0tDQKCgoI1+EnOoKGGcqMMe1jRXYhIjCtHWoEHSIRdOrUyWbOMsZ0KCuzixjdvydJ3eI9f68O0TRkjDEdSXlVLRvySpju0WijjVkiMMaYMLM2t5jaem2X/gGwRGCMMWEna2ch8XExTMponwkbLREYY0yYycop4rT0XnTpFNsu72eJwBhjwkhhWRXb9x1m5snt0ywElgiMMSasrMpxhp1ujxvJGlgiMMaYMJKVXUj3LnGMGdB+owBbIjDGmDCSlVPI1CEpxHk0LaU/lgiMMSZM5BVVkF98tN0uG21gicAYY8JEVk7DsNPt1z8AlgiMMSZsrMgupG+Pzgzt7d20lP5YIjDGmDBQX6+szC5kxtBUT6el9McSgTHGhIHt+w9TUlHj+Wxk/lgiMMaYMJCV3T7TUvpjicAYY8JAVnYRQ3sn0K9n+08AZYnAGGNCrLq2nrW7i0NSGwBLBMYYE3Ib80o4WlNnicAYY6JVVnYhMQJTh7Tv/QMNLBEYY0yIZeUUMSYtiZ5dO4Xk/S0RGGNMCB2prGFTfikz2/luYl+WCIwxJoTW7i6mrl6ZMTQ0/QNgicAYY0JqRXYhneNimDioV8hisERgjDEhtDK7iEkZye02LaU/lgiMMSZEPjtSyY4DR0J22WgDSwTGGBMiDdNStvew041ZIjDGmBBZsbOQnl07Map/+01L6Y8lAmOMCQFVJSu7kGlDUoiNad9hpxuzRGCMMSGQW1TB3kOVzDg5tP0D4HEiEJEkEVkuIh+LyHYRmeZnm1kisklEtorIe17GY4wx4eLYsNNDQ9s/ABDn8f4fBF5T1UtFJB7o5rtSRJKAPwHnqWqeiPTxOB5jjAkLWdmF9O/ZhcGpCaEOxbsagYj0AM4AHgNQ1WpVLW202TzgWVXNc7f5zKt4jDEmXNTVKytzipg+rP2npfTHy6ahIcBBYImIbBSRxSLSOPUNB3qJyLsisl5Erva3IxG5UUTWici6gwcPehiyMcZ4b9vewxw6WsPMEN8/0MDLRBAHTAT+rKoTgHLgTj/bnAacD5wL/FhEhjfekao+oqqZqprZu3dvD0M2xhjvrXD7B6aHQf8AeJsICoACVV3j/r4cJzE03uY1VS1X1ULgv8A4D2MyxpiQW5lTyPC+ifTp0f7TUvrjWSJQ1f1AvoiMcBedBWxrtNkLwOkiEici3YApwHavYjLGmFCrrKlj7e5ipodwtNHGvL5q6BbgCfeKoV3AtSJyE4CqPqyq20XkNWALUA8sVtWPPI7JGGNCZkNeCVW19WHTPwAeJwJV3QRkNlr8cKNtfg382ss4jDEmXGRlFxIbI0wZkhzqUI6xO4uNMaYdZWUXMS6tJ927hGZaSn8sERhjTDs5dLSGLQWlYdUsBJYIjDGm3azZVUS9wnRLBMYYE52ysgvp2imWCelJoQ7lOJYIjDGmnWTlFDFpcDKd40I3LaU/lgiMMaYd7D9USfZnZcwM8Wxk/lgiMMaYdrAyp2FYifDqHwBLBMYY0y5WZBfSq1snRp7UI9ShfIElAmOM8ZiqsjK7iOlDU4kJ8bSU/lgiMMYYj+UcLGf/4UpmhNllow0sERhjjMca+gdmhGFHMQQw1pCIfNfP4kPAencsIWOMMc1YsbOQtF5dSU/u1vLGIRBIjSATuAkY4D5uBGYBj4rI7d6FZowxka+uXlm1q4gZQ8NjWkp/Ahl9NAWYqKplACLyE5xJZs4A1gP3eReeMcZEtg8/PcSRylpmnBye/QMQWI0gHaj2+b0GGKSqR4EqT6IyxpgOIivMpqX0J5AawVJgtYi84P5+IbDMnYi+8YxjxhhjfGRlF3JKv+6kJnYOdShNajERqOrdIvIqMAMQ4CZVXeeunu9lcMYYE8kqa+pYt6eEq6cOCnUozQp0hrKNwN6G7UUkXVXzPIvKGGM6gHW5JVTX1oft/QMNArl89BbgJ8ABoA6nVqDAWG9DM8aYyLYiu5C4GGHy4PCZltKfQGoEC4ERqlrkdTDGGNORrMwpZEJ6EgmdPZ0evs0CuWooH+cGMmOMMQEqrajmw08PhX2zEARWI9gFvCsir+Bzuaiq/tazqIwxJsKt3lWEKh0mEeS5j3j3YYwxpgUrsgtJiI9l/MCkUIfSokAuH/1pewRijDEdycrsIiYPTqZTbPiP7dlkIhCRB1T1VhF5CecqoeOo6kWeRmaMMRFqb+lRdhWWM29KeqhDCUhzNYJ/uD/vb49AjDGmo2gYViIS+gegmUSgquvdp+NV9UHfdSKyEHjPy8CMMSZSZWUXkpoYz4i+3UMdSkACaby6xs+yBUGOwxhjOgRVJSuniGlhOi2lP831EVwJzAMGi8iLPqu6A3ZzmTHG+LHzszIOHqliZpjORuZPc30EK4F9QCrwG5/lR4AtXgZljDGR6vNhpyOjfwCa7yPYA+wBprVfOMYYE9mysgsZlNKNgWE6LaU/LfYRiMhUEflARMpEpFpE6kTkcHsEZ4wxkaS2rp7Vu4ojqjYAgXUWPwRcCewEugLXA3/wMihjjIlEmwsOUVZVy8wIuWy0QUBD4qlqtojEqmodsEREVnoclzHGRJys7EJEYFoYT0vpTyCJoEJE4oFNInIfTgdygrdhGWNM5MnKLmTkST1IToisYdkCaRq6yt3uZqAcGAhc4mVQxhgTaSqqa9mQVxJxzUIQQCJQ1T2qWqmqh90B6O4Grghk5yKSJCLLReRjEdkuItMarZ8lIodEZJP7uOvEPoYxxoTWB7kl1NQp0yMwETR3Q9lA4MdAf+B5YClOErgKWBbg/h8EXlPVS93mJX/XU72vqhe0JmhjjAk3WdmFxMfGMCmjV6hDabXm+gj+jjOe0DPAecBqYCswVlX3t7RjEekBnIE7HIWqVgPVbYzXGGPCUla2My1lt/jwnpbSn+aahpJVdZGqvq6q3wH6AgsCSQKuIcBBnKuMNorIYhHx18k8TUQ2i8irIjLK345E5EYRWSci6w4ePBjg2xtjTPsoLq9m697DEdk/AC30EYhILxFJFpFkYD/Qzef3lsQBE4E/q+oEnI7mOxttswEYpKrjcO5NeN7fjlT1EVXNVNXM3r17B/DWxhjTflblOMOvRWL/ADTfNNQTWA/4Dp+3wf2pOGf8zSkAClR1jfv7cholAlU97PP83yLyJxFJVdXCQII3xphwsCK7kMTOcYxL6xnqUE5Ic2MNZbRlx6q6X0TyRWSEqu4AzgK2+W4jIv2AA6qqIjIZp4ZiI5saYyLKypxCpg5JJi4CpqX0x+tejVuAJ9wrhnYB14rITQCq+jBwKfC/IlILHAWuUNUvTItpjDHhKr+4gj1FFSyYnhHqUE6Yp4lAVTcBmY0WP+yz/iGcsYyMMSYircyJrGkp/YnMeowxxoSJFdlF9O7emZP7JIY6lBMWUCIQkZkicq37vLeIDPY2LGOMCX/19crK7EJmDE1BJDKmpfQnkPkIfgLcAXzfXdQJ+KeXQRljTCTYceAIReXVEd0sBIHVCC4GLsK5DwBV3Yszb7ExxkS1hmkpoyERVLtX8ihAE3cHG2NM1MnKLmRIagL9k7qGOpQ2CSQR/EtE/gIkicgNwJvAo96GZYwx4a2mrp41u4uZPiyyJqHxp8XLR1X1fhE5BzgMjADuUtU3PI/MGGPC2Kb8Uiqq6yJ2fCFfgU5V+QZgB39jjHEdm5ZySBQkAhE5gts/4OMQsA74nqru8iIwY4wJZ1nZhYwZ0JOe3TqFOpQ2C6RG8FtgL87ENIIzO1k/YAfwV2CWV8EZY0w4Kq+qZWNeKTec0dLYm5EhkM7i81T1L6p6xJ2u8hHga6r6FBB5U/EYY0wbrd1dTG29MmNo5DcLQWCJoF5ELheRGPdxuc86GyDOGBN1VmQXEh8XQ2YETkvpTyCJYD7OPMWfAQfc5/8jIl2Bmz2MzRhjwlJWdiGZg3rRpVNsqEMJikAuH90FXNjE6hXBDccYY8JbYVkVH+8/wm3njgh1KEETyFVDXYBvAKOALg3LVfU6D+MyxpiwtNKdljLSh5XwFUjT0D9wrhI6F3gPSAOOeBmUMcaEq6ydhXTvEseYAZE5LaU/gSSCYar6Y6BcVf8GnA+M8TYsY4wJP6rKiuxCpg1JITYmcoedbiyQRFDj/iwVkdE4k9pneBaRMcaEqbziCj4tPcrMkztOsxAEdkPZIyLSC/gR8CKQCPzY06iMMSYMZWU7/QPTO8j9Aw2aTQQiEgMcVtUS4L9Ax7iNzhhjTkBWdiH9enRhaO+ONRp/s01DqlqP3StgjDHOtJQ5hUwfFtnTUvoTSB/BGyLyfyIyUESSGx6eR2aMMWFk277DlFTUdIhhpxsLpI+g4X6Bb/ssU6yZyBgTRVbmdIxpKf0J5M7iwe0RiDHGhLMV2UUM65NI3x5dWt44wrTYNCQi3UTkRyLyiPv7ySJygfehGWNMeKiqreOD3cUdslkIAusjWAJUA9Pd3wuAn3sWkTHGhJmNeaUcralj+tDIn5/Yn0ASwVBVvQ/3xjJVPYozQY0xxkSFldmFxAhMjeJEUO0OOa0AIjIUqPI0KmOMCSMrsgsZm5ZEjy6RPy2lP4EkgkXAa8BAEXkCeAu43cugjDEmXByprGFzwaEO2z8AgV019B8RWQ9MxWkSWqiqhZ5HZowxYWDNrmLq6pXpwzpmsxAENh/Bi8Ay4EVVLfc+JGOMCQ81dfW8se0AXTrFMDG9Y0xL6U8gN5T9BpgL/FJE1gJPAS+raqWnkRljTDsrr6plY14pH+QW80Fu8bGrhc4d1bfDTEvpTyBNQ+8B74lILPBl4Abgr0APj2MzxhhPFZVV8UFuCR/kFrMut5iP9h6mrl4RgVP79eDyzDQmDU7mSyP6hDpUTwVSI8C9auhCnJrBROBvXgZljDHBpqrkFx9lrXvQX5tbzK6DTmt3fFwM49OSuOnMIUzKSGbioF4d9gohfwLpI3gKmIJz5dAfgXfdUUmNMSZs1dUrH+8/zLrckmMH/wOHnSvfe3SJIzMjmctOG8ikjF6MSetJ57iO2/TTkkBqBEuAeapaByAiM0Rknqp+u4XXISJJwGJgNM59CNep6io/200CVgNzVXV5K+I3xhgAKmvq2FJw6Fj7/vrcEo5U1QJwUs8uTBmcwqSMXkwanMzwPt2J6UBTTbZVIH0Er4nIeBG5EqdpaDfwbID7fxB4TVUvFZF4oFvjDdy+h18BrwcetjEm2h06WsP6PcVOG//uYrYUHKK6zmmsOLlPIheO7+8c+DOSGZDUtcPNIRBMTSYCERkOXAFcCRThXC0kqvqlQHYsIj2AM4AFAKpajTNmUWO3AM8Ak1oTuDEmuuw7dPTYQf+D3GJ2HDiCKsTFCGPSenLtjAwyM5LJHNSLXgnxoQ43ojRXI/gYeB+4UFWzAUTkO63Y9xDgILBERMYB63FuRjt2L4KIDAAuxrkaqclEICI3AjcCpKentyIEY0ykKiqr4vWtB4419RSUHAUgIT6WiYN68bUxJzEpI5nxA5PoGh+97fvB0FwimINTI3hHRF4DnqR1g83F4VxhdIuqrhGRB4E7OX7i+weAO1S1rrlqm6o+AjwCkJmZqa2IwRgTYVSVFzbtZdFLWymtqCE1sTOTMnpx3YzBTB6czCn9uhMXG8joOCZQTSYCVX0OeE5EEoDZwHeAviLyZ+A5Vf1PC/suAApUdY37+3KcROArE3jSTQKpwNdEpFZVn2/tBzHGRL4Dhyv54XMf8ub2z5iQnsTPZ49m5Ek9rH3fY4F0FpcDTwBPuHMVX4ZzQG82EajqfhHJF5ERqroDOAvY1mibY7OficjjOHcsP9/aD2GMiWyqyrMbPuWnL22lqraeH51/KtfOGEysXdnTLgK6oayBqhYDf3EfgbgFJ4HEA7uAa0XkJndfD7fmvY0xHdP+Q5V8/9ktvLPjIJmDenHfpWMZ0jsx1GFFlVYlgtZS1U04zT++/CYAVV3gZSzGmPCiqjy9voC7X95GTV09d10wkmumZ1gtIAQ8TQTGGOPP3tKj3Pnsh/z3k4NMHpzMfXPGkpGaEOqwopYlAmNMu1FVnvwgn3te2U5dvfLTi0Zx1dRBdpdviFkiMMa0i4KSCr7/7Ie8v7OQaUNS+NWcsaSnfGGwARMClgiMMZ6qr1eWrs3j3n9vB+Dns0czb3K61QLCiCUCY4xn8osruOOZLazMKWLGsBR+eclYBiZbLSDcWCIwxgRdfb3yzzV7+OWrHxMjwi8uHsOVkwfajWFhyhKBMSao9hSVc/vyLazZXczpJ6fyyzljGZDUNdRhmWZYIjDGBEV9vfK3Vbnc99oO4mKE++aM5bLMNKsFRABLBMaYNttdWM7tyzfzQW4Js0b05t5LxnBST6sFRApLBMaYE1ZXryzJ2s2vX99BfFwM9182jjkTB1gtIMJYIjDGnJCcg2Xc9vRmNuSVctYpfbjn4jH069kl1GGZE2CJwBjTKnX1yuL3d/HbNz6hS6dYfjd3HLPHWy0gklkiMMYELPuzI/zf01vYlF/KOSP7cs/s0fTpYbWASGeJwBjTotq6eh59fze/e/MTEuJjefCK8Vw0rr/VAjoISwTGmGbt2H+E25dvZnPBIc4b1Y+7Z4+md/fOoQ7LBJElAmOMXzV19fzlvRx+/1Y2iV3ieGjeBM4fc5LVAjogSwTGmC/Yvu8wty3fzEefHub8sSfxs4tGkZJotYCOyhKBMeY4z24o4I5nttCzayf+PH8iXx1zUqhDMh6zRGCMOeb1rfu5bfkWJmck88f5E0lOiA91SKYdWCIwxgCQlV3ILUs3MmZATxZfk0lCZzs8RIuYUAdgjAm9jXkl3PD3dQxOTeDxaydZEogylgiMiXI79h9hwZIPSE3szD++MZmkbtYcFG0sERgTxfKKKrjqsTV0jovhn9+YYncJRymr/xkTpQ4crmT+Y6upqq3nX9+cZhPJRzGrERgThUorqrn6sbUUlVXz+LWTGNGve6hDMiFkicCYKFNeVcuCJR+wu7CcR6/OZEJ6r1CHZELMmoaMiSKVNXXc+I91fPjpIf40fyIzhqWGOiQTBqxGYEyUqK2r5/8t20hWdhH3zRnLuaP6hTokEyYsERgTBerrlTue+ZD/bDvATy4cyZzT0kIdkgkjlghM1NucX8q9r25n9a6iUIfiCVXl7le28cyGAm49+2SunTE41CGZMGN9BCYqVdfW8+pH+3h8ZS4b80oBeOS/u/jmGUP57jnDiY/rOOdIv38rmyVZuSyYnsHCs04OdTgmDFkiMFHl4JEqlq7J459r9nDwSBUZKd34yYUjOX/MSfzuzZ08/F4OK7IP8sDcCQzrkxjqcNtsSZYzq9iciWncdcFIm0vA+CWqGuoYWiUzM1PXrVsX6jBMhNmcX8rjK3N5Zcs+quvqOXN4bxZMz+DM4b2Jifn84Pj61v3c+cwWjtbU8aPzRzJ/SnrEHjyfWV/A957ezFdG9uVP8ycSF9txajmm9URkvapm+ltnNQLTYTVu/kmIj+XKyQO5enoGQ3v7P9s/d1Q/xg9M4v+e3syPnv+Id3d8xq/mjI24SVn+s3U/tz+zhelDU/j9lRMsCZhmWY3AdDj+mn+umZ7Bpael0b1Lp4D2UV+vLFmZy69e/Zie3Trx60vHMmtEH48jD46V2YUsWPIBp/bvwRPXTyHRRhI1WI3ARImG5p+Xt+ylpk6d5p9LMzjz5OObfwIREyN8Y+Zgpg9NYeGTG1mw5AMWTM/gzq+eQpdOsR59grbblF/K9X9fR0ZqN/527SRLAiYgnn5LRCQJWAyMBhS4TlVX+az/OnA3UA/UAreq6govYzIdi7/mn3mT05tt/mmNU0/qwYs3z+SXr37M4ytzWZVTxINXjueUfj2CEH1wfXLgCAuWrCUlMZ5/fGOKDSdtAuZp05CI/A14X1UXi0g80E1VS33WJwLlqqoiMhb4l6qe0tw+rWnIQHCaf1rrnR2fcdvTWzhcWcOd553CgukZra5peCW/uIJLH15JvcLym6YxKCUh1CGZMBOSpiER6QGcASwAUNVqoNp3G1Ut8/k1AafWYEyTgtn801pfGtGH1249nTuf2cLPXt7GOzs+4zeXjQv5GP6fHa5k/uI1VNY4w0lbEjCt5VmNQETGA48A24BxwHpgoaqWN9ruYuBeoA9wvm/Tkc82NwI3AqSnp5+2Z88eT2LuqKpr6ykqr6LwSDUHyyrdn1WIwMBe3RiY3I2BvbqSnBAflpdK+mv+uSxzIFdNGxSU5p/WUlWeWJPHz1/ZRtdOsfxqzli+EqJxe0orqpn7l9Xkl1TwxPVTbCRR06TmagReJoJMYDUwQ1XXiMiDwGFV/XET258B3KWqZze3X2sactTU1VNUVk1hWRUHj1Rx0P1ZWFZFYVk1B49UUuiuL62oCWif3eJj3cTQlTSfBDEw2Xne3h2PjZt/BqcmcM20QczxsPmnNbI/K2PhkxvZuvcw86ak86PzT6VbfPuVUXlVLfMXr2Hb3sMsuXaSjSRqmhWqRNAPWK2qGe7vpwN3qur5zbxmNzBJVQub2qYjJ4KaunqKy6uPHdgLj/38/IDvHOirKGni4J4QH0vv7p1JTXQex553j6d3YmdSu3d2fiZ2pk6VgpIK8ouPkl9cQb773FlWQXl13XH77tWtk5scupGW3PW42sSAXl3pHBecq2n8Nv/MaJ/mn9aqrq3nN2/s4JH/7mJwSgIPXjGBMWk9PX/fqto6vvH4OlbmFPKn+adx3mgbSdQ0LySJwH3j94HrVXWHiCwCElT1Np/1w4Act7N4IvASkKbNBBXpieDDgkNk5RQeO6j7nsUXl1f7fU1CfOxxB3DnoN6F1O7xxw72Deu6xgfnYKyqlFTUHJcg8oorjiWJT0uPUlP3+Z9JBPp278JAN0GkNapN9OvRhdhmDuINzT9LsnLZlP9588/V0wYxJATNP621MqeQ7z61mcKyKr73lRHceMaQZj9vW9TW1XPz0o28tnU/9182jkttJFETgFAmgvE4l4/GA7uAa4G5AKr6sIjcAVwN1ABHgdtaunw0EhNBeVUtL27ey9I1eXz46SHg84O7c+Ye7/csvrd70G/P5oZA1dUrBw5Xuoni8xpFQfFR8ksq2H+4Et+vVqdYoX9S1y80PQ1I6sKKnUVh2/zTGqUV1fzguQ/594f7mTI4md/NHU//pK5BfQ9nOOktPL2+gLsuGMl1M20kUROYkCUCL0RSIti69xBL1+Txwqa9lFXVckq/7sybks5F4/p3+Gu8q2rr2FtaeVyNwkkUTuJoXPuZNaI310wPz+af1lBVlq8vYNGLW4mNEe65eAwXjusftH3//JXtPLZiNwvPOpnvnDM8KPs10cHuLG5HFdW1vLR5L0vX5rM5v5TOcTFcMLY/86akMzE9KSyvyvFC57hYBqcmMDjV/6WMZVW1FLg1iCG9EyKi+ScQIsJlmQOZPDiZhU9u4pZlG3lnx2f89KJRba7h/OHtbB5bsZsF0zO49WwbTtoEj9UIgmT7vsMsXZPH8xs/5UhVLSf3SWTelHQumZBGz26R1cRhgqOmrp4/vJ3NQ2/vZECvrjwwdwKnDTqxyzsfz9rNope2ccnEAdx/6biIrjWZ0LCmIY8cra7j5S17Wbo2j415pcTHxXD+mJOYNyWdzEG9oubs3zRvXW4xtz61iX2HKrn5S8O45cvDWjUa6HMbC/jOU5s5Z2Rf/mzDSZsTZIkgyD45cISla/J4dkMBhytrGdo7gXlTBnHJhAH0SujYbf/mxByurGHRC1t5duOnTExP4oG5E0hP6dbi697YdoCb/rmeKYOT+euCSWE94J0Jb5YIgqCypo5/f7iPpWvyWLenhPjYGL46ph/zJqczeXCynf2bgLy4eS8/fO5D6uuVn319NJdMHNDkd2dljjuc9Ek2nLRpO+ssboPsz46wdE0+z2wo4NDRGoakJvDDr53KnNPSSLazf9NKF43rz2mDevGdpzbxvac38/aOz/jF7DFf6EfanF/KDX9bR0ZKNx5fYMNJG2/Zt8uPypo6XvtoP0vX5rF2dzGdYoVzR/Vj3pR0pg1JsbN/0yYDkrqy7IapPPxeDr974xM27Cnht5ePZ9rQFAB2HjjCNUvW0ivBGU7amhuN16xpyEfOwTKWrcnjmQ0FlFTUMCilG1dOTufS09JIjbCpCk1k2FJQysInN5FbVM43zxjK5ZlpXPnoahtO2gSd9RE0o6q2jte3HmDpmj2s3lVMXIzwlVF9mTd5ENOHpthlesZzFdW13P3yNpatzSc2RkjsHMdT35walpPfmMhlfQR+5BaWs2xtHk+vL6C4vJqByV257dwRXJaZRp/uoR1f3kSXbvFx3HvJWM4c3ofF7+/iB+efaknAtKuoSgTVtfW8se0AS9fuISu7iNgY4exT+zBvyiBOH5ZqZ/8mpM4b3c9GETUhETWJ4O2PD3D78i0UllUzIKkr3ztnOJdPGkjfEM8uZYwxoRY1iSA9uRvjB/Zi/pR0zhje27Mhgo0xJtJETSIY1qc7i6/x209ijDFRzQYtMcaYKGeJwBhjopwlAmOMiXKWCIwxJspZIjDGmChnicAYY6KcJQJjjIlylgiMMSbKRdzooyJyENhzgi9PBQqDGE6ks/I4npXH56wsjtcRymOQqvb2tyLiEkFbiMi6poZhjUZWHsez8viclcXxOnp5WNOQMcZEOUsExhgT5aItETwS6gDCjJXH8aw8PmdlcbwOXR5R1UdgjDHmi6KtRmCMMaYRSwTGGBPlIjoRiMhAEXlHRLaLyFYRWeguTxaRN0Rkp/uzl7s8xd2+TEQearSv00TkQxHJFpHfi0jETWEWrPIQkW4i8oqIfOzu55eh+kxtEczvh88+XxSRj9rzcwRDkP9X4kXkERH5xP2OzAnFZ2qLIJfHle6xY4uIvCYiqaH4TG0R0YkAqAW+p6qnAlOBb4vISOBO4C1VPRl4y/0doBL4MfB/fvb1Z+BG4GT3cZ7HsXshmOVxv6qeAkwAZojIVz2PPviCWR6IyCVAmedReyOYZfFD4DNVHQ6MBN7zOngPBKU8RCQOeBD4kqqOBbYAN7fPRwieiE4EqrpPVTe4z48A24EBwNeBv7mb/Q2Y7W5TrqorcP6ox4jISUAPVV2lTu/53xteE0mCVR6qWqGq77jPq4ENQFp7fIZgClZ5AIhIIvBd4OfeRx58wSwL4DrgXne7elWNuDtug1ge4j4S3FaEHsBezz9AkEV0IvAlIhk4Z69rgL6qug+cPzjQp4WXDwAKfH4vcJdFrDaWh+9+koALcc6OIlYQyuNu4DdAhVcxtpe2lIX7fQC4W0Q2iMjTItLXw3A915byUNUa4H+BD3ESwEjgMS/j9UKHSATu2dozwK2qevhEduFnWcReVxuE8mjYTxywDPi9qu4KVnztra3lISLjgWGq+lywY2tvQfhuxOHUDrNUdSKwCrg/iCG2qyB8NzrhJIIJQH+cpqHvBzXIdhDxicD9QzwDPKGqz7qLD7jNPQ3NPp+1sJsCjm/6SCMCq3cQtPJo8AiwU1UfCHqg7SRI5TENOE1EcoEVwHARedebiL0TpLIowqkVNSTFp4GJHoTruSCVx3gAVc1xm5X/BUz3JmLvRHQicNvkHgO2q+pvfVa9CFzjPr8GeKG5/bhVwCMiMtXd59UtvSYcBas83H39HOgJ3BrkMNtNEL8ff1bV/qqaAcwEPlHVWcGP2DtBLAsFXgJmuYvOArYFNdh2EMT/lU+BkSLSMKrnOTj9DZFFVSP2gfNPqTjVsU3u42tACk6b9k73Z7LPa3KBYpyrPwqAke7yTOAjIAd4CPeu60h6BKs8cGpEivOFbtjP9aH+fKH8fviszwA+CvVnC2VZAIOA/7r7egtID/XnC3F53OT+r2zBSZIpof58rX3YEBPGGBPlIrppyBhjTNtZIjDGmChnicAYY6KcJQJjjIlylgiMMSbKWSIwpgXiWOE78J6IXC4ir4UyLmOCxS4fNSYAIjIa5y7aCUAsznXn56lqzgnsK1ZV64IboTEnzhKBMQESkfuAciDB/TkIGIMz/s4iVX3BHcDsH+42ADer6koRmQX8BNgHjFfVke0bvTFNs0RgTIBEJAFnSO5q4GVgq6r+0x2Rcy1ObUGBelWtFJGTgWWqmukmgleA0aq6OxTxG9OUuFAHYEykUNVyEXkKZ4iBy4ELRaRhopIuQDrOYIUPuSOW1gHDfXax1pKACUeWCIxpnXr3IcAcVd3hu1JEFgEHgHE4F2P4TmRS3k4xGtMqdtWQMSfmdeAWdxRLRGSCu7wnsE9V64GrcDqWjQlrlgiMOTF3A52ALe5k9ne7y/8EXCMiq3GahawWYMKedRYbY0yUsxqBMcZEOUsExhgT5SwRGGNMlLNEYIwxUc4SgTHGRDlLBMYYE+UsERhjTJT7/ySal1GXwnlgAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_trends = imdb_data.groupby('start_year').agg(\n",
+ " average_rating=('averagerating', 'mean'),\n",
+ " total_votes=('numvotes', 'sum'),\n",
+ " movie_count=('movie_id', 'count')\n",
+ ").reset_index()\n",
+ "\n",
+ "sns.lineplot(data=yearly_trends, x='start_year', y='average_rating', label='Avg Rating')\n",
+ "plt.title('Average Movie Ratings Over Years')\n",
+ "plt.xlabel('Year')\n",
+ "plt.ylabel('Average Rating')\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Genre Popularity Over Time\n",
+ "Analysis: Examine how the popularity of different genres has changed over the years based on the number of movies released and their ratings.\n",
+ "Insights: Determine if certain genres are trending upwards or downwards, which could inform future movie production decisions."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAG7CAYAAABJiAYbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAADlwElEQVR4nOydd3wVVfr/32dub+m9kVBCSOggIGDB3nXtYtfVXdsWXHV33XUt63d3Xct+9bf2tWDD9rVhWws2EJAiXWoChARC+r1Jbj+/P2YSEkgDEhLgvHnd18ycNs/chJzPPKc8QkqJQqFQKBQKxe5ofW2AQqFQKBSK/okSCQqFQqFQKNpFiQSFQqFQKBTtokSCQqFQKBSKdlEiQaFQKBQKRbsokaBQKBQKhaJdlEhQKPYBIcRVQojv9qP+H4UQz/akTQqFQtHTKJGg6BZCiIuFEAuEEA1CiArj/EYhhOgHtr0ghAgKIXxCiGohxGdCiIK+tqszpJT/I6X8OYAQIlcIIYUQ5n1tTwiRJYR4RQhRZfyMFgohzug5izu993VCiDVCCFurtETj9+SUA2GDQqHoHZRIUHSJEOJW4H+BfwJpQCrwS2AKYO2F+5n2odoDUko3kAVUAC/0qFE9yP6IgQ7aSwC+A4JAEZAEPAK8KoQ4vyfvZdyvjf1SymeAUuCuVsn/Aj6SUn7SG/dUKBQHBiUSFJ0ihIgF7gVulFK+JaX0Sp2lUspLpZQBo5xNCPGgEGKLEGKHEOJJIYTDyDtWCFEqhLjVeLssF0Jc3eoeLwghnhBCfCSEaACmCSEyhBBvCyF2CiGKhRC/6o69UspG4FVguNH2MCHEV0KIWiHEKiHEWbvd90nD8+AVQnwthBhg5O3xdm+08/MOvqf/FUJsFULUCyEWCyGOapV3txDiLSHEy0KIeuAqI+1lo8g3xrHW8IYcY3hERrRqI0UI0SSESG7n9r8FfMC1UsrtUsomKeVrwP3AQ0LnSSHEg7vZ/J4QYoZx3uH33Z797dhwHXCjEGK0EOIk4Hjgt120O0EI8b3xsykXQvw/IYS1Vb4UQtwkhFgPrDee4xHjd6hOCLFcCDG8vZ+HQqHoGZRIUHTFkYANeK+Lcv8A8oHRwGAgk7ZvlmlArJF+LfBvIUR8q/zp6J2aB5gHfAAsM8ofD/xGCHFyV8YKIdzApcBSIYTFaOe/QApwC/CKEGJoqyqXAvehv33/CLzS1T064Af0Z09AFylvCiHsrfLPBt4C4tq5x9HGMU5K6ZZSfg3MAi5rVeYS4HMp5c527n0i8LaUMrpb+htADvrP5VXgIiH04SHjuz8JmCWE0Oj6++7MfqSUJeg/7+eAp4Abgbou2o2gC5wk9N+z4416rTkHmAgUGvYebTxPHHARUNXO96FQKHoIJRIUXZEEVEopw80JQoh5xttfkxDiaKPjuQ74rZSyWkrpBf4HuLhVOyHgXillSEr5Efqbb+vO+j0p5VyjoxsBJEsp75VSBqWUm4Bndmtvd34nhKgFNgBu9LfdScb53412vgRmo3e4zXwopfzG8IjcCRwphMje2y9JSvmylLJKShmWUj6ELqxaP9/3Usp3pZRRKWVTN5p8EZhudOAAlwMvdVA2CShvJ728Vf63gASaPRznGzaVAUfQ9ffdHfv/H/rP+Ucp5btdtSulXCylnG98ZyXo4uKY3dr8m/E71WS07QEKACGlXCOlbO+5FQpFD6HG+RRdUQUkCSHMzUJBSjkZQAhRii40kwEnsFjsmscogNZzC6paCw2gEb0Db2Zrq/MBQIbR6TdjQu/oOuJBKeWfWicIIcYDW3d7w96M/la7x32llD4hRDWQAezo5F57IPR5Gz836kogBr1z3uM+3UFKucAYejlGCFGO7p15v4PilUB6O+nNaZVSSimEmIUukL5B99w0D3d05/vu0n7jHmvQ5yd02a4QIh94GBiP/vtjBhbv1mzrn8+XQoj/B/wbyBFCvAP8TkpZ35VtCoVi31CeBEVXfA8E0N3NHVEJNAFFUso44xNrTCTsLq3DkW4Filu1FSel9EgpT9tL28uA7FZv46C737e1um7xGhhDFQlGvQYj2dmqbFp7NzHmH9wBXAjESynj0F3trVd+dBZutaO8F9GHHC4H3pJS+jso9zlw3m7PiWHPVmCdcf0acL4x72Ii8LaR3p3ve1/CxXbV7hPAT8AQKWUM8Efafmd73FdK+aiUchz6BM184LZ9sEuhUHQTJRIUnSKlrAXuAR4XQpwvhHALITQhxGjAZZSJoruRHxFCpAAIITK7M4egAxYC9UKIO4QQDiGESQgxXAhxxF62swC9s79dCGERQhwLnIk+3t/MaUKIqcaEufuABVLKrcbY/zbgMuP+1wCDOriPBwgDOwGzEOIudE9Cd9kJRIGBu6W/BPwMXSjM7KT+I8b9/iOESBNC2IUQl6APn9wmjXjwUsqlxr2eBT41frbQc9/37nTVrgeoB3xCX7J6Q2eNCSGOEEJMNOaaNAB+9HkNCoWil1AiQdElUsoHgBnA7ejLC3egjx/fgT7JEON8AzDfmAH/OW3H5PfmfhH0znw0UIzuqXgWfeLj3rQTBM4CTjXaeBy4Qkr5U6tirwJ/AaqBcegTGZu5Dv1NtQr9zXUe7fMp8DH6G/tm9M6r28MLxoqM+4G5xlyPSUZ6KbAE/W26w6EWKWUVMBWwA6sNe2cAl0spX9+t+GvACejP3Vy/R77vduzqqt3foQ97eNFF5u627k6MUa4G/XuuAh7stIZCodgvhPGSoVAcdgghXgBKd5/L0J8QQjwHlPVnGxUKxaGLmrioUPRThBC5wLnAmD42RaFQHKao4QaFoh8ihLgPWAn8U0pZ3Nf2KBSKwxM13KBQKBQKhaJdlCdBoVAoFApFuyiRoFAoFAqFol0O2YmLSUlJMjc3t6/NUCgUioOKxYsXV0op2wskpjgMOWRFQm5uLosWLeprMxQKheKgQgixua9tUPQf1HCDQqFQKBSKdlEiQaFQKBQKRbsokaBQKBQKhaJdDtk5CQqFQqHoHyxevDjFbDY/CwxHvZz2J6LAynA4/PNx48ZVtFdAiQSFQqFQ9Cpms/nZtLS0YcnJyTWapqkd/PoJ0WhU7Ny5s3D79u3PogfD2wOl6BQKhULR2wxPTk6uVwKhf6FpmkxOTq5D9/C0X+YA2qNQKHqASDREJBrqazMUir1BUwKhf2L8XDrUAmq4QaHop4TCTVTXl1BdX0x1fTFVdcVU12+i1lsKAuI9uSTFDiIpbhCJsfon1pWJppn62nSF4qBg69at5htvvDF76dKl7tjY2LDFYpEzZszYfsUVV9T2tW39BSUSFIo+xh+sp7qumKoWMbCJ6vpi6hvKAf3lSwgTce4sEmLyGJQ5DZBU1W2kvGoFa7d82tKW2WQnISaXpNjBJMYN0o+xA/E40xBC9M0DKhT9kGg0yplnnjl4+vTpVR988EExwLp166xvvvlm3P62HQ6HMZsPje710HgKhaKfI6WkwV9JdZ0hBOo3GeclNPgrW8qZNCsJMbmkJ46gaOBZJMbkkRCTR5wnB7PJ2m7bwVAjVfWbqKrdQGXdRqrqNrJ5xwJWl8xuKWO1uEmMHUhi7CDd+xA7iMTYwTjtCUo8KA5LPvjgA4/FYpG33377zua0/Pz84J133lkRDoe56aabsubOnesJBoPiuuuuq7jtttsqZ8+e7bn33nszEhISQmvXrnWMGDGi8d133y3WNI3MzMwRl1xySeWcOXNifvGLX1QkJSVF7r333oxgMCgGDBgQmDVrVklsbGy0L595X1AiQaHoQaSMUt9Q3uINaPYOVNdtIhDytZSzWtwkxOSSmz6ZhNi8FjEQ48rY6+ECq8VJeuJw0hPbzj1qCtRRVbeRqrpNVNZtoKpuIxu2zmHlxndaytitcS3DFc1eh6S4wditMfv3RSgU/ZwVK1Y4Ro4c2dhe3r/+9a+k2NjYyMqVK9c0NTWJI444ouDMM8+sB1izZo3jxx9/3JSbmxsaN25cwWeffeY++eSTfQB2uz26ePHiteXl5eYzzzxz0DfffLMuJiYmeuedd6bdd999qQ8++GD5gXzGnqDXRIIQwg58A9iM+7wlpfyLEOJu4DqgWb39UUr5kVHnD8C1QAT4lZTyUyN9HPAC4AA+An4tpVSTYBR9RiQSota3VRcBdbuGCWq8mwlH/C3lnPZEEmLyKBhwaisxMBCXI6nX3+AdtliyUsaSlTK2JU1KSaO/mqq6XV6HyrqNrCn+kGC4oaWcy5FseBsMr0PcYBJjBmK1OHvVZoWir7j88stzFi5c6LZYLDIrKyvw008/Od9///14AK/Xa1q9erXdarXKESNGNAwaNCgEUFRU1Lhx48YWF98VV1xRA/DVV1+5Nm7caJ8wYUIBQCgUEuPGjfO1d9/+Tm96EgLAcVJKnxDCAnwnhPjYyHtESvlg68JCiELgYqAIyAA+F0LkSykjwBPA9cB8dJFwCvAxCsV+EomGCIYaCYUbCIYaCYYaCDafG8dQuIFAqIFQqFEfMqgvptZbSlSGW9qJcaWTEDOQnNQjSIjVvQIJMXk4bLF9+HR7IoTA5UjE5UgkJ21iS7qUEl/jDirrNupeh9qNVNVvZPmGt9uInhhXRstQhT7XIRWb1YPd6sFm8WC1uBBCLZpS9H9GjBjR9N5778U3X7/00ktbysvLzePHjx+WmZkZfOihh7acd9559a3rzJ4922Oz2VpeUE0mE+FwuEXtezyeKOj/n6ZOnVrfPNfhYKbXRILxpt+snCzGp7O3/7OBWVLKAFAshNgATBBClAAxUsrvAYQQM4FzUCLhsERKSTjiNzrzxlZHX9vOvp1Of1fervKRaLBb9zVpFixmF057HAkxeQzJPr5FCCTE5GIxO3r5yXsXIQQeVxoeVxp5GVNa0qPRCHUN26iq26R7H2p1z0PJ9u+JRsPttKNhtbixW2OwNR+tHmy7XdstzenNAkO/7mjehULR05x55pneP//5z+If//hH8h133LETwOfzaQAnnnhi3RNPPJF8xhlneG02m1y+fLktNze32+uOjz322IZbb701Z+XKlbbhw4cHvF6vVlxcbBk5cmSgt56nt+jVOQlCCBOwGBgM/FtKuUAIcSpwsxDiCmARcKuUsgbIRPcUNFNqpIWM893TFYcB/mA9i9bM5KfNnxAI1hMMNyJl9+b+WMxOrBYnVrMLq8WJxewixpVupLuwNh9bnVvapLla6ptMll5+0v6JppmI9+QQ78lhcNaxLemRaIha71Ya/FUEgl4CwXoCIR/+YD2BoFc/hrwEgl4a6irxh+oJBH1tvBLtYTbZsVndbUSEzeLZJS4MsWFrde2wxuJ2pqoJmIq9QtM0Pvjgg4033XRT9qOPPpqWkJAQdjqdkbvvvrv0mmuuqSkpKbGNGDFimJRSJCQkhD766KON3W07IyMj/NRTT5VcfPHFA4PBoAD4y1/+su1gFAniQAztCyHigHeAW9DnIlSiexXuA9KllNcIIf4NfC+lfNmo8x/0oYUtwN+klCcY6UcBt0spz2znPtejD0uQk5MzbvNmFRb9YCUYamDJ2tdY/NNMAiEfAzOOIsadic3iwtLSebfu7N0tQqA5T7m9+x/hSFAXFaF6/EGvITC8hohoFhc+XXQ0Xwe9+A3B0ZEzcnDWNE444k847fHt5iu6jxBisZRyfE+2uWzZspJRo0ZVdl1S0RcsW7YsadSoUbnt5R2Q1Q1SylohxFfAKa3nIgghngGa12mVAtmtqmUBZUZ6Vjvp7d3naeBpgPHjx6uJjQchobCf5RveYuHq52gK1DIo8xgmj7iB5Pj8vjZN0QOYTVbMxpyIvUXKKMFQgy4uQrsExM7adfyw+nlmfnQBJ078M4Myj+kFyxWKw5PeXN2QDIQMgeAATgD+IYRIl1I2LwP5GbDSOH8feFUI8TD6xMUhwEIpZUQI4RVCTAIWAFcAj/WW3Yq+IRIJsXLTe8xf9QwNTTvJSZ3IlJE3kp40oq9NU/QThNBahiBaMyT7OIZkH88n3/+Z9775LcMHnsOxY2/FanH1kaUKxaFDb3oS0oEXjXkJGvCGlHK2EOIlIcRodL9hCfALACnlKiHEG8BqIAzcZKxsALiBXUsgP0ZNWjxkiEYjrCn5iPkrn6auYRsZSaM47cj7yU7tUW+n4hAnOW4Il5w0k/krn+KHNS+ydccPnDzpnjbLPxUKxd7Tm6sblgNj2km/vJM69wP3t5O+iE6iVCkOPqSMsn7rF8xb8QTV9SWkxBfws/GPkZs+WU1AU+wTZpOVqaNuIS/jKD6ZfxdvfHEd44ddweQRN6hVEwrFPqJ2XFQcUKSUFJd9y9zlT7Czdi2JMQM5Y+o/GZJ1nBIHih4hM3k0l58yi6+XPsyiNS9SUj6PUyfdp+a1KBT7gBIJigPGlu0LmbviccorlxPrzuKUSfdRMOAUFbVQ0eNYLU5OnPAnBmUew38X3ssr/72MySNuZHzB5er3TaHYC9QaMUWvU1a5jDe//AVvzfkl3sYdnHDEnVx1+tsU5p2u/mArepWBmUdx5WlvMCjzGL5b9ihvfnkddb5tfW2Woo+YOXNmnBBi3NKlS+2dlbv33ntTvF5vS/94zDHHDK6srDws/1gpkaDoNSpq1vLO179i1mdXU1W7kWPH/o5rzniXkYPPw6QdnpsTKQ48Dls8Z0x5gFMm3cvO2g3M/PgiVmx8FxX+5fBj1qxZCWPHjvW99NJLCZ2Ve+qpp1Kbd18E+PrrrzckJSVFOqtzqKJEgqLHqa4vZvZ3d/DyJ5dQtnMZU0fezDVnvs/YodMxm2x9bZ7iMEQIQWHeGVxx6uukJRTy2cJ7ee/b39LQVNXXpikOEHV1ddqiRYvczz//fMk777wTDxAOh7n++uuz8vPzC/Pz8wvvv//+lL/+9a8pFRUVlmOOOSZ/4sSJ+QCZmZkjysvLzQB333136pAhQ4qGDBlSdO+996YArF271jpw4MCiiy++eMDgwYOLpkyZMsTn8x0Sk6zUnARFj1HrK2X+ymdYU/IhZpOdiUXXMa7gMuy7rWtXKPqKGFc65x/3JEvXvsa3yx5j5scXcMIRf2JI9nF9bdphQ2jWx9nR8p09Gk5US09utFx86tbOyrzyyitxxx57bN3IkSMDcXFxke+++845d+5c1+bNm22rVq1abbFY2LFjhyk1NTXyxBNPpH799dfr0tPT2wQo+fbbb52vvvpq4uLFi9dIKRk3btyw448/3puUlBTZsmWL/eWXX940efLkzaeddtrAmTNnxt94443VPfmcfYESCYr9xttYwYJVz7Jy47sIzcTYoZdyxLCr1Ba5in6JEBpjCy5lQPqRfPz9n/jgu99RmHcm08b+bo+NmhSHDm+88UbCr3/96wqA8847r/qll15KKCkpsf3yl7/cabHow5+pqamdDil89dVX7tNOO602JiYmCnD66afXzJkzx3PBBRfUZmZmBiZPntwEMGbMmMaSkpJDwm2qRIJin2n01/DD6uf5ccObSBlhxKCfMaHoWjzOlL42TaHoksTYgVxy4ovMX/UMC1c/x9YdP3DKpHvVRl69TFdv/L3B9u3bTfPnz49Zt26d4+abbyYSiQghhBw+fHijEKLbk1M6m8ditVpbh5CWTU1Nh8Rw/iHxEIoDiz/oZe7yf/OfD85gybpXKcg5iatPf4fjj/iDEgiKgwqTycKUkTdy0QnPYTJZefPL6/l6ycOEIwddsD5FJ7z00kvx5557blVZWdmKbdu2rdi+ffvyrKys4OjRoxuffPLJ5FBIjwK9Y8cOE4DL5YrU1dXt0T8ed9xxvo8++ijO6/Vq9fX12kcffRQ/bdo07wF+nAOKEgmKbhMMNbJg1X/4z/tnsGDVf8jLmMqVp73JyZPuIdatoncrDl4ykkZy+SmvMWrIBSxe+zKvfHIpFdU/9bVZih7izTffTDz33HNrWqedffbZNWVlZZasrKxgQUFB0dChQwv/85//JABceeWVlaeeeuqQ5omLzUydOrVx+vTpVWPHjh02bty4YZdffvnOKVOmNB3IZznQHJBQ0X3B+PHj5aJFi/rajEOCcCTAsvVvsnD18zQFahiYcRSTR95ISvzQvjZNoehxSsrn8emCu2ny13LkiOs5YthVaNrhMzKrQkUffvR5qGjFwYWUEn+wljpfGeVVK/hh9Qv4mirISZ3A5JE3kpE0sq9NVCh6jdz0yVxx6pt8uehvzF3+OJvKvuOUSfcS78npa9MUigOOEgmHKf6gl/qGMup82/RjQxn1vm3UNZRT31BGKNzYUjY9aSSnHHkfOalH9KHFCsWBw2GL5fQpf2dQ5rF8sehvvPTxxRwzZgYjB5+nYowoDiuUSDhECYWbWnX8ZdT7yqhr2EZ9Qzl1vm0EQm3n2ljMTmJdGcS5M8lJPYJYVwYx7kzi3Fkkxg5SfxgVhyUFuaeQmTKG/y64hy8W/Q8bt33NSRPvwu1I7mvTFIoDghIJBynhSIB6462/zldmeAO2tZw3BdrM0cFsshPjSifGlUF60ghiXBnEujKJdWcQ48rAbo1VQkChaAePM5Vzj/1//Lj+Db798VFmfnQhJxzxR/JzTuxr0xSKXkeJhH5KJBrC27jD8ACUUd9KANQ1lNHQtLNNeU0zE+NMJ9adSUr8scS6MolxZRDj1sWA056gRIBCsY8IoTEm/2IGpE3i4+//zOy5d1BQ+hXHjf+92lFUcUijREI/oilQR3HZt2wonUNJ+feEI/6WPCE0PM5UYlyZ5KZNIsadqQ8JuDKIdWfisiepiIoKRS+TEJPLxSc+x8JVzzF/1bOU7lzCyRPvZkDaxL42TaHoFZRI6GPqG8rYUPo1G0vnULpzKVJGcDmSKco7k9SEYS0iwO1MUZETFYp+gEmzcOSIX5CXcRSfzP8Tb8+5gdH5F3PUqFuwmB19bZ6iE2bOnBl35ZVXDlqyZMmqMWPG+HfPnzBhwtAHH3xw69FHH93YXv194aWXXoorLCz0jxs3bo/7HQz0mkgQQtiBbwCbcZ+3pJR/EUIkAK8DuUAJcKGUssao8wfgWiAC/EpK+amRPg54AXAAHwG/lgfpBg9SSipr17Nh21dsLP2Kihp9w5bEmIEcMexKBmdNIzVhGEKofa4Uiv5MWmIhl578Kt8te4yl615jy/YFXHzi89itMX1tmqIDWoeKHjNmTNmBuOe7774bFw6H6/ZGJIRCIZrjSfQ1vdkTBYDjpJSjgNHAKUKIScDvgS+klEOAL4xrhBCFwMVAEXAK8LgQotl//gRwPTDE+JzSi3b3ONFohNKKJXy95GGem302L31yMd+veAqzycZRo3/N1ae/w5Wnv8XUUTeTllikBIJCcZBgMduZNu42zjrqIarri9mw9cu+NknRAe2Fivb5fOKMM84YmJ+fX3j66acP9Pv9AuAf//hH8i9/+cus5rqPPvpo4pVXXpkN8PjjjyeMGDFiWEFBQeH06dMHhMN6oEin0znmlltuyRw6dGjhqFGjCrZu3Wr+7LPPXJ9//nncn/70p6yCgoLCVatW2SZMmDD0m2++cQKUl5ebMzMzRzTf49RTTx143HHHDT7qqKPy6+vrtQsuuCB3+PDhw4YNG1b48ssvxx3Yb0yn1zwJxpu+z7i0GB8JnA0ca6S/CHwF3GGkz5JSBoBiIcQGYIIQogSIkVJ+DyCEmAmcA3zcW7b3BKGwny07FrCh9Cs2bfuapkAtJs1CTtpEjhh2FYMyj8blSOprMxUKRQ8wKPNY3I4UisvnMnzQOX1tTr8m9MZz2dHt23o2VHRaZqPlwmv2OlT0559/7nE4HNF169atXrBggWPKlCmFAJdffnnNpEmTCoBSgLfeeivhzjvvLF+yZIn9rbfeSli0aNFPNptNXnbZZTlPPvlk4s0331zV1NSkHXnkkb7HHnts2y9/+cusxx57LPmBBx4oP+GEE2rPOOOMuquvvrqmM/sAlixZ4l6+fPmq1NTUyM0335w5bdq0+jfffLOksrLSNH78+GFnnXVWfXMEygNFr85JMDwBi4HBwL+llAuEEKlSynIAKWW5EKI5IlAmML9V9VIjLWSc757e79g18fArSsrnEY74sVnc5GUcxeCsY8lNn4zV4uprMxUKRQ8jhCAvYwprt3xGJBpS84f6Ie2Fit64caPtV7/6VQXAxIkTm/Lz8xsBMjIywtnZ2YEvvvjCVVRU5N+0aZP9xBNP9P39739PXrlypXPUqFHDAPx+v5aSkhIGsFgs8uKLL64DGDduXMPnn3++1+NORx11VH1zuOqvvvoq5tNPP4179NFH0wACgYDYsGGDdezYsQd0bkOvigQpZQQYLYSIA94RQgzvpHh76/NkJ+l7NiDE9ejDEuTkHJgtVOsbytm47Ws2lM6htGLJromHA89kcOY0slLGYTKpPxgKxaFObvoUVmx8h7LK5WSnjOtrc/otXb3x9wYdhYouLCxs7Ghp+Pnnn1/z2muvxRcUFPhPPfXUGk3TkFKKCy64oOrf//73tt3Lm81mqWla8znhcLjdhs1ms4xEIgA0Nja2KeN0Olu8BFJK3nrrrQ2jRo3q05CkB2TwW0pZiz6scAqwQwiRDmAcK4xipUB2q2pZQJmRntVOenv3eVpKOV5KOT45uXd2RJNSsrN2PfNXPsPLn0zn2fdPZ87iB2hsquKIYVcy/aSXuP7sjzl+/B8YkD5JCQSF4jAhJ20CmmamuOy7vjZFsRudhYp++eWXEwB++OEH+7p161qGQS677LKaTz75JP7NN99MmD59ejXAKaecUj979uz4bdu2mUEPLb1u3TprZ/d2u92R+vr6lr42Ozs7sHDhQhfAK6+8Et9RvWnTptU/9NBDqdGorhvmzp3bJ0tnenN1QzIQklLWCiEcwAnAP4D3gSuBvxvH94wq7wOvCiEeBjLQJygulFJGhBBeY9LjAuAK4LHesrs9otEIZZXL2Fj6FRu2fUWdrxQQZCSN5KjRv2Zw5rHExww4kCYpFIp+hs3iJjN5DMVlczl69K/72hxFK958883E22+/vbx12tlnn13z448/Ov1+v5afn19YVFTUOGLEiIbm/OTk5MiQIUOa1q9f75g2bVojwLhx4/x/+tOfth1//PH50WgUi8UiH3300S35+fnBju596aWXVt9www25Tz75ZOpbb7218fe///2Oiy66aOCsWbMSjzrqqPqO6v39738vu/7663MKCgoKpZQiKysrMGfOnA098X3sDb0WKloIMRJ9YqIJ3WPxhpTyXiFEIvAGkANsAS6QUlYbde4ErgHCwG+klB8b6ePZtQTyY+CWrpZA7m+o6M4mHg7KPFZNPFQoFHuwaM1LfPPjI1x31kd4XGl9bc4+oUJFH370SahoKeVyYEw76VXA8R3UuR+4v530RUBn8xl6BCkla0o+bDPx0GpxM1BNPFQoFN0gL2MK3/z4CMXlcxk5+Ly+Nkeh2G/UjoutEEKwZO2rNPir1MRDhUKx1yTE5BHjSqe4TIkExaGBEgm78bNjHjWCIakNjRQKxd4hhCAvfSqrS2YTjgQxmzqd06ZQ9HtUT7gbLkeSEggKhWKfycuYQijcxLadS/vaFIViv1G9oUKhUPQg2alHYNKslJTN7WtTFIr9RokEhUKh6EEsZgdZKWMpLlf7JSgOfpRIUCgUih4mL2Mq1fUl1PpKuy6sOGDMnDkzTggxbunSpfauyl500UUDFi9e3GW5rli7dq31ySefTGi+/uabb5xXXXVVdmd1+hNKJCgUCkUPk5cxFUANOfQzWoeK7qrs66+/vnlvwjt3xPr1622vv/56y/2OPvroxhdeeOGAb029ryiRoFAoFD1MvCeHOHc2xeVKJPQX2gsVPXv2bM+ECROGnnLKKQPz8vKKzjrrrLzmbZBbh3R2Op1jbrjhhsyioqJhkydPzp8zZ45zwoQJQ7Oyska88sorsaB7DMaNGze0sLBwWGFh4bDPPvvMBXDnnXdmLlq0yF1QUFB4zz33pMyePdszbdq0waBv63zCCScMys/PLxw1alTBggULHAAzZszIuOCCC3Kb7/HXv/41pZ1HOiCoJZAKhULRC+RmTGHlxncJhf1YzPvttT5k8L53T3akYmOPhoo2pQxq9Jz9l70OFQ2wZs0ax48//rgpNzc3NG7cuILPPvvMffLJJ/ta121qatKmTZvmfeKJJ7adeOKJg/70pz9lfvvtt+uWLFliv/rqq/MuvfTSuoyMjPC33367zul0yhUrVtguueSSgStXrlxz//33b3vooYdSm7dUnj17tqe53dtvvz1j1KhRjZ9//vnG999/33PllVfm/fTTT6sBNmzYYJ83b97a2tpa07Bhw4bfdtttO202W+9skdwJypOgUCgUvUBe+hTCET+lFYv72hQFeqjoSy65pAZ2hYoGGDFiRMOgQYNCJpOJoqKixo0bN+6xuYXFYpHnn39+PUBRUVHT1KlTvTabTU6YMKFp27ZtVoBgMCimT5+em5+fX3jBBRcM2rhxY5fKcOHChZ5rr722CuCss87y1tbWmquqqkwAJ510Uq3D4ZDp6enhhISEUGlpaZ+81CtPgkKhUPQCWSnjMJvsFJfPJS9jSl+b02/o6o2/N+goVPQZZ5xR1/rt3GQytRviuXUYaE3TaK5jMpmIRCIC4P77709NSUkJvf3228XRaBSHw9FlvPD2QhAJISRAd+w6EChPgkKhUPQCFrOd7NTxKnR0P6CjUNHffPONu6fuUVdXZ0pPTw+ZTCYef/zxxEgkAkBsbGzE5/OZ2qszadIk7/PPP58I+jBEfHx8OCEhIdpTNvUESiQoFApFL5GXMZU6Xyk13i19bcphzZtvvpl47rnn1rROO/vss2vefvvtLlc5dJff/OY3Fa+99lriqFGjCtatW2d3OBxRgAkTJjSZzWY5dOjQwnvuuafNBMR//OMfZUuWLHHm5+cX3nnnnZkvvPBCcU/Z01P0WqjovmZ/Q0UrFArF/lLn28Z/PjiTY8f+jrFDp/e1Od1ChYo+/OgsVLTyJCgUCkUvEevOJCEmVw05KA5a9kokCCE0IURMbxmjUCgUhxp56VMprVhMKNzU16YoFHtNlyJBCPGqECJGCOECVgNrhRC39b5pCoVCcfCTlzGFSDTE1h0/9LUpCsVe0x1PQqGUsh44B/gIyAEu702jFAqF4lAhI3kMFrODYrVFs+IgpDsiwSKEsKCLhPeklCHg0JztqFAoFD2M2WQlJ3UixeXftbsuXqHoz3RHJDwFlAAu4BshxACgvqtKQohsIcQcIcQaIcQqIcSvjfS7hRDbhBA/Gp/TWtX5gxBigxBirRDi5Fbp44QQK4y8R4UQfbKphEKhUOwLeRlTqG8op7q+361wUyg6pUuRIKV8VEqZKaU8TepsBqZ1o+0wcKuUchgwCbhJCFFo5D0ipRxtfD4CMPIuBoqAU4DHhRDNG1A8AVwPDDE+p+zFMyoUCkWfkpeu77iohhz6DpPJNK6goKBw6NChha0DMJWUlFhOOeWUgX1l14wZMzLuuuuu1L66f1d0Z+JiqhDiP0KIj43rQuDKrupJKcullEuMcy+wBsjspMrZwCwpZUBKWQxsACYIIdKBGCnl91L31c1EH/pQKBSKgwKPK43E2MEUl6ulkH2FzWaL/vTTT6vXrl27+r777tv2xz/+MQsgNzc39Mknn2zqiXuEw+GeaKZf0Z3hhheAT4EM43od8Ju9uYkQIhcYAywwkm4WQiwXQjwnhIg30jKB1nt6lxppmcb57unt3ed6IcQiIcSinTt37o2JCoVC0avkZUxh286lBEK+rgsrepW6ujpTbGxsGPQQz0OGDCkCaGxsFOeff35ufn5+4bBhwwo/+OADD4DX69VOO+20gfn5+YWnn376wJEjRxa0DiP9m9/8JmPkyJEFX3zxhft3v/td+vDhw4cNGTKk6JJLLhnQOvT0Nddckz1mzJiCIUOGFM2ZM6clEuaaNWscu4eF/vWvf51x3333tezQeMstt2T2Rcjo7gR4SpJSviGE+AOAlDIshIh09wZCCDfwNvAbKWW9EOIJ4D70yY/3AQ8B1wDtzTOQnaTvmSjl08DToO+42F0bFQqForfJy5jKojUvsmX7QoZkH9fX5vQZpZ/ekx2o7NlQ0bakQY1ZJ3ceOCoQCGgFBQWFgUBAVFZWWj766KN1u5f5xz/+kQKwbt261UuXLrWfdtppQzZu3Ljyn//8Z3JcXFxk3bp1q3/44Qf7kUceWdRcp6mpSRs+fHjTv/71rzKA0aNHNz344IPlAOecc07erFmzYqdPn14H0NjYqC1duvSnjz/+2H399dfnrV+/fhW0Hxb6xhtvrPzZz3426M9//nNFJBLh3Xffjf/hhx/W9Ny31j26IxIahBCJGB2zEGISUNedxo1VEW8Dr0gp/w9ASrmjVf4zwGzjshTIblU9Cygz0rPaSVcoFIqDhoykkVgtborL5x7WIqGvaB5uAPj8889dV199dd66detWtS4zb9489y233FIBMGbMGH9GRkZwxYoV9nnz5rl//etfVwAcccQR/vz8/MbmOiaTiauuuqolLsTHH3/sefjhh9P8fr9WW1trLiwsbMLoM6dPn14NcOqpp/p8Pp9WWVnZJiy0w+FoCQs9dOjQYFxcXHju3LmO8vJyS1FRUWNaWlq3X9B7iu6IhBnA+8AgIcRcIBk4v6tKxgqE/wBrpJQPt0pPl1KWG5c/A1Ya5+8DrwohHkYf2hgCLJRSRoQQXkOcLACuAB7r1tMpFApFP8GkWRiQNomSsrlIKTlcF2l19cZ/IDjhhBMaampqzOXl5W36wI6WqHa2dNVqtUbNZr2ZxsZGceuttw5YsGDB6sGDB4dmzJiR4ff7W4b1d/+ZN193FBb66quvrnz22WeTKioqLFdffXXVXj5mj9Cd1Q1LgGOAycAvgCIp5fJutD0FfdOl43Zb7viAsZxxOfoqid8a91kFvIG+q+MnwE1SymbVdAPwLPpkxo3Ax3vxjAqFQtEvyEufjK+pgsra9X1tymHN0qVL7dFolNTU1DYzDadOnep7+eWXEwCWL19uKy8vt44cOdI/efJk36xZs+IBFi9ebF+3bp2jvXYbGxs1gLS0tHBdXZ32wQcfxLfOf+211+IBPv30U7fH44kkJiZ26hm4/PLLa+fMmRO7bNky13nnndctD35P06EnQQhxnJTySyHEubtl5QshaB4+6Agp5Xe0P5/go07q3A/c3076ImB4Z/dTKBSK/k5u81LI8rkkx+f3sTWHF81zEkD3DDzxxBMlzR6AZm6//faKyy+/fEB+fn6hyWTiqaeeKnE4HPK2227beeGFF+bm5+cXDh8+vHHo0KFN8fHxe3TwSUlJkUsvvXRnYWFhUVZWVnDUqFENrfPj4+MjY8aMKfD5fKann366y00z7Ha7nDx5cn1cXFxkd1sPFB2GihZC3COl/IsQ4vl2sqWU8preNW3/UKGiFQpFf+TlT6ZjMTu46IT/9LUp7aJCRe9JOBwmGAwKp9MpV61aZTvppJPyN27cuNJut3d7gvyECROGPvjgg1uPPvroxq5L60QiEYqKigrffPPNjSNGjAjsm/Vd01mo6A6liZTyL8bpz1u5/RUKhUKxH+RlTGHh6hfwB73YrZ6+NkfRDbxer3bUUUcNDYVCQkrJI488snlvBMK+sHjxYvvZZ5895NRTT63pTYHQFd3xXxQLIT4BXge+lGrzcYVCodhnctOnsGDVf9iyfT75OSf2tTmKbhAfHx9duXLlfi0/XLhw4dq9KT9u3Dh/aWnpiv25Z0/Qnc2UhgKfAzehC4b/J4SY2rtmKRQKxaFJeuJwbNYYisvU7ouK/k93Vjc0SSnfkFKei75rYgzwda9bplAoFIcgmmYmN+1IisvnIWW0r81RKDqlO54EhBDHCCEeB5YAduDCXrVKoVAoDmHyMqbQ6K+iouanvjZFoeiULuckCCGKgR/R9zC4TUrZ0HkNhUKhUHRGbvpkAIrL5pGaUNhFaYWi7+iOJ2GUlPJnUsrXlEBQKBSK/cdpTyA1oUhFhTzAbNmyxXzGGWcMzM7OHj5o0KCiY445ZvDy5cttB+LemZmZI3bf4fFgoDsiIUYI8Y4QokIIsUMI8bYQIqvragqFQqHoiLyMKZRXrqApUNN1YcV+E41GOeusswYfffTR3q1bt67cuHHjqr/97W/bysrKLH1tW3+mOyLhefS4ChnoIZo/MNIUCoVCsY/kZUwFJCXl8/valMOC2bNne8xms7z99tt3NqdNnjy56aSTTvL94he/yBoyZEhRfn5+4TPPPBPfXP6II44Yetpppw3Mzc0dfuONN2Y+8cQTCSNGjBiWn59fuGrVKhtAWVmZ+eSTTx40fPjwYcOHDx/23//+1wWwfft205QpU4YMGzascPr06QOadw/oLyGgu0t3XB/JUsrWouAFIcRveskehUKhOCxISyjEYYunpHwuw3JP7WtzDhhr59yT3Vjds6GinQmDGodO6zxw1PLlyx2jRo3aY7fDmTNnxq1YscKxZs2aVeXl5eYJEyYMO+mkk3wAP/30k+Ott97alJKSEh4wYMAIm81WuWLFijX33XdfykMPPZTy3HPPbf3FL36RPWPGjB0nn3yyb/369daTTz55yKZNm1b9/ve/zzjyyCN9Dz74YPmsWbNiX3vttSSA/hICurt0RyRUCiEuA14zri8B+iQalUKhUBwqCKGRm34kJeXziEYjaJqpr006LPn22289F154YbXZbCY7Ozs8ceJE33fffeeMjY2NjhgxomHAgAEhgJycnMCpp55aBzBq1Kimr7/+2gMwd+7cmPXr17cEfPL5fKaamhpt/vz5nv/7v//bAHDxxRfX/eIXv4gA9JcQ0N2lOyLhGuD/AY8AEphnpCkUhzzRaIS6+hKqqlZTVbmaxqYKbNY4bPY47Db9aLPF6ue2OOz2eCwW92EbBlixd+SlT2VNyUfsqF5NetKIvjbngNDVG39vMWLEiKZ33303fvf0zjYRbh3CWdM0mrdi1jSNSCQimusvWrRojdvt3qMhTWt/RL8/hIDuLl2KBCnlFuCsA2CLQtGnSBnF6y2lsmo1VZWrqKxaTXX1T4TDTQCYzU5crlSCQS+BQC3RaLjddoQwYbPFGqLBEA82XUzY7PEtgqK1wFDC4vBkQPokhNAoLv/usBEJfcWZZ57p/fOf/yweeuihpFtvvbUS4Ouvv3bGx8eH33rrrYSbb765qqKiwrxw4UL3o48+unX58uXthoPenalTp9b/4x//SLnvvvt2AMybN88xefLkpkmTJnmfe+65xAceeKD8jTfeiKmvr29xFV1++eW1999/f2Y4HBbnnXfept554p6hs1DRj3ZWUUr5q543R6E4MEgpaWgop6pqDZWVq6iqWk1l1WpCIR8AJpONhIShDBl8DomJw0hMLCQ2NhchtJb6oVADgUAt/kAtAX/trnPjWj+vo75+MxX+ZQQCtXQUK00IsyEoYneJCkNgtHgqWgkMi8WJppkRwoSmmY3zbu2NpuhHOGxxpCeOoLhsHpNH3NDX5hzSaJrG+++/v/HGG2/M/te//pVms9lkVlZW4LHHHtvq8/lMw4YNKxJCyHvuuac0JycnvHz58m61+/TTT2/9+c9/npOfn18YiUTExIkTvZMnT97y97//vey8884bWFhYOOzII4/0paenB5vr9IcQ0N2ls1DRQWAl+iZKZUCb1xwp5Yu9bt1+oEJFK1rT2LizRQhUGR+/X196pmlm4uOHkJhYRFJiIYlJhcTFDkTTevY/ry4sfHuKit0Eht+4DgTqCATqOhQWeyIMwWBCCHMr8WBq59yEJswIzWSk7yqvCROinTL6+a4ymmbGZo/H7c7A7UrH5UrHYunWy5eiFfNXPsu8FY/zi3M+w+VI7GtzVKjoA8CBCgHdXfYpVDSQDlwAXASE0aNAvi2lVIt6Ff0av7/GEARr9GPlKpqa9FVPQpiIixtIVtbRJCYWkpRYRHz8YEwma6/bJYTAavVgtXrAk92tOlJGCQZ9hoioIRCow++vIRxuIhoNI6MRotI4RsNEpX6UMrwrv3X6HudhotEIMhpoVdeoE420KrNbugy3G3fAbo/H5crA7U7H7UrXBYQ7A5dxbrH06KT2Q4K8jCnMW/E4m7d/T2HeGX1tjqKX6S8hoLtLhyJBSlkFPAk8KYTIRF/VsEoIcYeU8qUDZaBC0RnBoJeqZjFgeAh8vjIjVxAbO4D09CNaBEFCQj5m88HztiuEhs0Wg80WQww5fW1OG6LRCH5/Nb6GMny+chp8ZfiMT03NBrZu/YZoNNimjs0Wh9ud3iIa3IagcLnTcbsysFrdffQ0fUdK/FBc9iSKy75TIuEwoL+EgO4u3YndMBZdIJwIfAws7k7DQohsYCaQBkSBp6WU/yuESED3SuQCJcCFzd4JIcQfgGuBCPArKeWnRvo44AXAAXwE/Fp2NiVVcUgSCjVRXf1TG0FQX7+5Jd/tziIpsYih+ReQlFREQkLBYdnpHCg0zYTTmYzTmUxK8qg98qWM6iLCp4sIX0M5Pl8ZDb4y6uqK2bZtHpGIv00dqzXG8D7sLiT0NKvVc6Ae74ChL4WczIbSOUSj4R4f5lIo9ofOJi7eA5wBrAFmAX+QUrY/nbt9wsCtUsolQggPsFgI8RlwFfCFlPLvQojfA78H7hBCFAIXA0Xouzt+LoTIl/qA7BPA9cB8dJFwCrpgURxiRKNhGhp24PWW4vVtxefdhtdbSl19CXV1xS0ubqczlcTEQgYNOoPExEISE4Zht8f1rfGHGVLKTldkCKHhcCThcCSRnDyy3fp+fw2+hjIafLqAaPZK1NdvoaxsfsvKkmYsFnfLEIbbpXsgPO4sMjMnH5Aho94iL2Mqq4rfp7xqJZnJo/vaHIWihc4k65+BTcAo4/M/xh8EAUgp5Z7/61shpSwHyo1zrxBiDfq2zmcDxxrFXgS+Au4w0mdJKQNAsRBiAzBBCFECxEgpvwcQQswEzkGJhIOWUKgBr3cbXu9WvD5dBHi9pfh8pfh822mtRTXNgseTiceTzYCc40lMKiQpsRCHI6kPn+DQRkYjhPw1BBsqCTTuJNiwk2BjJcGGSoKNlQQadhJs3EmwsRqzzY0zLg9nfC7O+DzjPA+bJ63L1RZCCByOBByOBJKThu9ph5QEArX6UIbhhWgREt5SyssXEg7rG+glJQ1n2rEP4XQm98p30tvkpE1ECBPFZd8pkaDoV3QmEvJ66iZCiFxgDLAASDUEBFLKciFE857VmeiegmZKjbSQcb57env3uR7d40BOTv8avz2ckFLS1FRpeAMMAWAIAa+vtGVVQTM2ayxuTxaJiUXk5p6Ex52Fx5ONx5OJ05nSp0v7QoF6mmo301S7haa6LYT8tZitLkxWN2are4+j2erGZHNjtrgQ/WwHvebOP9DS6e/q/FvSjM6fdlZUWOxxWF3JWJ1JuBIHY3UkEgrU0VhTTFXxV2xf825LWc1swxGXizPOEA/GxxGbg2bqXjwdIQR2ezx2ezxJSXuGU5ZSEgzWs63se77//j5mf3gp0459iOTkg2+/AbvVQ0bSKIrL5jJ11M19bY5C0UJnExc3d5S3Nwgh3MDbwG+klPWduCfby5CdpO+ZKOXTwNOgL4Hce2sV3SUSCeLzlbURAro3YBte77Y2Y81CaLhcabjdmWRnH6sLAHcmHk8WHk9Wn48zR8J+/HVbaazdQlPdLkHQVLuZkL92V0GhYbZ6iIQakB1spNQak8WJyeraU0TsJiZMVjdmWztiw+ruVoe6/51/PFZXElZnst75O5OxuZKwOpNaRIHVmdSlLaGmGhprSmisLdaPNcXU71jOzg2ftvoOTThiMg3RkIsjLq/l3LyX80eEENhssQzMO4X4uEF8OWcGn3z6c4488k8MHnTmXrXVH8jLmMp3yx7F17gT90HqEenvbNmyxXzjjTfmLFu2zGm1Wlv2SRg5cmSbVQZjxowpWLp06U99ZWd/oldnyAghLOgC4RUp5f8ZyTuEEOmGFyEdqDDSS4HW68Ky0PdnKDXOd09X9DLBoJf6+q3GsECzR0AfHmho3EFrrWY22w0PQA4ZGUca5/rH5UrH1M23x95CRsP4veWGANhsCAJdCAR829uUtTqTcMQNIDFvGo64HJyxA3DE5WCPyUIzWZBSEo0EiAR9hIMNxtFHOODbdR70EQk2GMfm/Hr89WV6WshHNNz16ifNZNslHGy7REQ0Eupm59/85j8EqzOpbefvSsbqSOz2m31XWBzxxDriic0Y0yY9EmqisbaEpt0ERPWWuW3EltWV3DJc0Tx84YjLxepM6nI3yvj4IZx+2kt8/c0dzJ37F2qq1zFu3K8PqkmAeRlT+G7Zo5SUz2X4oHP62pxDjuZQ0dOnT6+aPXv2JtB3RywrK7M0i4RwOIzZbEYJhF302v8gof+v/g+wRkr5cKus94Ergb8bx/dapb8qhHgYfeLiEGChlDIihPAKISahD1dcATzWW3YfboRCDYYQ2EJ9/RbqvVupr99Mff0WAoHaNmUdjiTc7kxS08bpAsCdaQwLZGG3J/T5tsJSSoKNlfrwQN2WFo9AY+1m/PWlbTokk9WNM24AsRljccTm4IgbgDM2B3tsNmarq9P7CCEwme2YzHaszn2fGxGNhHYTFbuJjqCPSMA4hhpaREhjw06EZsbqSsaVOGTPt/4e7vz3F5PFgSd5GJ7kYW3So5EQ/vptNNbqoqGxppim2hJ2rJ1NJNSwq77VvWvIotX8B7sno82Qjt0ex4kn/D9+WPQIq9e8Qk3tRo45+u/YbDEH7Fn3h6TYwbgdKRQrkdArdBQqevbs2Z6JEyfmp6SkhFavXu3cuHHjKqfTOaaxsXHp7NmzPffcc09GcnJyaPXq1c7TTjutZsSIEU2PP/54aiAQEO+8887GoqKiQFlZmfnqq68esG3bNivAww8/vOWkk05q6Niag4fOVjd8IaU8XgjxDynlHfvQ9hTgcmCFEOJHI+2P6OLgDSHEtcAW9A2bkFKuEkK8AaxGXxlxk9y11dwN7FoC+TFq0uJeEQ434fWW6iKgfgv1hiDwerfS1NR2EzSnM4UYTw45OdOI8eQQE5ODx5OF253Vb3bTCwe8NLYIgdbHrURCuyLBCpMVR2w2rviBJOUdiyNuQIsgsNjj+lzUaCYLmiMei2OPmDOHBZrJYnT4uZB3bEu6lJJgw07D67DrU715Ljt+er+lnDBZccbm4IzPw5U0FE9KEZ7kYUyccDsJ8fnMX/A/fPjR5Rw37RHi4gYe8OfbW4QQ5GVMYe3m/xKJhjBp/UPk9TRLv7kn21vTs6GiPfGDGsccvW+hoo0819KlS1cVFBQEd8/bn3DRPfV8fUmnOy4KIY4BzhJCzGLPbZmXdNawlPK73eu04vgO6twP3N9O+iJgz+nPihYikeAuIeDdgrdFDGylsXFHm7J2eyIxMdlkZkzWRUBMDjGeHDye7H4hBMJBHwFfBQHfdgINFQR8Owh4y1u8A6HWEx+Fht2TjiN2ADHpY3C2EgI2d6qKZ3AQIoTA5k7B5k4hPmtim7xQoF4ftmgWD7XFeCtWs3PjZy1lHLED8KQUMmbgBazc8iEffXQFRx11P9nZxxzoR9lr8jKmsmLjO5TtXEZ2ao/ujKzohJEjRza0JxAA9idcdHx8/J7bkh5kdCYS7kLfwyALeHi3PAkc11tGKdonGg3h9ZXpAqCVCPB6t+DzldN6joDNFkeMJ5u0tPHEGCJA9wpk9+kGQ+0JgKBvxy4x0LCDSHB3L53A6kw05gkcu9s8gUy0g3h9vGLvsNhisKSNJCat7QrskL8O787V+CpW461YRW3ZYoINFaQIyQ4bfDnnt2THDmPooHOISR2OK2FwvxmOaU1O6gQ0zUxx+dxDViR09cbfW3QUKhrA6XR22Jnvb7jog53OVje8BbwlhPizlPK+A2jTYU80GqaiYhk1tevx1htzBAwh0DrYj8XiJiYmh+SkkQwaeDoxMQNavAJ9MQ67uwAI7u4N6FAAJGBzp+GIG0Bc1hHYXGnGm2QqNlcqVldyv/yDrug/WOyxJGQfSUL2kS1pgYad+CpWU7tjGatKZrO1bg3VC9eQFNCjfLoTh+BJKcKdPAxPShHOuNw+X7ZqtbjITB5Dcdlcjh796z615VCjo1DRc+bM2e+3po7CRe9vu/2BLicuSinvE0KcBRxtJH0lpZzdu2YdfkSjEXZULKGk5L9s3vxFy6RBs9lBjCeHhIRh5OaeREzMgBavgM124MbVWwRAww7j7b87AgCszkSsrlQlABQHHJsrGVveMSTmHcPAibewctWLLFnyGKbYdIYmTSJUu4Uda2dTtvINQF+y6k4qwJNSiNuY32CPyTrgc1fy0qfyzY+PUN9QTowr/YDe+1Cmo1DRZ555Zu2SJZ2OnndJR+Gie8j0PqXDUNEtBYT4GzABeMVIugRYJKX8Qy/btl8cDKGio9EIFRU/UrJZFwZ+fzVms52srKPJHXAiyckjcTi6Xv61P0gpCQfqCPgqCDZUtOr0dxJs2NEiDDoTADZ3qt7xNwsAI00JAEV/o7T0O7759o+YTBaOPeafpKSMpql2M96KVXiNoQpf1TpkRB+eNtti8aQMw51chCelEE9KETZX7+5hUFW3iRc/Op8TjvgjIwef36v3ag8VKvrwY19DRTdzOjBaGpvmCyFeBJYC/Vok9FekjFJRsYySzZ+xefPnNDVVYjLZycqaSu6AE8nKmtpjUQplNEKwsUp3/bcIAL3TDzbs1D0CDTuJRnZfr6/PAbC5U3HE5RgegNSWt38lABQHK1lZUzn9tBf5cs4M/vvZL5k44Q7y88/DGZ9H6lA9AmM0EqKxeiPenatbxMPWpS+07EVhdSbpwxQphXiSC/GkFGLpwbghCTF5xLgyKC6b2yciQaFoTXf3SYgDqo3z2N4x5dBFyig7d66gZPN/KSn5nKamnZhMNjIzpxjC4Cgslr1bERQNBwg07tzlAWjPE9BYuccmO0KzYHOlYHUlG29FKVhdKYYHIAWrO6VfrbFXKHqa2Ng8Tj9tJt988we+n38/1TXrmHDE79CMJYeayYI7uQB3cgHphecC+q6cDZXrdNFgiIeqkq9b2rR7MonNHMegKbfu9c6Ru9O8FHJ18WzCkSBmNTFX0Yd0RyT8DVgqhJiDvqTxaJQXoUuklFRWrtQ9BiWf09C4HU2ztAiD7OyjsVja37RHSonfuw1/Xane6TdPAmwwOn/fjrbbBRuYLE6jw08lPj7XGArQO/9mMWBxxKllgYrDHqvVw3HH/S9Llj7GqlUzqa3dxLHHPIDd3v6eFSaznZjdVlWEA158lT+1DFPs+Ol9bK5Ucif8cr/ty0ufwrL1b7Jt51IGpE3suoJC0Ut0Z+Lia0KIr4Aj0EXCHVLK7Z3XOjyRUlJVtcbwGHxGQ0M5mmYmI2MyY8beRHbW0e3GKZBS0lRbQm3ZYurKllBXtlj3ArRCD66jv/HHpAzH6kpucfvbDDGwv28wCsXhhKaZGD/uNyTE5zPv+/uY/eFlHDftERIS8rtV32zzEJd5BHGZRwCw+pPb2LbiVTJHTceyn6uLslOPwKRZKS77TokERZ/SreEGI2rj+10WPAyRUlJdvZaSkv9SsvkzfL5tCGEmI2MSo0f/kpzsY/cQBlJGaazeSK0hCOrKlxJq0kdzrK5kYjPGEZsxFmf8QH2GtisFzWzri8dTKA55Bg48jZiYXOZ8NYOPP7mKqVPuY8CAdvd765ScI66nsvhLti17mdwJN+6XTRazg6yUcRSXzeXYsbfuV1sKxf5w8EQ/6UdIKampWd/iMfB6tyKEifT0CYwc+XNyso/FZottVT5KQ9V66soW68KgfAlhfx2APjSQPYnY9LHEZY7vkyVXCsXhTlJSIaef9hJffX0bX319GyNHXsfoUb/Yq6E5d+IQkgYez7bls8gceSkW+/5N38rLmMpXS/5Jra+UOHdW1xUUil5AiYRuIqWktnYjJZs/o6TkM+rrSxDCRFraEQwffhU52dOwGzOcZTSMt2J1iyioL19KOOgF9AlOiQOOJjZjLLEZ4/QgNUoUKBR9jtOZzMknPc38BX9j+fJnqKnZwFFT7+1w7lB7DBh/PZWbvqR02cvkTbxpv+zJy5jCV0v+SUnZXEbnX7RfbSnAZDKNGzJkSFM4HBYmk0lecsklVX/+8593mEx9u4FWd5g3b55j69at1osuuqjuQN+7U5EgdBm9XEp52MZNqK3d1DKUUFdXjBAaqanjKCyczoCc47Hb44lGQvgqf2LnmveoLVtMffmPLVHs7LHZJA06vmUIwe5O6+MnUigUHWEyWZl85F0kxOfzw6KH+ejjq5g27WFiPNldVwZciYNJHnQCZStmkTXq0v1aGhnvySHOnU1xuRIJPYHNZov+9NNPqwG2bdtmvuCCCwbW1dWZHnnkkbK+tq0rFi1a5Fy0aJFrb0RCKBTCYtn/VWqdigQpZVQIsUwIkSOlPCR2j+oOdXUlLR6D2toNgCA1dSwFBRczIOc4bNYYvBWrqFj1DnXli6krX0Y0rO/A6YjLJWXIKS2egt7eeEWhUPQsQgiGDbuEuLiBfPX1HXz04RUcc8zfSU/v3gTCnPHXsXPj55T++DJ5k27eL1vyMqayfOP/EQr7sZjt+9WWYheZmZnhZ599tmTy5MmFDz30UJnf7xdXXHHFgOXLlztNJhMPPPDA1jPPPNMbDoe58cYbs7766qsYgCuvvLLyzjvvrMjMzByxaNGiNenp6eFvvvnG+bvf/S574cKFa2fMmJFRUlJi3bFjh6WkpMT+P//zP1u///5795dffhmTmpoa+vzzzzfYbDb57bffOmfMmJHd2NioxcfHh1955ZWSAQMGhCZMmDB03Lhxvu+++y7G6/WannzyyZJjjz224W9/+1uG3+/XCgoK3Lfeemv54MGDAzNmzMjx+/2a3W6PvvDCC8WjRo0KPProo4kff/xxbCAQ0BobG7W0tLTQ+eefX3PZZZfVApx11ll5F110UfWll17abbHRneGGdGCVEGIh0LLtnpTyrL37sfR/pJR88sm1VOz8ERCkpIxmwoTbyc48irB3O3Vli1n/2Z3U71hONKxvQORMGERawZm6KEgfi9WZ2KfPoFAoeob09ImcfvpLzJkzg88+v5kjxs+goODiLocHXQmDSB58ImUrX9e9CfsRCjwvYwpL171GacVi8jKm7HM7/Ym5c+/Orqnt2VDR8XGDGqdMuXuvAkcVFhYGo9Eo27ZtMz/77LOJAOvWrVu9dOlS+2mnnTZk48aNKx977LGkzZs321atWrXaYrGwY8eOLscmNm/ebJs3b966JUuW2I877riCF198ceOTTz5ZeuKJJw564403Yi+88MK6X/3qVzkffvjhhoyMjPAzzzwT/7vf/S7zzTffLAEIh8NixYoVa15//fXYe++9N+OUU05Z94c//KFs0aJFrpkzZ24BqK6u1hYuXPiTxWLh3Xff9dx+++1Zn3766UaAJUuWuJcvX74qNTU18uGHH7ofeeSR1Msuu6y2qqrKtHjxYvfbb79dvDffU3dEwj170+DBjBCCjIxJ5GQfQ7wjjWBVMXVrv2TpN/9rbNMqcCUOIW3Yz4jLGEds+pj9+gOgUCj6NzGebE479QW+/e7PLPzhn1TXrGPSxD9g6mKDo5xx17Fzw2eULnuJvEm/2uf7Z6WMw2yyU1w+95ARCf2J5rAE8+bNc99yyy0VAGPGjPFnZGQEV6xYYf/yyy9jfvnLX+5sdtunpqZGOm5N54QTTqiz2WxywoQJTZFIRJx//vn1AEVFRU3FxcXW5cuX29avX+847rjj8gGi0SjJycmh5voXXHBBDcDkyZMbbrvttnZ/0aqrq00XXXRRXklJiV0IIUOhUItyPeqoo+qb7Tz99NN9v/nNbwZs27bN/Morr8SffvrpNXs7BNGdfRK+FkIMAIZIKT8XQjiB/j/TYx8xla6kunQBVdEwCA130lAyhl9AXPo4YjLG7Pf6Z4VCcXBhsbiYduyDLFv2FMuWP0NdXTHTjn0QhyOpwzquhIEkDz6JbSveIHPU5Vj38WXCbLKRnTqe4rLvkGNvOyQmOe/tG39vsXr1aqvJZCIzMzPcUQwjKSVCiD0yTSaTjEb16NJNTU1tlsA0h5Y2mUyYzWapaXq2pmmEw2EhpRSDBw9u+vHHH39q757NoajNZnNLKOrdueOOOzKPOeYY72effbZx7dq11uOOO25oc97uYa8vvPDCqmeffTbh7bffTnjuuedKOvo+OqLL9T1CiOuAt4CnjKRM4N29vdHBgiM+l8yR0xl+2v8y+eovGXv+ywyaPIPEvGOUQFAoDlOE0Bg9+gaOOeYBamrWMfvDy6isXN1pnQHjryMaCVD648z9undexlTqfKXUeg+baWG9TllZmfm6664bcPXVV1domsbUqVN9L7/8cgLA8uXLbeXl5daRI0f6TzjhhPonn3wyORTSX/SbhxuysrKCc+fOdQK88cYbe6UAR44c6a+urjZ//vnnLoBAICAWLVrU6YSTmJiYiM/na+mv6+vrTVlZWUGAp556qmO1Cvzyl7+sfOqpp1IBxo8f798bW6EbIgG4CZgC1ANIKdcDKXt7o4OFQZNnMPDIX5MwYCpm2567IyoUisOX3AEncOopLyCEiU8+vZZNmz7qsKwzPo+UwSdTtvINgo3VHZbrirx0fZihuOy7fW5DAYFAQCsoKCgcPHhw0bRp0/KPP/74+gcffLAM4Pbbb6+IRCIiPz+/8KKLLhr01FNPlTgcDvnb3/52Z1ZWVrCgoKBo6NChhf/5z38SAO66666y22+/PWfcuHFDTSZT56GUd8Nut8tZs2Zt/P3vf581dOjQwqKiosKvv/660+1yTz31VO+6descBQUFhc8880z8HXfcsf3uu+/OGjt2bEEk0vkISHZ2dnjQoEH+yy67rGpv7GymO6GiF0gpJwohlkopxwghzMASKeXILuo9B5wBVDQvoRRC3A1cB+w0iv1RSvmRkfcH4FogAvxKSvmpkT4OeAFwAB8Bv5ZdGc3BESpaoVAcnPj9NXz19e3s2LGYoqIrGDvmFjRtz1HYxtrNLJp1PlkjpzNw8m/3+X4vfHgeHmcq5017fH/M7hYqVPShhdfr1QoLCwt//PHHNYmJie0qis5CRXfHk/C1EOKPgEMIcSLwJvBBN+q9AJzSTvojUsrRxqdZIBQCFwNFRp3HhRDN/+OeAK4Hhhif9tpUKBSKA4bdHs9JJz7O0KEXsGrVTL6c8xuCxoZprXHGDSBlyKmUrXqTYOM+vcgBujehtGIxIWOptULRHd59911Pfn5+0XXXXVfRkUDoiu6IhN+jv/mvAH6B/jb/p64qSSm/YVd46a44G5glpQxIKYuBDcAEIUQ6ECOl/N7wHswEzulmmwqFQtFraJqFSRP/wJGT7qSsbAEffnQFfn/NHuVyxl1LNBJi648v7vO98jKmEImG2LJj4f6YrDjMOOecc7zl5eUr7rrrrop9baNLkSCljAIvAvehL4d8sTvu/k64WQixXAjxnBCiecJHJtB6xmupkZZpnO+erlAoFP2C/PzzOOnEJ/B6S/nxxyf3yG/2JpSvemuP6K7dJSN5DBazk+KyuftrrkKxV3RndcPpwEbgUeD/ARuEEKfu4/2eAAYBo4Fy4KHm27RTVnaS3pGt1wshFgkhFu3cubOjYgqFQtGjpKWNIz//PNat/z9qazftka+vdAizdem+eRPMJis5aRMpKZ/L/r2jKRR7R3eGGx4Cpkkpj5VSHgNMAx7Zl5tJKXdIKSOGd+IZYIKRVQq03hw9Cygz0rPaSe+o/aellOOllOOTk9V2yAqF4sAxetQvMJsdLF78rz3yHLHZpOafRvmqtwk07NsLTF76ZOobyqmu36sN8xSK/aI7IqFCSrmh1fUmYJ/GN4w5Bs38DFhpnL8PXCyEsAkh8tAnKC6UUpYDXiHEJKHvInIF8N6+3FuhUCh6E7s9npEjrqF023eUly/YIz9n3LVEo2G2Ln1hn9pXSyEVfUGHIkEIca4Q4lz0uA0fCSGuEkJcib6y4YeuGhZCvAZ8DwwVQpQKIa4FHhBCrBBCLEf3SPwWQEq5CngDWA18AtwkpWyeiXkD8Cz6ZMaNwMf7+KwKhULRqwwbdgkuVzo/LHqEaLTtZHJHbDapQ8+gfPX/EfDt/XuWx5VGUuxgJRL2EZPJNK55n4ShQ4cW3n333ald7TGg6Hxb5jNbne8AjjHOdwJd7jAlpbykneT/dFL+fuD+dtIXAYdtqGqFQnHwYDLZGDf2V3zz7R/YuGk2Qwaf3SY/Z9y1VKybzdYfX2Dw1Nv3uv28jKks/ullAiEfNkun++8odqO7oaJ7KsTyoUKHngQp5dWdfK45kEYqFArFwUJu7kkkJQ1n6dJ/Ewq13dfAEZNJ6tAzKV/9zj55E3IzphCVYbZsV0sh94fmUNHPP/98SjQa5dFHH0089dRTBx533HGDjzrqqPy6ujrtyCOPzC8sLByWn59f+PLLL8cBrF271pqXl1d00UUXDRgyZEjRWWedlffuu+96xo4dWzBgwIDhc+bMcQLMmTPHOWbMmIJhw4YVjhkzpmDZsmW2Pn3g/aDLAE/GHIFbgNzW5Q/FUNEKhUKxvwghOGL8rXz8ydWsWj2T0aN+0SY/Z+y17Fj7AVuXPs/go+7Yq7YzkkZitbgpLp/LkOzjetLsA8anC+7OruzhUNFJcYMaT56476GioW2I5VAoxIcffrghISEhWl5ebp44cWLB9OnTawG2bt1qf/311zeNGzdu88iRI4e98soriYsWLfrp1Vdfjbv//vvTp02btnHUqFH+jkI5H2x0J1T0u+jDBB8A0c6LKhQKhSIlZRQDBpzAqlUvkj/kXJzOXaut7DEZpA49i/LV75A15krs7rRut2vSLAxIm6RHhdQjFPaG+YcNrZeTtg6xHI1GxW9+85us+fPnuzVNo6KiwlpaWmoGyMzMDEyYMKEJID8/v+m4446r1zSNsWPHNv71r3/NgM5DOR9sdEck+KWUj/a6JQqFQnEIMXbsLWzd+hVLf3ycKZP/0iYvZ5zhTVjyPEOO/sNetZuXMYX1Wz+nsnY9yfH5PWjxgWFv3/h7i9ahoqFtiOWnnnoqoaqqyrxixYo1NptNZmZmjmgOCW21WluUhaZpLaGdTSZTS2jnzkI5H2x0Zwnk/woh/iKEOFIIMbb50+uWKRQKxUFMjCebgoKL2bDhfaqr17XJs3vSSSs4m+1r3sXvLd+rdnPTJwNQXK52X9xXdg8VvTt1dXWmpKSkkM1mkx988IGnrKzMujft700o5/5Od0TCCPTIjX9H31jpIeDB3jRKoVAoDgVGjvg5NmsMixY/ssdOidljrwZg65Ln96pNtyOZlPgCtRRyL+ksVPTu/PznP69etmyZa/jw4cNefvnlhLy8PP/e3GtvQjn3d7oTKvonYKSUMnhgTOoZVKhohULRH1i95lV++OFBjj/uUbKyprbJW//N39i+5l2OmP4udk96By3sydzl/2bh6he44dwvsFtjetReFSr68GN/Q0UvA+J60iCFQqE4XBiafwEeTzaLFj9CNBpuk6d7EwRbljy3V23mpU9Fygibt8/vQUsVij3pjkhIBX4SQnwqhHi/+dPbhikUCsWhgMlkYdy4X1NXV8z69e+2ybO700gbdg47fnoPf32HYWn2IC1xOHZrLCUqKqSil+nO6oa/dF1EoVAoFB2Rkz2NlJQx/LjsCfLyTsFq3bVbYs7Yq9m+5l22LPkP+cf+uVvtaZpJXwpZPg8powjRnfc9hWLv6fI3S0r5dXufA2GcQqFQHAo0b7Dk99ewcmXbiYo2dyrpheeyY+0HNNVv63abeRlTaPRXUVHzU0+bq1C00KVIEEJ4hRD1xscvhIgIIeoPhHEKhUJxqJCUVMjAgaexes2r+Hxtlz1mj70ahIktizsMb7MH+lJIQbEaclD0It3xJHiklDHGxw6cB/y/3jdNoVAoDi3GjrkZgKVL2/4JtbmSDW/CbJrqurfXkNOeQFpikVoKqehV9nogS0r5LnBwbhquUCgUfYjLlUZh4aVsKv6YyspVbfKyx1yFppn3ypuQlz6F8qqVNAVqetrUQ47mUNHNn7Vr1+7VBkm788orr8T+8Y9/TAOYMWNGxl133ZXaM5b2L7oT4OncVpcaMB7ofHMFhUKhULTLiOFXs379u/yw6GFOOfnZlvgLNlcy6UXnsW3F6+SMuxZHbHaXbeVmTOH7lU9RUj6fYbmn9rbpBzWtQ0X3BJdeemkdUNdT7fVXuuNJOLPV52TAC5zdaQ2FQqFQtIvF4mL06F9SUbGULVvntMnLHnOl4U14tlttpSUU4rDFqyGHfWB/w0E/+uijiVdccUVO6zZXrVplKywsHNZ8vWLFCltRUdEwDmK69CRIKa8+EIYoFArF4cKQweewZs0sFi/+X7Iyj8JksgBgdSaRXnQ+21a8Rs7Ya3HE5XTajhAauemTKS6bSzQaQdNMB8L8/WLWoruzy+t7NlR0esygxovHdx44qnlbZoDs7OzARx99tHF/wkG3d4+ioqKAx+OJzJs3zzF58uSmp556Kmn69OlVPfmsB5oORYIQ4q5O6kkp5X29YI9CoVAc8miamfHjf8sXX9zC2nVvUjhsekte9pgrKV/9FpsXP0vB8fd22VZexlTWlHzIjurVpCeN6E2zD2p2H24IBAL7FQ66I6666qrKZ555JmnChAlb33vvvfgffvhhTe8+We/SmSehoZ00F3AtkAh0KhKEEM8BZwAVUsrhRloC8DqQC5QAF0opa4y8PxhtR4BfSSk/NdLHAS8ADuAj4Neyq4ATCoVC0c/JzJhMevokli97hkEDz8Bm02MwWJ2JZBRdQOnyV8kZew3O+NxO2xmQNgkhNIrLvzsoREJXb/wHiv0NB90RV155Zc0//vGPjFmzZnlHjBjRmJaWdlBHeOpwToKU8qHmD/A0eid9NTALGNiNtl8ATtkt7ffAF1LKIcAXxjVCiELgYqDIqPO4EKLZb/YEcD0wxPjs3qZCoegmUkpkVBKNSCJhSTgoCQckIb8k2CQJNEoCDRK/N0pTfZTGuiiNtVEaqqP4qqJ4K6N4d0apr4hSvyNCY12UaERp9n1BCMH48b8hEKxn+Yq2cxCyRl+JZrJ2a26CwxZLeuIItV/CXrK/4aA7wul0ymOOOaZuxowZOVddddVBH9Sq0zkJxpv/DOBS4EVgbPObf1dIKb8RQuTulnw2cKxx/iLwFXCHkT5LShkAioUQG4AJQogSIEZK+b1hz0zgHODj7tigUBwMSCkJ+yHol4Sa9A475Idgy7kk1ETLebBJEgkDUZBS/yCbBYCx9Gj3POO6t7C5BQ6PwB4jsHsE9hit7bVboJk6fQE7LEmIz2fI4LP56adZDB16ATEefUWD1ZlAxvALKV32MjnjrsUZn9dpO3kZU5i7/HEamqpwORIPhOkHPT//+c+rTz311MHDhw8fVlRU1Li34aA744orrqj++OOP488999yDfuPBzuYk/BM4F92LMEJK6euB+6VKKcsBpJTlQogUIz0TaB3OrNRICxnnu6crFP2OSLj9Dj3kZ1fnb1zvLgg6w2QBi0NgsQssdnAnapjMIDQBAoTxaTnXWl8LhEabci15WvN123Y6Li/aXCP05/J7JU31+tFXGWVnsSTSTmB5JSTaZ/ToGygu+ZQlSx7j2GMeaEnPGn0FZSvfZPOiZxh24v902kZe+lTmLn+czdu/pzDvjN42+aCksbFxaevr9PT08I8//tjuntbr169v2cTi7bffLmk+Hzp0aLA571e/+lUVUAXw8MMPt4nO9fXXX7svueSSSrO5O+GR+jedPcGtQAD4E3Bn81pe9D8PUkrZk0HM2/vLIDtJb78RIa5HH5ogJ6fzWcEKRXtEwpJwYFcn39yJh/zNbvnd3/B35UdCnTQswGIHq13v7K0OgSve6PgdQk930HLdLAgsdoHJfPB1nCF/s3iI4vdK/PWSJq/EXx/dZyHh8Ahsh6CQcDqTGV50JT8ue5KKih9JSRkNgNURT+aIC9m6dCYDxl/XqTchOX4oLnsSxWXfKZHQx5x44omDNm/ebPv666/X9bUtPUGHIkFK2RthxXYIIdINL0I6UGGklwKtdw7JAsqM9Kx20ttFSvk0uueD8ePHq4HSwxApW3XyRqcebu7QA8YbvTEGH/a3LRfyS6LhztvXzGB17OrAnfFaS4dubencmzv+XR4Asw1aCe2DmlA0ws4mLzv9PpoiISIySiQaJSolURklbByjUhI2R4nGSaKxUcJyV5lIVBINAQ0WRJMJ0WhGa7KiNVkwNVoxb7NgbrJhirRd0ieRhGwBArYAflsTfpufgM1PQpKVogFJjBiQgsXc/5cB7k5h4eWsXfc2Pyx6mNNOfbHldyVr1OVsW/FGl94EIQS56ZPZUDqHaDSMph38b7AHK5999lm7yyMPVg70b9L7wJXA343je63SXxVCPAxkoE9QXCiljBgBpiYBC4ArgMcOsM2KPkRKia9K4q2ItrzB7/Gmb1yHjfOu9gNt7uDNze57t7arc7eD2db2Tb75Y7ZxUL7V7w2BSJidfi87mrxUtHzqqTDSdjR5qQ60t/Bp/zGZNEwegRajYRIaJgR2aSU25CEm7CEm5MIdcuEJunCFXLi8TuKqErFELbARyhfANhrxO5qwJ0B6qoOUVDvuRA1XgobV2X+FmsXiYOyYm5g7725KSv5LXt7JerojnswRF7F16YvkjLsWV8KgDtvIy5jKquL3Ka9aQWbymANluuIQp9dEghDiNfRJiklCiFLgL+ji4A0hxLXAFuACACnlKiHEG8BqIAzcJKVsXjZyA7uWQH6MmrR4SBPyS2rLItRsi1KzLUptWYRwoG0ZzUybTtzuEngSmzv9Vh280dmbmzt726H1Rr+3NIWDeufvby0AvOwwREBFk5faYNMe9WIsdlIcHlIcHobGppLi8JDq8JBs9+A0WzFrGprQ0BCYhMBkXJuEwCQ0tN2OJiGM/F3n2j7+TJonfW6vaGLV5p1sL2+goVrirnQTLbOxQ+4a0zDbwZ2gGaJB4ErUcCdoOOP7x5DOoEFnsGbNayxe8ig5OcdiMtkAyBp9OWUr32DLomcYdtLfO6w/IG0iQpgoLvtOiQRFj9FrIkFKeUkHWcd3UP5+4P520hcBw3vQNEU/odlLULMtQu22KDXbIvgqd7kBPMmCjGFm4jI1YtNM2Fx98zYvpaQ60EhpQw01gUbMmoZFM2EWGmbNhKXVx6xpmEXb6+ayvSlOfKHArg7fEAIt3gC/7g3whgJ71IuzOnQBYPcwIj6zRQzoQiCGFLsbh7lHVob1CkLoczmyBzjJHjAA0H9exd4q5u9Yy7ItOyjf0USs30NyMIEBDanEV8dh8ltaNQLO2GbRYBwNIWFziQMmKoXQGD/+t/z3s1+yZs1rDB9+FQAWexwZIy5m65LnyanagCtxcLv1bVYPmcmjKS6bx9RRtxwQmxWHPmrgSnHAaO0lqN0WpaY8QtiY2W+xQ1ymiYxCjfhME3HpGmbbgRMDUkpqgo1s9dWwtaGGrb4atjRUU2pcN4TbmWW3l+wSFYZw0ExYxC4h0ZxmFlor4aEZabvqWTQTjeFgKwHgbde+RJuLFIeHbFcc4xKzSXHEtBIAHpLsbuwmSzuWHtwIIRgYk8TAmCSmD9GHUH6sKmV+xSY+rfiC9fU7sUUs5JHOeOtgBpOBPRhPoFZStTnSZl6K2QauhN3Fgy4gekOspqdPICvrKJaveI7Bg8/Gbo8HIGvUZZSteJ3Ni56m8OQHOqyfmz6F75Y9RqO/Gqc9ocftUxx+KJGg6BW65SUo0L0E8ZkmXAm9/8YmpaQ22MQWXzWlDTVsMQRA83lDq3ENkxCkO2PJdiUwKjGLbFc8We54kmwuwlISjkYIRyOEZJRQNELIuA5HjWvZnBbVy7Uq26ZcNEK4VXpzmj8SwhvyG2lRwlI/6vlh7CYLqY4Y8jxJTEzOa+n4m70CyQ4Pll7cx19KCf4AhCNt10oayyl3rZUEtN3XaB7YIR+byczElFwmpuQCUOn3saCimO8rivmwYj41wUYwQf7AFCZNzGO8cxC50TT8tYKGKn0jqaotUbatartxniNWtHgc3IkanhSN+Mz99xiNH/cb3nv/Qn5c9hSTJv4eAIs9lsyRF7Nl8X/wVa3HnTik3bojBp1NYd7pSiC0g8lkGjdkyJCW8bT33ntvw9ChQ/dK/T/66KOJZ511Vn1ubm5na5kOKZRIUPQIXXoJMkxkDNMFQWyGhqWXvARSSuqCTWxpqKHU8Aa09g74WgkBDUMIuOM5PTuDbHcC2a54st3xZDhjMbfqZP3hKDsbIzSGJfFWDY9Vw2UR+zyW3t+Q0Sg0+pG+RvA1Ihua9jxvaET6ms+bIBrdv5vuISiEISigtaBoV4Q0lwWEpiEyUtAGZaMNykZkJCO0jhdnJdndnJ4zgtNzRhCVknV1O5hfUcz8imJe3fgDM+UC7CYLY5OymTQ4jyNTBjLBnUAkBA3VURqqJb6q5l0oJdVbIy3LXwdOtFAwzbJfQiE2No/8/HNZt+5thhVcRGysvvQxc9RlbFsxiy0/PE3hKf9st67DFr/P9z3U6YlQ0S+//HLS6NGjm5RIUBz2hKIRNtTvZEOdvkrVajJj0UxYNRNmYUartxDdaSVUYSGww0SgunmHHXAlQdpQEwmZJuKzesdLUBtsYquvuqXz39pQ0+IhaD323loIDM/OINsdbwiBBDKcsVg0Ew0hXQBUNEbY2RBm3c4IO5vq9GsjvT64Z4eoCfBYNWIM0dBytO26jmnn2mPVsPTyWn8ZiYDRuUtfk9HBN7Z08Luf09jU8aoQuw3hdoDbiUiIRctJA7cL4XKA2aTXa7v1I0SNxqRsmy+l7oWQHefv+rRut70yepoMhZFbtxNeub7FXm1g1i7RkJmKMLUvGjQhKIhLoyAujavyj6QxHGRx5ZYWT8PDK74AviDVEcOklDwmpeQxYXAuGYX2Xd+11PeE2Ph9iE0LQkTCkqITrfv1Oz961C/ZtOljFi3+X44/7l8AWGwxZI6YzpbFz+CrXIc7KX+f21fooaJPOeWUwXV1daZwOCzuuuuusssuu6x27dq11lNPPXXIhAkTfIsWLXKnpqYGP/300w1vvvlm3MqVK51XXHHFQLvdHl20aNGau+++O+2TTz6JCwQC2vjx432vvPLKZk3T+Otf/5ry/PPPJ5tMJpmfn+9/7733Ng0cOHD4999//1NGRkY4EomQl5c3fMGCBT+lp6d3sfC6bxGHaqyk8ePHy0WLFvW1GQcFERmlxFvF6ppyVtduZ3VNOevrKwhFdfeqLWIlqymVrKZ0spvSyGxKxRHV/0g2aX5KHdvZ6thOqXM72+zbCZh0kS0Aq2aIC5MJi2bGaoypWzUTFlPb687KRpGUNtSy1acPD9S32qZQQ5DmjGnp/Ju9AVnOOGKtsdT4ZZsOv/lY0RRmZ2OEhtCe/wfi7RopThMpTjPJDpNxbsJhFnhDEm8wSn0gqh+D0ZbreuPaF4x2uhLTYRbdEhUesyCGCB4ZwhMJ4QgHIBCCxib9rb6hEbyNyIa2YoCmPScptvxQnA69g3c7ES7nLgHQ3rnLiThI9h2QtV6iG7cQ3biV6MatyJ3GDvI2K1peK9GQnYowde+Zyhpqmb+zhPk7NvHDzs34wgE0BIXx6S2ioSg+A7OmIaVkzZdBiheGyR5lZsSp+ycUVqx8gSVLHuWkk54iPe0IAEKBeha+fCZxmUdQdMqD+9x2ZwghFkspx/dkm8uWLSsZNWpUJcDdy+7J3tjDoaIHxQxqvHvUXzoNHNV6uKE5VLTX69Vah4ouKSlZuX79emtRUdGIb775ZvXkyZObTjvttIFnnHFG7Y033lg9YcKEoQ8++ODWo48+uhFgx44dptTU1AjAOeeck3fhhRdWT58+vS4lJWXk5s2bVzgcDllZWWlKSkqK3HrrremxsbGRu+66q+L//u//Yp566qnkTz/9tF/sqbBs2bKkUaNG5baXpzwJhxlSSrY11rK6ppxVNeWsqS3np9odBMIRYkNuMiJJFJiGcKKcQkIoFqvPTqCm2UsgsSREsWSH0JLrIcmP3RPEIwWDIsmEogkEo0MJRSMEo2GCkUjLuX40riOtr8N4Q6FOy4ZlFAGkO2PJcsVzYtYwsp3xJFjjcZjiIOqgJgAVjWEqGiPMr4zwfmOEnY1+/JG2S/oEkGh0+gNiLByRaifZEADJTjMpThNJDhPW/XzTj4TC+Lx+6huC1PsCeBvD1DeFqPdHqA9G8AYl9WGJ1w/eqGBz1IQXE/XCREh03IGZolE8kQiuCDgiFpxRFw7hwKEl4vQIHAkCp0XDaTPhsFtw2i04nFacLhsutw2H24HLposdh0XDoh06S0JFnAfTuCJM44oAkPW+FsEQ3biV8Ieb9IJWC1pu5i7RkJOG6GD73AxXHOe6RnNu7mjC0SiraspYUFHM/J0lPLd2Hs+unYvLbOOI5AFMTR3EaccOx2QWbJgXIhqBkadb0bR9+34Lh13C2rVvsmjRI5xx+ssIoenehJHT2bLoaXyVa3EnDd2ntg9H9jZU9OTJk5sAxowZ01hSUmJrr82PP/7Y8/DDD6f5/X6ttrbWXFhY2ATUDR06tOlnP/tZ3llnnVV76aWX1gLccMMNlWedddbgu+66q+K5555LOliCPymRcAgjpWSn32d4CMpZW1nB9oomrI12EkKxJIXimBSdzKmhWKxNNpC7/phpJnDGCZyJGnHDNeKMFQcW+4HrUCJRyRZvmJ+qAmyqC1HZpA8LLKmK8GljGH0EwG98wCQgyRAAQ+ItTMm0t3T8KQ4TyU4TiQ4T5m7+0ZbBENLboL+p+xr084YmpD8I/oB+DARarvEHkYFgy4Q+G5BsfNpFCLBbdXe+zQoOG8JmI2C34bU58FodeC02vGYb9SYLXs2CV5jxSgcNuGhEo0lq1IWjlIclTSFJYzhKU1gSbQQaW98saHy8bUwwCXAagsFpFjjMGk6L0EWEce5sJ81h1ssnOkyku0zYzL2xQev+IWLcmMYMwzRmGADS20B0U+ku0fDxt3pBsxktN2OXaBiQgbDs+afRrGmMSsxiVGIW1w87ivqgnx92lrTMZ/iqfB3zKjZx39Qz0cwW1n0TIhqWjD7Ltk9bSZtMNsaOvYVvv/0jGzd9yOBBZwKQNXI625a/yuYfnqLo1If3/QvqI7p64z9QdDdUtMlkks3prWlsbBS33nrrgAULFqwePHhwaMaMGRl+v18DmDNnzvqPP/7Y8+6778Y98MADGevXr185ePDgUFJSUvj999/3LF261PXuu+9uOnBPu+8okXAIUeNvYNX2CjaW1bKjoglfTQR7k5P4YAyJwWGcFGnrQTTbwRWn4czQtxd2xelHZ5y+b/6BfMMMRSTF9SHWVQdZWx1iXU2QDTUh/EYYYrOG0dGbKUy0kpztMN7+TS3pCXYNUxcCQAaCRJs7fm8D0tfq3DjSnB7oYG6SSdM7drtN7+RtVkSsB1KtaHabfm3kCeNaL29tm2Ztf4KbFfDsx3cppSQYkTSG9U9TKNrm2CYtHDXEhX7eaAiN+sYojaGwnh+WNIU7H5ZMsGuku8yku82ku0zGUT9Pc5l7fQ5GdxAeF6ZRQzGN0t++pa9xl2jYtJXwf+fq8xzMJkROuiEactByMxDWPZeKxljtHJ9ZwPGZBUgpmbVpEQ+v+ILGcJB/TjwXk8XKmi+CRCMBxpxj26clk3m5J7NmzassXfpvcgecgNnswGzzkDXqUjb/8BTenWvwJA/b36/msGRfQkW73e5IXV2dCaCxsVEDSEtLC9fV1WkffPBB/JlnnlkTiUTYuHGj9cwzz/SedNJJvoyMjATjXpFrrrlm589//vO88847r+pgCf50cFipaEFG9Yh7VZUBSsrr2FHhp6EmCj4LnoAbWzSFJFJIMspHHSEccYKEJCsxCSaccfoOc644DYujb/5wB8JRNtSGWFcTYm11kHU1QTbVhggZcwOdZkF+gpWzBrvIj7cyNMFCToylXQ+AlBICQaS3DrY3EvE26JPymjv7Nh1/IwQ76PhdDoTbifC4ICcNze3Sz2NcLenC49LLtfOW2Z8QQmAzC2xm6Km57pGoxB/RxUJjSBcODaEolU0RyhsilPvClPvCrKkKMmdLmEgrTSGAZKeJNJeJDJeZNLeZDJfJOJpJdnbfu9OTCLcT08h8TCP1CYCy0U+0eJenIfL5fCKffQ8mDZGd3uJp0PIydc9P67aE4JJBR+AyW7l/6Sfc8v3rPDLpfDSTlVX/DbL47QDjzrVhsuzdcwohOGL8DD7+5BpWrX6ZUSOvAyBzxCVsW/Yqm394muGnPdIzX8hhxr6Eir7iiisqb7nllgG33XZbdNGiRWsuvfTSnYWFhUVZWVnBUaNGNQCEw2Exffr0PK/Xa5JSil/84hc7kpKSIgCXXHJJ3c0332y6/vrrq3r7+XoKNXGxHyGlHkmwOfJgU12UhhqJtzpMZWWAxpooNFjQWsXeCosIPquPqDuIM14jOcnGgPQYEpJsOOP6frvZhlCU9TWGh6AmyLrqEJvrQy2dSIxVIz/OTH6MxlCXYIhTkmkKoQXDyGAIQmEIhpD+oPHWv6vjbx4KINzO5GCBPumuueP37OrohcelT87zuBAep37ezYlsiq6JRKUhHsKU+SJsbwhT5guzvSFCmS/MzqZIy+IH0Ic8UpxtvQ8t5259jkhfLDWV/gDR4m1EN+iTIWXpdn3VhiYQWWm7RMPALN07ZPDZtjX8edEHDIlJ5rHJF+H9ycLyj4IkDtAYf74ds3Xvn+Wrr25jW9k8fnbOuzid+gDW5sXPsnnhE4w57yU8KYU99ty9PXHxcOabb75x/va3v81evHjx2r62pTVq4mIP0UZQyd1O5K4y4aARYbCpVYTBQNuwwy3RCY3gREEjcJGM7vkHxK8FqLHUUW2tw5/chDMOUpLs5KXFUpSRRLwjxSjZqq7Ql6PJSOu03U5aZ3XwR1hKqW+YEwzpnbVxbO+8LhBmfYNgXcDMurCF9VEbpez645kYCTAkWM8Ufy2DG6oZ4q0ipbFON7UVHa4HEkLv0Js7+OT4th2/x4lwGx2/y9nhsjdF72LSBKkuM6kuM6NT9swPRyU7Gg3vQ0OYcl/EOIaZX95EVVPb5aYWDdJcZt0T4TaT5jIbHgndMxFv750tr4XdhmnYQEzDBgLGUFXJtl2ehm8WEZmzEIRAZKag5ediPn4iJ2YOw2mycsfCd7j+u1f59+SLGG1y8OPsAAtf93PEBfa9ntszdtyv2Fr6NT/++CSTJ/8ZgMwRF7Nt2StsXvQUw0/73x5/fkXP8sc//jHthRdeSH7++eeL+9qWvUF5EnYj8MBzRHdUEsZKWNgIaTbCwk5I2AhrtlZptrZprc6l6LhzkkQJiwBBLYBfC9BgDuA1B2gy+WkyBfCbAjRpAfwmPyHhIzlYxyCfnwKfYJgXkoIgOEBvVfqChnapNttZ74pnvTOB9c541jvj2WFzt+SnBhsYEqxnSNjHkGgjQ2giyQJYLWCz6C57q0UflzeOnZ7brOC0d7pJjuLQIBCRbG8Is90XpqxhlyeiWUzUBtqKCJtJkGbMfUh1mloERapxTNqLyap7gwyGiG4u2+VpKNmGSIjFcs25aGlJLK7cwoz5bxFvdfLvKRejbXWz9L0AMakaEy+y7/Vw3w8/PMSan17jzDNeIz5e33Fxy+L/ULLwccacNxNPSlGPPJfyJBx+dOZJUCJhN759rJJ6nx067YijSFOYqClIyBTUO3ZTgAbNT72piVqtEa/Jj1/TO//mfL/mR9MixGtW4oWFeGFtOY8TVhI0I03oaYlit3XWu3sv9iWtnZ93u78DRpqUUGGysw476yM21oUsrA+YqArvsivbKfQhgwQr+Yl2hibZiLUp972id2gMRdnesMv7UN6gD2VsN467iwiTaJ4TYSbNuUs8tBYTth6YWBndVErwxfcgGMRyyemYRuazqqacX897HavJzL+nXIxzexxL3gngTtKYcLEdm7P79w0E6vi/d84mKbGQE098HIBw0MfCl88iJnU4w09/dL+fAZRIOBxRww17wdp0H41NdTRoAbzCTz2N1MpGakWj0ekHCYmQoSEkJiGIsdqJsdjwWG3EWu3EWp1kWhKItdqJszmItTqIt9mJsziwWyyYjJ1lNWMPew3dk777dVNUEopCKKrPVg9HJcGovhIgFJXGcc/8sHEdaq7fci4JRWg51+tAMCpb1aFN203haMtmQ5qA3BgLR6RYGBpvJT/BypB4Cy6LertXHDicFo2BcRoD49oPTuUPR9nRLBoad4mH7Q1hllYE2NnU2GZOBOirM1Kdu8RDaisRkeYy47F2/TuuDczC9tsrCL7wLqEX3iV64pEUnjyVJ4+6lJvnzuL6b1/hsckXMf78JBa9HWD+K01MvMSO3d29/z82WyyjRl7HD4seYtu2uWRmTsFsdZM1+jJKFvyb+h0riEkd0a22FIruojwJu3HsG2sIhd1dFzyIsGpg1gRWk8CiCSwaWFrOBRYTrc71fKsmMJsENpMgL9ZCfryFQXEW7P1wPbxCsTeEo5Kdu4mHZjGxoyHCjobmPTh24bKIDj0Raca8iObJlTIcJvz2Z0QWrEAbNhDLZWdQGmniprmvUR8K8K8jzyfbl8EPb/qxewQTL7HjiOne/6tIJMR775+PyWTlzDNeQ9PMhIMNLHzlTDzJRYw447H9/n6UJ+HwQw037AWb64IEo8b28+iu+KixFX1UgkS/bs7Xz4201tfs2sJeLytbrqO752Okybb3NYldnbbF6OTNmtA7fZPAqrXNt2h7ljcd4Ih7hypSRgn5KpDhANbYTISmnHCHKlJKavzRdj0RzR4K325beVs1yPJYuGlMLJMyHPpKpXk/En7nC0RiLJarf0ZFjJWb5s1iR1M9D048j/xgDj+84cfiEEy6xI4zrntCYfPmL/jq69s4ctKd5OefB8DWpS9QPP8xRv/seWLSRu7X8yuRcPihRIJC0Q0iAR/Bum0E67YRMo4t1/VlSCPUnzBZsMYPwJ44CFviQGyJA7EnDsQal3VIiodoNEzQX0vQX0PAX0OgqZpgUzUBfy0msw2bIxG7M0k/OpKwOuLRDsHvoTW+YHQPT8T3ZU2U1IW5cKibG0bHYTWJtvMUpp9BXX4GN899nRJfFfePP4sxYjALZ/kxWQSTpttxJXQtFKSUfPLpz6mv38y5P3sPi8VFJNTIwpfPxJ1cwIgz/r1fz3aoigSn0zmmsbFxafP1o48+mrho0SLXzJkztzzwwAPJTqczevPNN7e7f8Hs2bM9NpsteuKJJzYcOIsPHGpOgkIByGiYkHeH3vHXlrZ0/sHabQTrSon469qU12xurLFZ2JMGEzPoWKyxGQizlUBVMf6qjTSWr6Bu7act5YXJii1+gC4ckgZhTxyILXGQ4XnoPxM5pZSEgl6jo9c7/YC/WhcBTTUE/dUEmmr0tKZqgoF62l3mIjSQ7YWLFljt8dididgcScax+bxZTCRicyZhtrgOSk+X26ox2GplcKvdqq4bEcO/f6zjjbU+luwIcM+URHJbz1N4/h08Jx7JE9Mu4bcL3+IPP7zLXWNOZ+r0YSx4zc/3L/uZON2OJ6lzodC8wdKHH13OipXPM3bMzZgsTrJGX0nx/P+lbvsyYtNG9fI3cGhx++237+ws/8svv/S43e7I3oiEUCiExdL+vJmDCSUSFIcMUkoi/nrDC1DaxhOgC4LtICO7KmgmrJ50LHGZxKSegDU2s83HZI/p8p6RYCOB6mICVRsJVG7CX7WJxrJle4qHhFzD69BaPGT0mHgIh5padfS7jq07+4C/piVdtv4eWmGxxmBzxGO1J+CJG4g1bSw2RwI2e0JLun4dj8UWQzQSItBUjb+pkkBjJYGmKuO8Sj9vrMRXuwl/UxUyuucOGCaTDZszqY2YsDuSsDWfO5MNgRGPpvXvP7g2s8aM8fFMTLfzP/OrueaTHfx6XBxnDXJjvekSfZ7CZ9/j2LaDxy46m9uWf8hflszm9pFBTrlsNAte9euTGS+2E5Pa+e9FUlIReXmnsnr1KwzNPx+XK42M4RdQ+uNMNv/wFCPPfPwAPfWhwYwZMzLcbnfk3nvv3bF7mOeHHnqodObMmcmapsk33ngj8V//+teWgQMHBq+88srcqqoqc2JiYnjmzJklQ4YMCZ533nm58fHx4RUrVjiHDx/e9Pnnn8cejOGhW9MnIkEIUYIeaSYChKWU44UQCcDrQC5QAlwopawxyv8BuNYo/ysp5aftNKs4DIiGg4S85bs6/trWQqCUaLCt0Dc54rHGZuJMG4516MlYmkVAXBYWd/J+Dw+YrE4cKQXYkgYRHRIiGgnrHotAHf6qYgI1JfhrNhOsK8W7bQHh9Z8ghfFerpkxe5IxuZMxuxIwORPQHHFoVifRqN5ONKq3GY2Gdl1HQ4SDDUbnr4uASLj9HWVNZgc2RwJWexwOVypxScOw2uNbOnqrcbTZ9TKaae86YpPZhtOTjtOT3mk5KaX+nTTtEg8BQ0z4m6oINFbiqy2hsnwxoUBdOy0IrPa4Nl6IZjFhdyThis3BHZuL2eLYK/t7gymZDl48LY37vq/igYU1LCj38/sJ8XguOgWRnUb4nS8w/7/Xeeiqs/iT6VseWP5fGgoDXHDZROa/6mf+q34mXGwnLr1zoTB2zE1s3vwFS5b+P46a+ldMFgdZY65gy+JnCfgqsLnb2cmqH3Dv0teyN3jLezRU9GBPeuNdYy7pNHBUIBDQCgoKWramrKurM5144ol7/LI9+uijabuHeb7iiit2NosIgOOOO27w9OnTq2655Zaqf/3rX4k33HBD9ueff74RYOPGjfa5c+euM5vN3HrrreFnn3024a677qp47733YoYNG9Z0MAkE6FtPwjQpZesxqt8DX0gp/y6E+L1xfYcQohC4GCgCMoDPhRD5sqNXIcUhgYxGCNRspmnHavw71tC0cz3Buq2EvBVI2NXRmiy7OtrEIzG5EjA54tAcsWh2Dwihd6qRIMFIiGiklmhVBdGKhUQjQaMTDhKJBIlGQkSjxjESbDmPtCoXjYaQkRDRlg48RIc7Tu2OBrRZOBOGcDnUlkNt+1WE0NA0C5rJqn80M0KzYLY4sTkScMcMwOqIN970E4yONMHo9OP7RacJuovcao/Dao+D+EGdlo1EggTaiIkqQ0zs8lb4yjcTaKoiGm0bi8PhTscTNxBPXB7uuLyWc4ttf0Jm7T1JDhOPTEtm1k9enlpWxxUfBblrcgJjp4xBS08i+MJ7iEdf438uOZX7sqz8e/XX+IYEuPrSo1gwK8CC1/wccaGdhKyOhYLbnUFh4aWsXPk8wwqmk5RUSEbRBaQVnI3FHnsAn/bgYPdQ0c1zEnYv116Y591ZunSp6+OPP94IcMMNN1Tfc889Wc155557bk1z8KaDNTx0a/rTcMPZwLHG+YvAV8AdRvosKWUAKBZCbAAmAN/3gY2KvURKSSTiJxxsIBxqIBxsIBTyEQ76CDVfB30EvGUE6ssINFQQaqohFPQRJaqvINFACoHUJOzxty8E0TKoL4P67tslhAnNZEHTrPqxpRO2YDJZW/LMFnfbcs0dtmZB08xoJr3T3nVtMa7Nu103p1kQpl3nmmZGmCwQChCqKyNYu5VgzRaC1SUEqjYRaagEAkAAYbZjS8zDHjcQW8JAbIl52BJyD7nVFiaTFac7Hae7G96JoBd/QwW++i34ajbhrd2Et7aEyvJFRCOBlrI2Z1I74mEgNkdPhcDaE00Ipg+LYWyqnbvnVvGrL3ZyRVEM14zIwjbjSoLPv4N84T3+fMIknANG8+L6+TSEg9w8/Xh+eC3Awln6Fs6JAzoWCiOGX82GDe+yaPHDnHzSM5gsDkz9RBh2RFdv/H1Ne2Ge96a+2+1umahzsIaHbk1f/WWRwH+FEBJ4Skr5NJAqpSwHkFKWCyGafWWZwPxWdUuNtD0QQlwPXA+Qk5PTW7YfEkgpQUaRMoqUkVZH2XJNNEpUhomEmowO3ad39KEGQsEGwiFfS+cfahYBId+uc+PYHaePkKBJ0BCYzHYsriQsjnhsrhRs7lTMFhea2drSWZuaO+pWnbtm2tXhm1p3/m2EgAWTZu1XEwlbSBi4R1LEX4+/ahOBqk0EqjbiryrGt3kBtas/bCkjNDPW+BxsCbposMXnYkvMwxo/AJO1R726/QohBFZbDFZbDDEJgyH3uJY8GY3Q6Cs3REMxvtpivLWb2LL+AyKhxpZyVlss7riBeOIH4onNxR2viwe7M7nHJlQWJFh57pRU/ndxLS+uqueH7X7unpJIxs3TCb/1XyKfz+fWwoG4xo/j5eLFNIYD3D79NBa9HmDhG37Gn2cjeWD7f6qtVjejRv2SBQv+xtatX5GTM61HbD5c6SjMs8fjidTX17f80RgzZkzDs88+G3/TTTdVP/XUUwnjx4/3ddTmwRgeujV9ZfEUKWWZIQQ+E0L81EnZ9v6ntuvfNcTG06Avgdx/M3sWKSWRsJ9QsJ5QoJ5gQD+Ggs3nXkKBOkJBL6Ggl2gkuKvzjkb36Mhp08FHkdEIEtlSntZ5bc6jHcxK33tMZgdmqwuLxYXZ4sZsdeGKScBidekz1yMRpN9HtLGaiHcnkboyCAXQJJg0K46kQbhSi3ClFeFILcQSn0Otfyfllasp376c4tp1bK/4hppIDRKMDWtE23+i7XlLvtBa5WsIobvvac5rnd9yrrX5IARay7mGRbPissTgssTitsTgMusft8mDy+zBbfJgEzaElBDVhVaz4Gr5tHcdaRZmEqKRVulRbDKKLWqDaAHE/P/27jw+ivr+H/jrM9feOYEECBAIObkFoyiiUvHCm3rggfr1pFXb0lZ/1tZa7aFWq6UeVVRaPPE+sF4oooiiAVSQU+4jQO7sZnfn/Pz+mNnNJmzCtQkhvJ+PxzAzn5mdnZ1d8nnPZz4z7yLwgAVTD0NTq52hBlq0BpFNS9G47hMk/veQRD8UKROKnAlFzIAipkMRMyAyt/PQUOehIC2G2INCWs7zZOWyDOZyAy63M/bE5+FOUuZyg7ntMkhSh93ZwAQRvrQ8+NLykNt/fLycc45oeDeCdS2Dhx0b57XoCyHJPqfVwW59iLVAeAN9nN/Q/vHKAm4/Ngvlvd24/+taXPW/nfjN0Zk49ZIz7H4Kb36CG6rT4Z84Bv/eWoGwoeOPl5yNZS8bqHhVxVHnAzmFyf9cFxWej9WrX8KSJf9E377jIO5nvxLSrK00z5MnT67/6U9/WvDee+9lPPzww1sef/zxLVdeeWX+P//5z9xYx8W2tnk4podOdMifk8AYuwtACMB1AE5yWhF6A/iUc17sdFoE5/xvzvofALiLc97u5YaOfE6CaWpO5R6EpjbY004Fr2lBZz5W+SdU/GrjHtdQW2ACFCUA2ZUGWUmzm6qZ2FxpCWK8srLLEpYx0Ul+1HLdluuJdsY6Z902l7V6P0m2K3xZ8dvTig+y7Icoe+L3w3POoTVss/sP7FqFyK6ViOxeDUu1A2wmKnD3LIQnpwyenFK4e5Ui6vJg587vULl7BXY2rMfO6Dbs5jXQhOZ+PemqjJyIB9lmAAIYLG6BI9YKwsERG3PA6afAGbfHiPVd4PFpJEzHypO9DuCwYv0eEsp1wUJYNtAkGdDF5P93RIvBp0vwGVLCWExSJsGvS3Cb4v4n7RLs34ET+TjP9BbAGYcuqtDECDQxCk2IQBfC0IQwOGsODAUuQYEPMvdDgR8KC0BhfsjMZ7eyJG6b2dtmQqsyMHBDB9QooEbBoxF7Wtf28TOIzYFDi6DCnRBoePatzOU+qICDcw4tWme3PNRtQKhhkxNIbIAaaf7bLoou+DPyW/R38GcMhC8tb5/vvtjZZOBPi2rwfZWG0/K9+PXRmfBs2W4/T0E38PqkYjxU/R2O7TUQfxl2Hr5/zULjLgujznWhd0nyQGHbts/x8Se/QPnRv0Vp6ZQDPg5A931OwqHSVdNDJ+pSD1NijPkACJzzoDP9EYC7AfwEQE1Cx8UszvmtjLEhAF6A3Q+hD4CPARTurePigQYJW9e9i0ioEprW8szeDgaC0LXGNnuSx0iKH4qSZlf2rjTISgCKKx2yKwBZsZtHY8ua1ws494x3/ccec86hN2xHZPcqRHausse7VsFSgwDshw25exTBk1MCd04pTCUdtU3V2Fm7BjuDG7BT24FdrA5RsTkY8GsSemk+5LKeyPX0Q256IXJ7DYG39yCwrF5ge7nfmMfPzE3ANJunnTE3Y/MmYLZaZlnOa0xEDQ31ehh1ehj1RgR1ZgR1RgT1ZhR1pgoTFnIFL3rLPvQQXEgTAK9gQeVhhKwmNFlNCFkhNJkhNFlBhIwgmswgmowgVCv570ZgInxyGvxyBnxKBvxKBnyuDPiVTPhdmfC5MuF3Z8Pnjo0zILD9u1zCOYce2mX3dajdZN+26YyNpuZKkIkylIz+9mWL+GBfxhD28Vo3t6zmwEGNOAFENKGs1TgaBWLrJS6LBR378jdKVsAC6UB6BlggHSwtAywtEywtHUjLAEtLB0vLtAOM/QwmNLUx3uIQb32o24BI087m4yZICGQMQn7pT9Gv8GyIotLuNg2LY/YPjZi1ohG5PhF3HZeNMlGF9p83wbfuxHsTCnCv8SOGZfXFA0dNxsrXgfodFkac7ULfIXsGCpxzfPTRNNTWrsH5578Fl2vvt++2hYKE1ElMD33aaae1eUniUOtqQcIgAG84sxKAFzjnf2GMZQN4GUB/AFsAXMg5r3VecweA/wNgAPgl5/y9vb3PgQYJ81+/CMG69RAlT/sVfGK5Kw2yK91uBVACXfN69wHinENvrExoHViF6M5VMFW7lyATJLh6FsKTXQi4stBo6qiO1GBXeCt2GTuxU6xHk9wcDLgNEblGOnLEXsj15aN3ZhFyew9HoHcxmHePjsYHve8RU0OdGkKdFkK9FnKmm1CnOvNOWb3WhFo1iIiZ/CxYZAIyFT9EJqAq2gAroUmfgaGHOw29PZno7c1Cb08mcr1Z6ONM9/ZkwS0p0E0VIbUOTWodQmodQlrCtFpvTyeURfRg0n1hYPC5MpHu7omAuwfSPT2R5u6JNGc64O7hLMuCuA9nt2Y0CLUuMXCwB61+W4vnSsiBnOZ+D1kDoTidJiVfj/2+dXJfcc7tlok9Ao1IiwCDBxvBG+uBYAN4Yx14Y4O9bmuSDJaWAaTFAonmAYF0sPQMsEAG4PHuNZgw9DBC9ZviwUP1jm9QX/0DPL4cDB5+FfoXnQtRcrW7je+rVPxpUQ2qwiauHZ6OSws94K99BPObFfh0VC/8KW03CtJ64uExF+HHdwTUbLYw/EwF/Ubsebxra9finblTUFZ2OY4e86t9PsatUZBw5OlSQUJnOdAgQVMbIUmeDvujtzfcMmCqQZjRELipgps6uGmAO/fJ2/O6PR8rN40kZbHpxGUJ22ixrdavb15m6eHmZw8IItzp+RC9uQgKAhoMFVV6LXZb1dilhNDgar6UolgicqwM5Mi9kesfhNwepejTdxTSehRAEA8siOKcI2REUKc2JVTuzRV9ndaEeicgqNNCqFeboLZxeUcRJGQqfmS4/MhUfMh0BZyx3y5X/PHpTJcPfqn5DNSwTOyK1KMyUoud4TrsiNSiMlyLykgdKsO12BWph9GqoStT8aO31w4YenuzkOvJdIKILPT2ZsKf5CzdsHQ0qfXNgYVWF58ORmvQGK1CY7QaDdFqhKK1sDOC2CwugEOG29UDPiUHLlcPeJRsKHIWFCkdipwOUQxAFH1ggge6BaimCdW0nLGJqKEjHA0hEg0hqkYQ1VVEDQOaaUFjAjQmg8cuk7CW/Tnil8ScyyICEwGGlpdVWIuRM81im9tjGVoti5UwMPTwuJHn9yHP50Vfvw95Ph/6SCLS1DDQ2Bw48Mb6gwsmAk7LRJJggnOOqu1fYc2ymajb/R3c3p4YPPxKDCg+H6Lk3vM9HEHNwt+/rsXHWyIY1cuFP4zNRPbS5TDe+gRfDfDi9/2b0NuXgX8dcwm2vCujaqOJIacqyB+959+oL764Cxs2vocLzn8bPl9Om+/ZHgoSjjwUJHQybupORd8IMxqEqTba02qwRbmlNsKINsKKNMCMNMDUgrD2ciljfzAmgkF0/mCLLfof2B35xPgAtOyfYDEGVeAICyYauYlaK4JqhLDbE0WdS3Ou7wMSF9ALWch15SEnbRByepYhu/dwuD29oFkGIqaGqKkhauqIGCqipo6oqbUoj7ZVbmqIGPZ82FBRrzXtUfnGeEQFmS6ncncq9mSVfWzeK7r2qdmZc46wYSCo62jUdIQNA6bFYXEOk3MY3IpPm5Y91i0TDVoEtU4LRZ3ahHotjEYtggY9gpAegcG500nC3gdFkOGTPPBIbnhFF9ySC25BgUt0wSXIEJgAiyP+nnqsMrcsp0I3ETV1qKYJzUwMF/bzNwMOiVmQBcAlCHBJItyiBI+kwCu74BYluEQBMtch6U2AHoalR+xBi8DUI7CMKLihxj9b7LcCQYEgeyDIbjDZA0H2gElup8yeZqKctFdyrCzx71VsyuQcu8IRbG9qQk1UbfG6gCyjr9+LPJ8PfX0+5Pmbxz09bgiMgatRO1horG8ZTARblrUdTDiBQ2YPiEcdC1Y4BDW7lmDtspmo2bkULk+2HSyUXABJSn7JhnOO/20M46GKOsgCw/87JhMnaDXQ/vsWvnVruG2IhQyPD/86Zgp2fejG7h9NlP5EwaDyloFCOFyFmtpVyOt7wgH30aAg4chDQcIBsAzNqdztynxvFX7iupYeaXfbDCIEyBAtEYIBCJZoT3NnbIkQmAKBSbDPkwQw7vTY5wz2jYLMKWteBjAwLjSfjcX+SINDEyyEJR1NkoGmVuOw2DzfIFmolQU0SDJUuKAyF0yIsCBCZh5Iog+i5AdkD7igwACcit2u1FWznY6ZbZCYCI+kwC0qcIsyPGJsWoFbipW5kKn4nDP/hIpf8SPD5YN7L9eAo6aJoKahUbMr+6BuTwc1HY1Jp7V4YGB20P8RBqe/IYBYN0oOy+mcaQEJ3SgZA2RBgCyIUAS74vbKMvyygjTZjXTFDbcowhUfhITp5jKZAdwKQzMa7EGrRUSvQVSrRji6G6FoFYJqFYKtWibs/d3zMocs2h0GBdidGuN3mFgWuB6BpYXBtQgsvcmZboKlhmFpIXAtAjhtEU6fUgiCBNHlh+QKQHSl2dPudHvenQbJnQ5RCUBwOt4C9t0nHjkAnysTkhBAvelGVcTE9nAY20NN2NbUhO2hMCrD4RbfpSII6OPztggc7LEXvb1eKK1avPYWTFg7twNNQbAeORCPnwBxzDjU1K3E2mUzUV35DRR3FgYPuwL5pT+FJCe/NXVLo467FtVgTa2Ocwf7cPMgEcKzb2FVXSV+fZQIxeXGI8degvpP/di52kTReBmFx7f/299fFCQceShI2A8bXvo/RHavds6E2iaILgiSByJzQYAMwRIgmAyixiGoJgQd8Yo/HgRAgujNhBDIBAuk2U2XgfRW0/bQXgcri1sIaw1oUuvQpNU717Sbp5vi17fr483VhqWCAzAgQYULUeaGylxQmReG4IcquBHhMqJ8zwZetyjDK7njFXebFbpTtuc6rqTlbqdc2sc+HIZlOZV8cwWebDqo6WiIT9uVvma1fW7NYJ9xBhR7SJMVpCkyAoqCNKc8TbHLPKIESWAQmQBJYBAYg5g4OMtEZi+z17XLBAaIggDJWSa08f1yzhHUI9gRqcVO5zLGjrB9aaPSubTRkHCvP2AHWjmejOY+EQn9I3p7s5DjyYC8Hw9csriJULTWuZxRhcZIVXw6GK1GgzOvmyoAvsedJty5C4XHbp1svpekU0iCEu/86XNlwufKgFfOhC5kIcIzEDR9qNdl1GgCdkdMVIajiJjNrVQMQI7XkxA8tAwm/Ek60nLDgLW8AsbCj8G3rAdcLohjxkE8/ieoMyux9tunULX9KyjuDBQMvRwDSy+CpOzZD0c3OZ78vgEvrAoiP03CH8vTkf/xp/jxh+WYfpQAwyVjxthLoC3MwPYfTAw+TkbReDllt5NSkHDkoSBhP+x6808wQ7UQTAZBdyr8iAEhrEIIaxCdSr/FtVWPL17RW4EALL8Ppt8Py++F6fPC9Hpged0wXAosmDAsHaYzGM6QOG9aOgxTR0RvbBEAxDq0hbXGPc7yAOecU8oAk7NhSenQBS+icKOJiwiaHPWGDtVq2VzvEuT4tfLc+DXz5vme7nSIB3HHhd150ERYN9Bk6GjSDYQNA026gSbDQJOuo8kwnOWxZQnrOctCut7ij3gyXkmyK3fZrtTtCn/v035ZbrPC7qqajKgTNNTFA4lYH4nKSB2qo40tKmUGhmxXAL29mchN+I4T533tXDdPhfitqrEgIllA0SrQsCwTZrQBWmgX9FA19HAVjFA1tKZq6OFq6KFqGOEaRKwooiKgCkBUZNDcXmguN1RZQlQEIjAQNsNQzTZa+TiDpPQGl/rCEHKgsh4IW2kIml7UGTKajJb/B9IVGXk+H/L8/vjljP4BP4ZkZUJgDNaWDTC++BjWd18DpgmheCjEcaegIYNj7XdPY/e2LyC70lEw5FIMHHIxZGXPx0Z/szOKe76sQaNqYdrIdFywex02f/gxfjUCCLpF/OOYiyBV9MLW7wwMOkZGycmpCRS6a5DQXqroQ7lfXQEFCfvhrWcuRJ1eA1NksGQRhiTClJg9CAymwGEKgMksGDBhchMG12FaBkxLh5XClBIMAnwu57Y4VyY8SgZMMQCNeRFhCkIWQ6NhoU5XUaNFUKU2Qm8VBKTLXuQmnF22DgQyFDtVL3euq2uWBd2yYDhjzbTilbpdaevxCj2xok+s+MMJZWHd2Kfr4yJj8EkSfLIEryTBJ8vwSRK8suSUxyp/p3J3zvDTnYo+IMuQhK5/+2hn0S0DuyL12Ol0pox1qrTn67AzUrdH/4402eu0QLQMGmNlmYq/S6Z15pzDjNTZ6b/rt9kZQJ2xWr8VZrg2vq4JDt2bBjO9JwxfFjSvvzmYEDgiVtRpgXNa5LR6WNyEwRVEkYkosuJjjWXb89wPDvu3l6UwnDtoEM4ZOAh9fF7wxgaYixfA+HI+EGyIX4oIDszG2pXPYteWzyArAQwcMgWDhkyB0urWxbqoib8trsUX26M4trcbv8uNoOnVN/GrwRHs8gq4/5jJSPuuLzYvNTBgtIQhE5WD/o4oSEiudernfU0FfTikjG4vSDj8nhHZwb7tn41aTbSfrc8kCIIIgYnOtFPGBPuZ+0yEwiS4mb2O/ZAisXkdJgIs9nq7Q6CQ2HnQKTe5CIML0E0GnYvQLQbNZGg0NGxVm1CvhlEfjCCka4j15wbnYGBwSx54xSx4RBcGuFxwCQpkQYbIJIhMgsUB3bSwu9HC9noLumXCsHZBtyqhxYMBDr2d5vi2MAA+WYJPkpsrc0lCL48bPlm2K3un4o9V9N4WgUDza12C0CUroJioaaBBi0I1DfgkBT5ZgUsQO22fLc5hmIBuAoZpB/ayyCCLgCRij/2QBQl5vh7I8/VoY3sWatRgkgCiFltCVfi6au0et4MqgoQslxeZLi8yZA/SFBfSZA/SFB/SZB8ylAAylTRkuzKQ6UqDV3LDKykQ9rElinMOzQRUHVB1jqhhj1WDI6oDmjNWDQ5VB6I6h2rY5V6XDxmeEqR7S5HejyG9WEBPD4PPDXA9bGcJbR1EVG2D3ljZ4umjTHJBSc+DktEPSvpYyOl9YfqzoHv90GQZYSPUqnVvLRqi9aiK6tjcBGzTCjFrtYVZq9ejLEPGRYVDcPKESXCdfGb8UoTx1ovwuFw4asw4hMZPxrrNb2DtsiexYcXzGDTkEgwacqmdCAtAplvEfeN74PV1ITyytB5X1Ym44+LL8Oj/3sL0Hrvx669ewT2jz8UgeRA2LNZhGcCw0xUwoev+X+qK1q5dq+wt9fPw4cPDtbW1UuL81VdfXTNt2rQBkUhEGDBggPrCCy9s6tmzp1leXl5cXl4eWrx4sf/MM8+s/9Of/rTrUH/GA0UtCa1c+MnfsDG0j9+nne8XdqwlAlxypiUwnqxMjE8jthySfQfCfmKwO7IpogBZECAJgtOxreVgl7M2ylsPLF6uJKyTGAAkVvRuMfWVpGFyBKOJAxCMcoRVHn+woBB/yCCzHzwIp1xIsjzhgYSxdUxuImLoCJsamgwNYUNDk6GiydAQMlSEdNUeGyoatSiCuoqo1ZztkcHpZAoJXlGBW3TBI9h3IbgFBYogQ2EyJMiQmQQREiRm90kRINi/Ay4AXADnAiyLQTctaCaHYdoVpREbLMA0GSze/nFmzAQTTAiCCTADTDDAmQ4wHZzp4NDBmQaLqbCgwUQUJlNhchUGojAQgY4IdB4BZxo4NFjMhAUOzjgsxuwnMTMBnAmw4DyFkYsQuAIBij3mCkSuQOCuhHkZIlyQuOKMXRDgghhbx1IArgCWjORPYU/OJQFu2Q6UmjSOSJJHXIgCkO5h9uC1hwxnOsPLkOYy4TWr4IpugdGQEEA4wUSLvklMgBzIhZKR1xxIZOTF5yEp+LHqGyzY+DHm72jAdmsIVGTCJZgYn5uOKSWjUJaZCb5tE4yF81pcimgaVYQf6z9D5aaPIcpeDCy9CAVDL2+RgGpDvYY7v6jBxgYDFxd6cdG6Rbhd/wEr04DfDzsVRduH4sdFOvoOETH8LBeEAwwUOrol4e6l7/Zb31id0qQiBWk9wnceNandxFGiKI4uLCyMX2+KpYqePXv2lgkTJgw+//zz62Kpn+fOnZsxb9689ZMnT86vra2VPvroox8lSULr+aKiorKHHnpoy6RJk0K//OUv+zQ2NorPPPPM1vLy8uKioqLIc889d1hcyqCWhP0wuf/ZqIpEETVMRAwLEdMeR00LEcNExDARji0zzH3q+e4RRXhlMeHs2Z72yhL88bEMnyzazeyyBL8sIVPxwiVKkJzObqJgn1Fa4DAtC5plQrNMqKYBzYxNm9AtE5pl2LfDWSY004RqGfZtc5YeXzdkmtD0WHnybeiWBVmI3QYnwS3GBtkeO2WeVvOxQREkwFRg6hJ0Q4Kui9B0EVGVoUkFQlGgMcoRinI0RpP/oe8YDIDLGZKTAWQ7w76KOkMi+xuzYDETHCY4M2DBBGdmQrkBK16Z67Cgw2IauKiByyosqLCYCs6i4FBhP1eMQwCHwCUwp5IW4YYEF0S47YG7IFiKszwNjMuQuAKJSwCXAS6C72flvL84THDB3n8TdqCiMxVRFoIpaLAEDRazP6/FNJjO2IoFNS3K7GMAZkASOSRmB7QuUYJX8MDHsuBBJjzIgmKlQzLTIZh+RA0vgvUurN0lIay2btnIBGOZSHOPtAMJD0N6NkOGB/CLYfisKnj1HXBHNsMVWgezcQsa130MM9rQYiuSrwd8eUfhp/2PwWUnj8K6pnX4349f4csaho93FOOjHZ+jl6JhUn4eLj7/CmRMuih+KcKzZgWG98jB4DG/xHq+HD9+/19sXDkH+aUXomDY5XB7sjEoQ8HTp+XgkWUNmLMuhKUZR+NWpQ/+tfUj3L3iQ/xmYAhHjT8WW5YZ0Jo43AFqTUjUXqrofU39nDhfU1MjBoNBcdKkSSEAuO6662ouvPDCeJa2KVOmNF/nOoxRkNDKmxt2Y2Oj/aQ7AYBflhMqbhd6uCWnzK7Y49MJY3uwm9IlgSFi6ghqzpmqbg9BXUVI15yyCDaH1Xi5vUyNV/K6Zd8Xn/iUvwPBACiiBJcgQhFFyIIYn1YECS5RRJrialEuCyI000TUNJxnHZioa7Ls4ELnMAwOy+CAySBaEiQuQeIuSJYbIndD4skqYbvSNJgKS7AHLqpgsgq4NQiSCkHSIEoqRFmFJKuAoCGsGwgbFsKG0xRtMBhW7PZPIZ7kCc4toQKzIDADDAYEZoBDA+f2YHIVjOmwK1sTDAYAw76lFE4ODO6MIQAQnXnYlTfTYUGFJACiaEEUOCSRQRQ4ZBHOIEAWGSTBPnMWoMAOSmSAy+BcgsUlWFyEyQWYlgCdM+gmg2XZrSqaxRE1Lahm4uUgAUDzbW8eUUJPjw+93D709PjR0+1NmLeHbJe3zT4bdn8Uu+VCN+ze9brlzJvcKbOnDat5WjfsM3W3zOCSAZdkj93O2CUzuCVAEtuurAzLQMSMIKiHUKc2oFZtQJ0eRL3aiAa9CSHdQqOuo8mw0OQE6VETiJpwgll7WYPOYPEQOGrbbplTAK5YYH4OyfJAsfxwIQ0ungaXlY4Qz0R1OA1iKB2CkQaYXuc493WGowEALtmAr5eJgEuHX4ogjQWRZtYgTd2C7G3/g3vNhwAAb0Z/XDWgHNcOGYFVLIy3Nq/C941pmLVWwX/W/g9laTouLCzDxJPOAFuxBMbCj+F5fz6GulwoGDkVG/ybsX7Fc9i0cg4GlPwUg4dfAbe3J359dCaO6e3GXxfX4uZgDqYVXQLXulfwwMZFmJbdiCuunQTZ3XUDhL2d8Xc1iamfk823JRAIpCaL3iFGQUIrfx97jN2JTpYhgSFk6GjSdacCtyv4Jl1HoxpFvR7CpkgEQc2u1JsMuxK1H2xjNx+bPPEpc7HnwyH+hBm7OjMAZoJDB7hdWdmDBcYAiXNI4M7aHOBOjh2OhG0AjDvN6xAhwH6YkuA8Z0GwkzBDMJy+EFwEgwQGARwSNAjQYT98iTkVIotdLjHTANMPZqZBsPyQYZ9lJ+IwYbJG6EI9DGEnwnIjdBaEIQRhsiYYQhN0IQSDRWCwCEymOQ9xSrz84lyWgQzoIqBLQER2ygUAUYCp4M75uijqEGUDsmBCFiwoIodbBNwi4JFEuCUZLkGBIsb6aijOfBoUQYFLVKAICcsS5hVRgUtwJZQ786IMRbDnJdZxWQxbszhHk+5cFtFU1KkRVEfD2B1tQlU0jKqIPf62egeqomEYvPUzDoAslwc93T709HjRy+1FT7cPPdxe9HR7nYDCC7+sgCn78ZksA9w0AOepnzB1uyxsT3PTgJ6wjMeWx9Y1DUimjkzTQIapY2CLdYwWr7HfwwJMDm5a4KYFzTSgWSbc4JAYg8kYGkWgWgCqRaBGAOoFhnoBaGQMQQY0MYYmQUNEaEQUO1HHBOgQYKFVEMUFSNwH2QpAsvyQLS9ky29PRwOQw2mQrXTIVn8wDAJwNCBPhpJTgzzPDpTpy9Fn1Vx4v3sV2UzAz3NKIfQbia+kLfigRseaxlzctWQD7lu6Asf2FHHFlMtRGrFgLJwHT8XXGGKaGFQ8CRt61GDjypewafWrGFB8PgYPvxLj8nrhv1m5+POXNXhoM8f4fpfh5B1v4HGsQGhePW4641IIInXk3Vf7k/o5Jjs720xLSzPff/99/+mnnx56+umns8eOHdtl8zMcKAoSWrnzjXqIRgaAxHZvEYDHGdqmOEN6R+1cSlgAs8CY87AeZjllPL4sPnammRiGoNRClLdDlCKQlSgkWYUsqVAUFYqiQ5ENyKIIiYmQmARRcMbMDUnwQ3TKpXi5CEmQWkyLTHLKxFbl9tgluJzK3bVPFTS3DHBdBQwVXFfB9ShgRO1ppwxq8zz0kFMedV4TbV4vNm8a0LkFPZ5i2XIyUrac3zPFcssycMtJ573v6wMcEuzfVzqA/La/YTSKbtTIPlTLPtTIXtTKXnta8mGr7MW3sg/BJLc8uiwd2XoY2XpTwrgJPYwwspyyLCMMuZ1U4xyAwQSoTIIqtByiTpkmiHaZMx9NXI9JUEUFmig7ZTJUwQ1V8ENlIqKyCFURoUIAT/gNeLiJADcQ4CYClg4/NxGwNKQZBnpaGgZaOgKmhoClI2BE4Ld0BMwo3JYBZpnQOBAUOBoFEUEGBAURQYGhXhRRJwpokCQ0iCKCooSQIqFOlBARJWhMhsg9cJlZ8On58Ov9EWkYjA18GOC9FEpGNfq4tqBUXYa8Jf/DMKsKwyU3tD5D8bG/HxZGMjF/dx/M3/0tcuQa/GRwFi6d8Dtkfr8cni/nY8iaJgzsNRabBkaxadUr2Lz6NfQvPg+Dh1+Jhybk4sVVQTzxXQOy/OdhvLoIbxjrceHuSvTu3bfd/x+k2f6kfk40a9asjdOmTRtwyy23CP3791dffPHFfXrd4YQ6Lrby09dfh64rEBm3m5AFBkkAZIHBJTDIjMPNOFzcgpubcFkmZNOEbGhQDA2yrkHWolDUMCQ1DJdpQQKHwC27FQAcDBxMYBBcPgiKF6LLC+b2Q3B5Ibp8YC4fBLcPAjfBjDCYHrXHWhjMiIDpTWB62B7UEJjWZJepIQiWCgYLArcgwIQAEyw+nfBdSy4w572Y4m0xFhQfmMsLpvgAxRO/RdLGnf57PCE7X8I0b35KYHyaOwma92P91tu3E/04lXasItfVVpV6rLJXwY2onenxgDBAdoFJLjDZbR8r2Q0muwBRjucmiKVQjk3bKZbZHstY67LY0wljZS1el2T9hOn4shT0IVA5R40FVFscVc64xgKqLI5qZ77aApI9QzOTAT0Eu3OoCoYot7cX5YDGOQ7kyMuC4Dz2uWW/lvi8lKRMlKCIIiKGffdJUFfRqDmDM92gRfdoWUkkMcG5U8NljxU3ArIL6YozL7vth2nJbme5CwFJgV9WIIHDMA00aiFUNlaiYvPX+KrmR3xvRCGafeF3gga/MQgit/vqyfIu9FY2oST8NQbUfwIfr8H2tL74MGs0lvF8NPEMiFAx2FONs/vn4Qw1APnLReBb1iPsAzYPtrBNWwUwoH/hOSgccTU2az1w1xc12NFk4Lx+HL84rh+kLtpxkXQ99JyE/RD5eg7M2q3g4XpY4XpnXAcrXA/obeRVYAKYJx2CNwPMm5EwztyzzGeXQd7/lLX7ghsauNoErjWBq+HmcTtllhZOKG9ep83PmxLObQeIPZe4OVFQ8zJ73oQMg/lgST5w2QsuemFJXnDJA0v0wpLc4IIHlugGF1ywBDcs0QWLKbAEFzhTYAkKLCY3D5BhQYIFMT42uQiLC7C44GSb5ohnkbYA0+TgHBBFBlG075Swx/Z8bIjNx5aLIjvAdZvfq/W6zpOP7UYGHpvmCdOtx3tflnw5ty+vaRqCqopGTUNIsy+5hTQNnHGIEiBJgCQDisSgKAyKLMAlC3ArAjyKAI8iwqM0V/TJAoGOes4F5xxR00gIHKItgoh4WYsAI4pGze4z1B77sdh24JCheDAwkImijGwMCmSgSa1FxZbF+Kp6LVZpYShWHwS0fPj0/vAbBfGgQZJ2Ilf6EUVNX2Jg6Aus8fgwP7Mc68RCmFDgRTVGpocwOTsHR62ph/DdEkRYBJsKDGwXNoKDo1/hWcgbcjWeXOvD59simH1mLnp6DyyRGgUJRx4KEvZD3b+nwKrfnlCx25V6y8q+VeXvTl16aM45DAPQdbsikKTmCqKzccsE1yN2bRGrvBG7Jz+hco8HOy0rd8B+qW4waBqgaQyqyqGqHJqGfZ7ey4MWD0iyijmxcnZO9gGB24+lYPatgIDTlZE7uTM4axFExIKKxGnLsocjXez3LEmALDNnmkGWk41bliV/TXOZIDR/h4w1j+3hwP/vGJbp5PloK8CIxgOLGjWMjY118aeayoKAQYEsFKVnIz+QASCKyoZ1WFa9Fj9qIbjNPghoA5ygYXA8aBDFSuSIazAgtBiVchCL/QXYLfYDg4kebD3GZlo4J6pgUMVm6JFqbOobwjZvJTg48gafgaziazAgp/9BfE8UJBxpKEjYD9wywPbjGfeJlbqmcei6XbklG+/rOsm+klgFZgcNrNXY/sPZenlsOlYeWye2flvLE7chCPZnsyttDlXd/+m9/cREEXC5GBTFHieblmS7ojYZh2nfQAgTJgzYWRENWNC5CR0WNG5Pq5YFjZtQuX2LZ5RbUJ1bPFXTQrT12LDHRsIOMw54TBEeU4TXlCBbgv3IYAbnGQKASxTglkV4ZBEeyR575eZxbPBIEryiCLckwSNKcAsC3JIImdkBpmnZg2Xx+DTnDKbJEwKR5hYOuyJke1SMzWMWrygTK822XtfesuZ1WIt5ywIMw/7dNo/h3PnSclliecv1Wy+LvXaf/xu2K7a/bR2fPZcl//yJ6ydbJoqAzw9oSgQ1rB5bzN1YG96NtfXVqNOaW+V6ewMYGMiAR+Jo0qqxsXEjKrVGeKzeSNMGwKf3g88obA4ahB0ICOsQ4tVY6/KhSZIgI4i+bCVOckUwYRvQa3MVNvesxbb0anAGnHLxXHh8vQ7weFGQcKSh5yTsh7VfWYgEVRia84dK43A6WcN0/nhZhl1mOQNgVyYs2Riw+wcCEJ0H+sgC4GL27WN2gqDYw35iN985rxPsmyAsZvdbs7h9md3pWgjTyeBgIpZCGDC4cxe9Bfs2Ng6Y3NkGc17LEuadsoO5xC1IHKLMIUgckDmYxMF9Fni6BUm0YAomTNGCIZjQnUFjBlRmQoUBFSY0s/kx0JplQTcsqJoFvd5+VPSBZGJkHAhAQjqXkc5lBLiMAJeQZbngNyV4LQkeQ4THFOAyRbh0EbIhQNYFSDqDpAkQ9I5pweEAIuCIxO9kaWfd5ttYIDqD3VXBqcwEltDy0dyNAQxgot3iw53fEhOdG2vi67DmbhKttgGnUmy9Tft3Y8FKaFlx8pGCcUByhtgHjXc7aTUNzpzuJ8zusCnanwNy87rcirXE8Pg0N+27PbiZ0LfT+QxcYOACtzs0CoDllFsJxyDxt88ZYCb+3xDs/0+x/yemxZ2xc79RbB843+PSjK5zRKNwPkBPAD0xzDUEx6cJ8AQsaEoE9UIDdljVWFe/Ez9GdzrHsDcCUn/08LsABFEVmY8N5tvwmFlI1/rDa/SDZoyByH0YFAa4sAtRoRrVUgGeM+vxWo8fMaBHGBNUFaM2uaFwC24ztZkhyZGLgoRWat9T4dcEiGjvMTv7pvlpdRyWkDDtDByAIXBosXnGnQrcfvyOwBlES4BoMYhcgGTZ85LlTPPUXcM1we28FM7ZusE4TGdfmsssmIxDZxYMwYLBLHs9wbIDFWe5xWLTcOat+Ha48x6ccUgCh8AYXEyAxQRYgtV8fAQOzixYgj0PxuExJXidM3qPaVfwblOCxxThMiS4DQluQ4RiSHAZImTdvgW03e+IWdAVC7pswpBNaIqBiN+CIZswFAuGYsFULFiyPc0l7jw5Yc+BgUF0ntEQSwHGOAO4cwki1kJg2mOjxbz92GXT4nZ5izLL3rpzO63AnYqZ2zexugUBbibAJQiQmQCF2eUSY5C4c8utU7lCd26UcIZYpW3f7MLiN7rYl1IAZiXcXus8k0LgzuAc23jaJtY8tssTpp3ImQPxQCMePSdcreKJXVRaDS2ubiV0XWGMgekMzAQEk4ElDJJpl7dIyHaAOLNiD0kFRB5/0CqLjWUOyS9AdNv5XiIAwhZHUAfqKoG6qAcm9yALuTgGQzFWAFw+C5Y7iqAZwu5oHTabuyALfihiCLpooinQgFpzGzTrY3isDGRoveAx8uA1itDPsDNIasJI1IqnYrZUhZcLv8Qg/iX+YFYjCxkH/ZkJoSChlTfKNiCimdCZAUOwK3q7iTs2titOA3blZTd7w64sW5Xt5Um6B41xQOQMsiVA4gyyxSBzATJnULhT5sxLlgAFDJLFIMXKuADZmZec10rOuvGxZVcGklMxiJxB5naAIlgiRC5AjFUaVvM6QuIQf+BRalng0GQTqmRAkw2okokGTxSqZECVDESdccSZjko6IqKBqGggLOmIijo0ZtnBGU8Y4Jwpwuns52QltAwOS7cTYdllByjWXLSvYjWr89Co+JiLsGst5zHPznTrY23vqQUGE6JgP/hJFuwWLbcEuEQGr2Q/4tt+gJYAWRChxMZi8nnZ6WhoWJZ9ycfiMCwLJrecMnu+ebldZiauHyvfY1mrbcTLeLt3KrR1/ETOIHERsiU4/18EyJbYPLYE+/dvifb/mcR1LAEyF53/Fy3Xly0Bkma/RrFEBHa7kKa74DMVSADSnCF2M6IpW7DcHJZiJ40zdAFR7kXQ8KIP74UyoRiaCGgCYLl1ROQwaoV6VLN6BMUgQlIIOz2rEGFfwcMDSNd7wmPkIt0oRLaeB2AUqoUrsS3UhKzM/TtMhCRz2AQJjLHTAfwT9l/Cpzjn93bE+7gGiqgL6xCZCBdj9uUAgUFkCUOSeYG1vY7AAElgEJkAgWGv25Cc922RS0FkLfIwxKbtHAv2MrFVB60W/U1a12i8jelkZa3P6A6gIxh3mou505bLTacsNt+qjDvXUexyp1nbxSC6GUQPILgZBGXPfeEWd66/OK83YF9vaVHWat501jES55vLWsxzOG3+AAQOOw0DhyXYYy4CpsDBBditIAnLYq0ipmhPm8xuvWmzDBwWt2Dx5sAk9lhuBubk2BAhi87YaUmIWhYaVRP1qo56zUBtVEdNVENVRMXusIrdkSiatJYVrQAg262gp9eNXh4Xerlc6OV12dNOWU+PKx4YpArnzndhJPl+jOTfDdc5uMlh6hymbsEyY6mlnUsKSGjVEJz3EJpb9oDEy2xOC54zbSW81oq3jDitJW0ut78THRYaEMaPVg2q9SiaQga0oAUzBLAmBjkiIqDbQUSa5kJakwtphhu9DAXJeg+YggRdSoMmpEFFf2gigy4AmghERBP1ShNqlRCqXA2ok79HWDAAroBzH3plDk7p99QdMMZGn3vuubVvvvnmRsDOztirV68RI0eObJo/f/6P+7u9iy++eMCtt966a/To0R15G9ghd1gECcx+NN+jACYC2AbgG8bY25zzle2/cv/dsboQvJo3Xze1nPv8nWcPOSdlCddVE+d5iybcNte1T1Wb12tv24ni13ljG7GLdAB6Z/c/TdIcnHRw6hT72rZToQv79tpYZ7r4nRJOBz4zodLmCZW9k87gkEt+n0tiu/p+bKi5gQBMREKAgqTHq3metXtsTXDo3IJmcWjchGbZfUFUy7I7eJp2Z1AOA7tZCDsRBIedeVKRBLgkEYokQAazL4fFBpNBsADRclqWTMTHzIpdDrCnmWFfzjhYew9bWKtxJ5EBuADmYvE0IYbMocsWVLeJiM9AWFQRQhBhHntSqwnd6fMkcQGKJcFtyfBYMrJVFzym4ly6EdHcTtEHJrNbH+xWCA5EGODv3I/b1Xk8HmvNmjWeUCjE/H4/f+ONN9JycnKSPQZkn8yZM2dzKvevqzosggQA5QB+5JxvAADG2EsAzgWQ8iBha2UUSi3i10c5SzZt3xLIGY+38iZfD86ZSmyexed5wh/sWEeyFtsH4k+Ti1+jTcTamG5dxvZchbda1mKy1XZ7bgjCFUr4f9Rei0Ts5XtZB0AsxtljHdZqHgBkqw4MSe5XjwUhsc5uiS9tqz5opzxpfLEv9UpbgUmyY9Pe+u0sY0iIDdv4s7a3+Cjxowhold5qP4Mr7vzDGYPGxPgdH3Zs2zxtMsBAwlm9AHCFJ/ZdjK8PJJzdwz7bt8t4/PuJbTexfwMYsM0n4rV8r/OTcPqJcKczMG/OwBHrXBmbZ9wZo+V6zevYb9j6tQxwLqfZ8ZjAAYEL6CmK8FoCFF2AbDDIOrM7w2r2WGpyynQGv64gw3BB1vwQ9zNY0gULmmjBEOy+QpYTUTMwMMbgcx9sj6ru6Sc/+UnDK6+8knH11VfXvfjii1mTJ0+uXbRokR8Apk+f3sfv95t33333LgAoLCwcMnfu3HW9e/c2zjnnnEGVlZWKZVns1ltv3XHdddfVlZeXFz/wwANbx48fH3711VfT7rzzzr6mabKsrCzjyy+/XHtoP2nqHC5BQl8AiUlBtgE4pvVKjLHrAVwPAP37H9h9wneN3IaNjd269Wi/TJMUDD7Ez4DvqxrwmK2jigO0jxX6IdNeXdHe13CI9j8icWz3HPDJWMrUCcBq16F/GEWaW4UsWLHGQsR6rlixaR5roGzu08KdjqNuXYDLtAdFF+A2BbgNAS5DgNsU4TacMmfaEy8T4+vGpnNcKc3EnFL3LJnfb32wNrWpogNZ4T+MPnmviaOuuOKK2j/+8Y+9L7744vpVq1Z5r7nmmppYkNCW119/PS03N1f/9NNPfwSAmpqaFo2FO3bskG666ab8Tz/9dHVJSYm2a9eu1Dw0p4s4XIKEZH869/izyDl/EsCTgP2chAN5o+fPGLLnG/Hm3tr2fDs7kWT9FtNJXhv7c7H37bZcf+/bbbk/e99u4jYSCpl9phVvgEhonWAJrR2xFg97miVZN6G8xbot+xa0aC1P0s8i8Xto/RnjV2niV4x4knUTylusm/y7TtwOuL1PCVdBIMTmnZ0XwFp87tjy2OcVEo9ZG5+zM8WOaeIxalEOIPHnEL/+D8CLlqm0W/6GW/0/aOc3Gnu/1mWtt9vWb3QwA05zylv8xmJlrQ5vy2VJ1k+yYnMDXMJvtdV23aIAsYMefJb4fbT8zlpNc8Aldat6KmWOOeaYyLZt21wzZ87MOuWUUxr25TVHHXVU5I477ug3bdq0vueee27D6aef3iKJ06effuorLy8PlpSUaACQk5PTAY9/O3QOlyBhG4B+CfN5AHZ01pvv8Udkr38DDt0f/O4uVkHbMy2WdP7OdBMsIYhptaTzd4a0qeVv//D9bvbljL8jnX766fV//OMf+3344Ydrdu/eHa8DJUniVsKjUVVVZQAwfPhwdenSpStfe+219DvuuKPvvHnzGh944IHK2Hqc80Ma5He0Q9uOvO++AVDIGBvIGFMAXALg7UO8T4QQQg4z06ZNq/71r3+9o7y8PJJYnp+fr3777bc+AFi4cKF3+/btLgDYtGmTHAgErJ/97Ge1v/zlL3d9++23LS6VnHzyyU2LFy8OrF69WgEAutxwCHDODcbYTQA+gN23+xnO+Q+HeLcIIYQcZgoKCvQ//OEPu1uXT506te7555/PLikpKRs5cmTTgAEDogCwZMkSz+23354nCAIkSeKPPfbY5sTX9enTx5gxY8am888/f7BlWcjOztYXLVq0rrM+T0ej3A2EEELiKHfDkae93A2Hy+UGQgghhHQyChIIIYQQkhQFCYQQQghJioIEQgghhCR1WNzdcCCWLFlSzRjbvPc1k+oBgDrZNKPj0YyORUt0PJp1l2Mx4FDvAOk6um2QwDnveaCvZYxVpLp37+GMjkczOhYt0fFoRseCdEd0uYEQQki3xxgbfd555w2Mzeu6jszMzBEnn3zyAeXVvvjiiwcsWbLEvb+vmzt3buBA3/NQ6LYtCYQQQkgMpYo+MNSSkNyTh3oHuhg6Hs3oWLREx6MZHYsuLpYqGgBiqaJjy6ZPn97nzjvvzInNFxYWDlmzZo3S2NgonHTSSYOLi4vLCgsLh8ycOTMTAMrLy4s/++wzLwC8+uqraWVlZaXFxcVlY8eOLQKA+fPne0eNGlVSWlpaNmrUqJLvvvvusMzfTS0JSTjZJImDjkczOhYt0fFoRsdi39yz5Mt+GxobUpoqelBaevgPo8d2qVTRI0aMiH799derZVnGm2++Gbj11lvzPvjgg/UH8zkPBQoSCCGEHBE6M1V0bW2tePHFFw/ctGmTmzHGdV0/LFNFUpBACCGk0+zLGX9H6qxU0bfddlvfE088MfjRRx+tX7NmjTJhwoTijv1kHeOI6JPAGOvHGJvPGFvFGPuBMfYLpzyLMfYRY2ydM850yrOd9UOMsUdabWs0Y2w5Y+xHxtgMdhgmEk/V8WCMeRlj7zLGVjvbufdQfaYDlcrfRsI232aMrejMz5EqKf6/ojDGnmSMrXV+I5MPxWc6UCk+FlOcvxvfM8beZ4z1OBSfiXRequjGxkYxLy9PA4AnnnjisP2+j4ggAYAB4Nec81IAxwL4OWOsDMD/A/Ax57wQwMfOPABEAfwBwG+SbOtxANcDKHSG0zt43ztCKo/HA5zzEgCjABzPGDujw/c+tVJ5LMAYuwBAKNmyw0Qqj8cdAHZzzosAlAFY0NE7n2IpORaMMQnAPwGczDkfDuB7ADd1zkcgrbWXKrqurk4sKSkpe+SRR3ompooeOXJkaUlJSdl9993X+84776xMfF1iquji4uKy888/fxAA3HbbbTvvuuuuvKOOOqrENM3O+XAdoNumim4PY+wtAI84w0mc80rGWG8An3LOixPWuwrAGM75Tc58bwDznUoRjLEpzutv6OzPkEoHejySbOefAFZwzmd2wm53iIM5FowxP4D3YQeRL3POh3bqzneAgzweWwGUcM6bOnm3O8RB/N2QAewAMAbAFtgnGkuPpI6OlCq6a6NU0QkYY/mwz3oXA8jhnFcCgDPutZeX9wWwLWF+m1N22DrI45G4nQwAZ8M+szospeBY3APgQQDhjtrHznQwx8P5PQDAPYyxpYyxVxhjOe29pis7mGPBOdcBTAOwHHawUAbg6Y7cX0JS5YgKEpwzvdcA/JJz3nggm0hSdtg2xaTgeMS2IwF4EcAMzvmGVO1fZzrYY8EYGwlgMOf8jVTv26GQgt+GBCAPwBec86MAfAnggRTuYqdJwW9Dhh0kjALQB/blhttTupOEdJAjJkhw/qO+BuB5zvnrTvEup7kwdilhj+tUrWyD/YcvJg/2mcFhJ0XHI+ZJAOs45w+nfEc7QYqOxVgAoxljmwAsBFDEGPu0Y/a4Y6XoeNTAblGJBU2vADiqA3a3Q6XoWIwEAM75em5f330ZwHEds8eEpNYRESQwxhjs5r1VnPN/JCx6G8CVzvSVAN5qbztO02KQMXass82pe3tNV5Sq4+Fs688A0gH8MsW72SlS+Nt4nHPeh3OeD2AcgLWc85NSv8cdK4XHgwN4B8BJTtFPAKxM6c52sBT+P9kOoIwxFks6NxHAqlTuKyEd5YjouMgYGwfgc9jXBGM3wv4O9vXFlwH0h92h6ELOea3zmk0A0gAoAOoBnMo5X8kYGwPgPwA8AN4DcDM/zA5iqo4HgEYAWwGsBqA623mEc/5UZ3yOVEjlbyNhm/kA5h6OHRdT/H9lAIBnAWQAqAJwNed8S2d9loOV4mNxI4BfANABbAZwFee8ptM+zCFGHRe7tvY6Lh4RQQIhhJBDh4KEro3ubiCEEHJEYylMFb1o0SLPnDlz0lO7h10TBQmEEEK6vcRU0QBwMKmiKyoqvO++++5+BQm6fsBZqQ8pChIIIYQcEdpKFW2aJgYMGDB0x44dUmy+f//+QysrK6Vnnnkms7CwcEhxcXHZmDFjiqPRKPvb3/7W55133sksKSkpmzlzZmZjY6Nw4YUX5g8dOrS0tLS07LnnnssAgBkzZmSfccYZgyZMmDD4hBNOKDrvvPMGxpYBwDnnnDPw+eef79ItEpTgiRBCSKe5p2JZvw0NjalNFZ2eFv7DmFEHnCpaFEX89Kc/rXnqqaey7rzzzt1vvfVWWmlpaaR3797Gvffe2/vDDz9cO3DgQL26ulp0u9389ttv31FRUeGbPXv2FgC46aab+p588smNr7zyyqbq6mpxzJgxpeecc04jACxdutT//fff/5CTk2O+++67/oceeijn8ssvr6+pqRGXLFnif+211zam8likGrUkEEIIOSK0lyp62rRp1S+99FI2ADzzzDM9rrrqqmoAGDNmTOiyyy7Lf/DBB3sYhpF0u59++mnaQw891LukpKRs3Lhxxaqqsh9//FEBgBNOOKExlj560qRJoc2bN7u3b98uPf3001mTJk2qk2W5Qz/zwaKWBEJSxLmv/nMAf+Gcv+eUXQTg/zjnh2MiMEJSbl/O+DtSW6miBw8erPfo0cN4++23A8uWLfO9+eabGwDghRde2PLJJ5/43n777fSRI0cO+fbbb39ovU3OOV599dUfR4wYoSaWL1y40Of1eq3EsosuuqjmqaeeynrttdeynnnmmU0d9DFThloSCEkR53kZNwL4B2PMzRjzAfgLgJ8fyPYYY2Iq948Q0naqaAD4v//7v6prr7124DnnnFMrSXb88MMPP7gmTJjQ9PDDD+/IzMw0NmzYoKSlpZmhUChef5588smNDz74YI5l2fHAF1984Wnr/W+88cbqJ554IgcAxowZE03150s1ChIISSHO+QrYTxq8DcAfATwH4A7G2DeMsWWMsXMB+4FLjLHPneRHSxljxznlJzHG5jPGXoD9EB9CSAq1lSoaAKZMmdIQDofF66+/Pv6gq1/96ld5RUVFZYWFhUOOPfbY4LHHHhs544wzgmvXrvXEOi7ee++9OwzDYCUlJWWFhYVDfv/737eZ+K9fv35GQUFB9PLLLz8sHqZFD1MiJMWcFoSlADQAcwH8wDl/zsmM+DXsRD8cgMU5jzLGCgG8yDkfwxg7CcC7AIZyzrt0hyZC9tXh8jClzz77zPurX/2q35IlS9Z01HsEg0GhrKys7Ntvv12VnZ1tdtT77I/2HqZEfRIISTHOeRNjbA6AEICLAJzNGPuNs9gN+3G+OwA84mSPNAEUJWziawoQCOlcv/vd73L/85//9Jw1a1aH/d978803A9OmTcufNm3arq4SIOwNtSQQ0gEYY3fBDhKmALiUc74myXI/gFthX/aLcs4lpyXhN5zzszpzfwnpSIdLS8KRih7LTMih8wGAm507H8AYG+WUpwOo5JxbAK4AQJ0UCSFdDgUJhHSsewDIAL5njK1w5gHgMQBXMsa+gn2poekQ7R8hhLSJ+iQQ0gE453clzN6QZPk6AMMTim53yj8F8GkH7hohhOwzakkghBBCSFIUJBBCCOn2GGOjr7vuurzY/J133pkzffr0Podynw4HFCQQQgjp9hRF4f/73/8yKysr6TL7fqAggRBCSLcniiKfOnVq1V//+tec1st27NghnXbaaQVDhw4tHTp0aOmHH37oA4CioqKy6upq0bIsZGRkjHzkkUeyAeC8884b+OabbwYqKircw4YNKy0pKSkrKioqW758uauzP1dHo4iKEEJIp/nzN6v6rW8IpTRVdEG6P/z7o0v3mjjqt7/97e5hw4YNueuuu3Ymlt9www39pk+fvuu0004LrVu3TjnttNMKN2zY8MOYMWNC8+bN8xcUFKh5eXnqwoUL/TfddFPNsmXLfP/9738333LLLX1/9rOf7Zo2bVptNBplbWWJPJxRkEAIIeSIkJWVZV144YU19957by+PxxPPzvjFF1+krVu3Lp6UKRQKiXV1dcIJJ5wQWrBggX/Tpk3Ktddeu3vWrFk9N27cKKenpxvp6enW2LFjmx544IHe27ZtUy655JK6YcOGqcnf+fBFQQIhhJBOsy9n/B3p9ttv33XUUUeVXXLJJfEnQHLOUVFRscrv97d4BPHEiRODTz75ZK9t27ap99133/a3334787nnnss89thjQwBw44031p5wwglNb7zxRvoZZ5xR9Nhjj20655xzgp39mToS9UkghBByxMjJyTHPPvvsuhdeeKFHrGzcuHGN9913X6/Y/KJFizwAMHjwYL2urk7auHGju6ysTBs7dmzo0UcfzR0/fnwIAFauXKmUlpaqv//973efeuqp9d9++22bKaIPVxQkEEIIOaLccccdO+vr6+Mt6U8++eTWpUuX+oqKisoKCgqGPPLIIz1jy0aOHNk0cODAKACcdNJJwd27d8unnHJKEACeffbZrKKioiElJSVl69atc99www2HRfrn/UEJngghhHQoSvDUtVGCJ0IIIYTsNwoSCCGEEJIUBQmEEEIISYqCBEIIIYQkRUECIYQQQpKiIIEQQgghSVGQQAghpNsTRXF0SUlJWWFh4ZAJEyYMrq6uFg9kOzNmzMieOnVqfwC4//77e8aSPs2YMSN706ZN8r5s47XXXksrKSkpKykpKfN6vaPy8/OHlpSUlJ1xxhmDMjIyRtbU1LTYt1NOOaXgqaeeyjyQ/T1YFCQQQgjp9lwul7V69eqV69at+yEjI8P4+9//3nPvr2rfrbfeWnXTTTfVAMBzzz3XY8uWLfsUJEyePLlx9erVK1evXr1y6NCh4dmzZ29YvXr1yvfee2/DCSec0PDCCy9kxNatqakRlyxZ4r/44osbDnZ/DwQFCYQQQo4oxx57bNP27dsVAPjhhx9cJ5xwQuGQIUNKR48eXbxs2TI3ALzwwgvpw4cPLyktLS077rjjirZu3bpHrqPp06f3ufPOO3NmzZqVuWLFCu/UqVMHlZSUlL300kvpEydOLIit98Ybb6SdeuqpBa1fn8wll1xS+8orr2TF5p9//vmM8ePHNwYCAau913UUSvBECCGk0/zl6039NjREUpoqelC6J3xHef4+JY4yDAPz588PXHPNNdUAcO211w548sknNw8bNkz95JNPfNOmTev/1VdfrZ04cWLokksuWS0IAv7xj3/0uPvuu3Nnzpy5Ldk2r7766rrHH3+81wMPPLB1/PjxYcuycPvtt+ft2LFD6tOnj/HMM89kX3XVVfv0xMnJkyc33nzzzfk7d+4Uc3NzzVdeeSXr5z//+e59PxqpRUECIYSQbk9VVaGkpKRs+/btytChQ8PnnXdeY0NDg7Bs2TL/hRdeGD/L1zSNAcDGjRuV8847L6+qqkrWNE3o16/fPqeBFgQBF110Uc3MmTOzfv7zn9csXbrU//rrr2/cl9e63W4+ceLE+meffTbz8ssvr1+1apX3/PPPb9z/T5waFCQQQgjpNPt6xp9qsT4JNTU14qmnnjr43nvv7fWzn/2sOhAIGKtXr17Zev2bbrqp/y9+8Yudl112WcPcuXMDd999d5/9eb9p06bVTJo0abDb7eZnn312nSzL+Nvf/tbzv//9b08AeP/999fl5+fryV576aWX1v71r3/tzTlnp556ar3L5TpkSZaoTwIhhJAjRnZ2tjljxowtjz76aI7P5+N5eXnaM888kwkAlmXhyy+/9ABAMBgU+/fvrwPAf/7zn+y9bdfv95sNDQ3xuxLy8/P1nJwc/cEHH+x93XXXVQPA7bffXhXrsNhWgAAAZ511VnDTpk3up556quell15ae7Cf+WBQkEAIIeSIcvzxx0dKS0sjTz31VOaLL764YdasWT2Ki4vLCgsLh7z22msZAHDHHXfsmDJlSsHo0aOLs7Ozjb1tc+rUqdU333zzgJKSkrJQKMQA4JJLLqnp3bu3Nnr06Oj+7J8oijjzzDPr6uvrpTPOOCN4QB8yRShVNCGEkA51pKaKnjp1av9Ro0aFf/WrX3Xpz95eqmjqk0AIIYSk2JAhQ0o9Ho/1xBNPHJI+GKlCQQIhhBCSYj/88MOqQ70PqUB9EgghhBCSFAUJhBBCCEmKggRCCCGEJEVBAiGEEEKSoo6LhBBCuj1RFEcXFhZGTNNk/fr1U19++eWNPXr0MA/1fnV11JJACCGk2+uIVNFHAgoSCCGEHFESU0UvWrTIM2LEiJKioqKyiRMnFlRVVYkAUF5eXnzNNdf0GzNmTPGgQYOGLFiwwHvqqacWDBgwYOgtt9wSz+NwyimnFAwZMqR08ODBQx544IEesXKv1zvq5ptv7ltcXFw2YsSIkliq6a1bt0oTJ04sKC4uLisuLi776KOPfADw2GOPZQ0bNqy0pKSk7NJLLx1gGHt9yGOnoMsNhBBCOs1fv6rtt6FeT22q6Aw5/Ltjsw4oVfRVV1018KGHHtoyadKk0C9/+cs+t912W59nnnlmKwAoimJVVFSsueeee3pdeOGFg7/55ptVvXr1MvLz84f97ne/25Wbm2s+//zzm3JycsxQKMRGjRpVdvnll9fl5uaakUhEGDt2bOhf//rX9htvvDHvX//6V8/777+/8sYbb+x/wgknBO+88871hmGgoaFBXLp0qfvVV1/NqqioWO1yufjll1/e/9///nf2TTfdVJPK43QgKEgghBDS7SVLFV1TUyMGg0Fx0qRJIQC47rrrai688MJBsdecf/759QAwYsSIyODBgyMDBgzQAaBfv37qhg0blNzc3Mh9992X8+6772YAwM6dO+UffvjBnZub2yTLMr/kkksaAGD06NFN8+bNSwOARYsWBV599dWNACBJErKzs80nnngia8WKFd4RI0aUAkA0GhV69erVJZoSKEgghBDSafb1jD/VkqWKnjZtWrtn6m63mwOAIAhITNcsCAIMw2Bz584NLFiwIFBRUbE6EAhY5eXlxZFIRAAASZK4INhX9CVJgmEYrK334ZyzCy+8sObRRx/dnpIPm0LUJ4EQQsgRIzFVtN/vt9LS0sz333/fDwBPP/109tixY0P7uq36+noxPT3dDAQC1rJly9zfffedb2+vOf7444OxTpOGYaC2tlY4/fTTG+fOnZu5fft2CQB27dolrl27VjnQz5hKFCQQQgg5oiSmip41a9bG2267La+oqKjs+++/99x777079nU7kydPbjAMgxUVFZX97ne/6zNixIimvb3m8ccf37JgwYJAUVFR2dChQ8uWLl3qGT16dPT3v//99p/85CdFRUVFZRMmTCjaunWrfHCfMjUoVTQhhJAOdaSmij5ctJcqmloSCCGEEJIUBQmEEEIISYqCBEIIIYQkRUECIYQQQpKiIIEQQgghSVGQQAghhJCkKEgghBByRLjttttyBw8ePKSoqKispKSk7JNPPkn68KPPPvvMe9VVV/VLtqy8vLw4Pz9/aElJSVlJSUnZrFmzMi+++OIBS5YscXfs3h8a9FhmQggh3d68efN8H3zwQcby5ctXejweXllZKamqmvRRyePHjw+PHz8+3Na2Zs+evSFx+dVXX13XEfvcFVBLAiGEkG5v+/btclZWluHxeDgA9O7d28jPz9cXLFjgHTVqVElxcXHZsGHDSuvq6oS5c+cGTj755MH7uu3y8vLizz77LKWZLbsKakkghBDSaWZ9rvbbXmeltELtmymErz7B1W7iqPPOO6/xb3/7W5/8/Pyh48aNa5wyZUrtT37yk6bLLrus4Pnnn19/4oknhmtrawW/32/t7f2mTp06yO12WwDw6aefrknV5+iKKEgghBDS7aWnp1srVqxY+f777wc+/vjjwJVXXlnwq1/9qrJXr176iSeeGAaArKysvQYIwJ6XG7ozChIIIYR0mr2d8XckSZJw1llnBc8666zg8OHDI//+9797MsbaTWA0bty4wurqannEiBFNc+bM2dxZ+9pVUJBACCGk2/vuu+9cgiBg2LBhKgAsW7bMU1hYGP3000/TFyxY4D3xxBPDdXV1e1xuWLhw4bpDs8ddAwUJhBBCur3Gxkbxlltu6d/Y2CiKosjz8/PV//73v5vXrl1bfcstt/SPRqOC2+22Pvvss7WHel+7EkoVTQghpENRquiujVJFE0IIIWS/UZBACCGEkKQoSCCEEEJIUhQkEEIIISQpChIIIYQQkhQFCYQQQghJioIEQgghR4R9TRW9P+bOnRv46KOPDno7XRU9TIkQQki3tz+poveVruv45JNPAn6/35w4cWJTqva1K6EggRBCSLeXLFU0APTt23fYOeecU7tw4cI0AHjxxRc3DB06VF27dq1y5ZVX5tfU1EjZ2dnG7NmzNxUWFmqTJ0/Oz8zMNJYvX+7NyMgwlyxZ4hcEgb/88svZDz/88JbTTz89dCg/Z6pRkEAIIaTTzJun9qupSW2q6OxsIXzKKfufKnrSpEkhAEhLSzOXL1++6pFHHsm++eab+82fP//HG2+8sf+ll15ac/PNN9c8/PDD2dOmTes3b9689QCwfv169xdffLFWkiRMnz69j9/vN+++++5dqfxMXQX1SSCEENLtxVJFP/LII5t79uxpXHnllQUzZszIBoArr7yyFgCuu+662mXLlvkBYNmyZb7rr7++FgCmTZtWu2TJEn9sWxdccEGdJB0Z59hHxqckhBDSJeztjL8jtU4V/eyzz2YDgCA0ny/vLXU0ALTOFNmdUUsCIYSQbu+7775zLV++3BWbX7ZsmScvL08DgNmzZ2cBwNNPP505atSoJgAYNWpU01NPPZUJAE888UTWmDFjkvY1CAQCZjAYFDv+Exwa1JJACCGk22srVfSYMWPSVVVlw4cPL7Esi7300ksbAODxxx/fcuWVV+b/85//zI11XEy23cmTJ9f/9Kc/LXjvvfcyumPHRUoVTQghpEN15VTRffv2HVZRUbEqdrfDkYhSRRNCCCFkv9HlBkIIIUes7du3Lz/U+9CVUUsCIYQQQpKiIIEQQgghSVGQQAghhJCkKEgghBBCSFIUJBBCCOnWdu7cKZaUlJSVlJSU9ejRY0SvXr2Gl5SUlAUCgZEFBQVD9mUb999/f89HHnkkGwAmT56cP2vWrEwAKC8vL/7ss89SmouiK6G7GwghhHRrubm55urVq1cCaJGQac2aNcpZZ51VuLfX67qOW2+9tSoV+2IYBg6nvA+Hz54SQgghKWaaJi655JIBFRUV/pycHO2DDz740e/38/Ly8uLy8vLQ4sWL/WeeeWZ9MBgU95bt8fXXX0+7++67+2iaxgYMGKC+9NJLm9LT062+ffsOmzJlSvX8+fPTbrjhht3XX399XWd+xoNBQQIhhJBO8927ar9gVWpTRQd6CuERkw4scdSWLVvczz333Ibjjjtu85lnnjlo9uzZmT/72c9qAaC+vl785ptv1gB2C0R726msrJT++te/9v7ss8/WpqWlWXfccUfuPffck/PAAw9UAoDb7baWLFmy5kD28VCiIIEQQsgRq2/fvupxxx0XAYBRo0aFN23aFE8CNWXKlNp93c6nn37qW79+vbu8vLwEAHRdZ6NHj47ncZg6deph03qQiIIEQgghneZAz/g7iqIo8QRGoijySCQS79AfCAT2OSU05xzjxo1rfOeddzYmW74/2+pK6O4GQggh5CCddNJJTRUVFf4VK1a4ACAYDArff/+9a2+v6+ooSCCEEEIOUp8+fYwnnnhi0yWXXDKoqKiobPTo0SXLly93H+r9OliUKpoQQkiH6sqpogmliiaEEELIAaAggRBCCCFJUZBACCGEkKQoSCCEEEJIUhQkEEIIISQpChIIIYQQkhQFCYQQQrq9a665pt/dd9/dKzY/bty4wosvvnhAbP66667Lu+uuu3IOzd51XRQkEEII6faOP/740FdffeUH7MyPdXV10po1azyx5d98841//Pjxoba3YNN1vSN3s8uhIIEQQki3N2HChNCSJUv8ALBkyRJPcXFxxOfzmVVVVWIkEmHr1693/+9//0sbOnRoaWFh4ZApU6YMsCw73UJ5eXnxTTfd1Pfoo48u/vOf/3xEtTZQgidCCCGdZtsrar/oztSminbnCuG8C9tPHJWfn69LksTXrVunLFiwwHfsscc2bd++Xf7kk0/8mZmZRnFxceS3v/3t7lhq5/POO2/gSy+9lH7ppZc2AC3TRh9JKEgghBByRBg9enRo/vz5vi+//NL/29/+dteWLVuUL774wpeenm6Wl5eH3nvvvcA//vGP3Gg0KtTX10tlZWURAA3A/qWN7k4oSCCEENJp9nbG35HGjh0bWrRokX/16tWeo48+OjJo0CDt4YcfzvH7/ebVV19dffPNN+cvXrx45eDBg/Xp06f3iUajB5Q2ujuhPgmEEEKOCCeeeGJo3rx5GRkZGaYkScjJyTEbGxvFZcuW+U8++eQmAMjNzTUaGhqEd955J/NQ729XQC0JhBBCjgjl5eWR+vp66YILLqiJlZWUlESamprE3r17G5dddllVWVnZkLy8PG3EiBFNh3JfuwpKFU0IIaRDUaroro1SRRNCCCFkv1GQQAghhJCkKEgghBBCSFIUJBBCCCEkKQoSCCGEEJIUBQmEEEIISYqCBEIIId1eqlNFz507N/DRRx/5Ur2fXQ0FCYQQQrq9VKWKjvnkk08Cn3/+uX9/9uFwTDNNT1wkhBDS7U2YMCF0++239wOaU0Xv2rVLrqqqEv1+v7V+/Xo3ABx99NHF4XBYyMzMNJ5//vlNAwYM0P/85z/3mjVrVk9RFHlRUVH0wQcf3DZ79uyegiDwl19+Ofvhhx/eMnz48OjVV189YPv27QoA/OMf/9hy6qmnNk2fPr1PZWWlvGXLFiUrK8soLCxUt27dqmzevNm1Y8cO5cYbb9z1+9//fvehPDbtoSCBEEJIp4nOVPtZ21KbKlrIE8Lu6w4uVXRBQUH017/+db933333xz59+hgzZ87M/M1vftP3lVde2TRjxozczZs3L/d4PLy6ulrs0aOHOXXq1Cq/32/efffduwDg7LPPHjh9+vRdp512WmjdunXKaaedVrhhw4YfAOD777/3Ll68eLXf7+fTp0/v8+OPP7oXLVq0pr6+XiwtLR3629/+tsrlcnXJxx9TkEAIIeSI0F6q6NzcXG3hwoXpEyZMKAIAy7LQs2dPHQCKi4sj559//sBzzjmn/rLLLqtPtu0vvvgibd26dfHLF6FQSKyrqxMA4PTTT6/3+/3xIODUU0+t93g83OPxGFlZWfq2bdukgoKCLnktgoIEQgghnWZvZ/wdqb1U0SeddFJw586dyrfffru69evmz5+/7r333gu8+eabGffff3+fdevWrWi9DuccFRUVqxKDgRifz9cizXRiq4EoijAMg6XqM6YadVwkhBByRGgvVfRVV11VW1tbK82bN88HAKqqsoqKCrdpmli/fr1y9tlnBx977LFtwWBQbGhoEAOBgBkMBsXYtseNG9d43333xe+eWLRokSfZPhxuKEgghBByRIilih4zZkz8LoaSkpKI3+83+/bta7z00kvr/9//+395xcXFZUOGDClbsGCB3zAMdumllw4sKioqGzp0aNkNN9ywq0ePHubkyZPr33333YySkpKy999/3//kk09uXbp0qa+oqKisoKBgyCOPPNLzUH7WVKFU0YQQQjoUpYru2ihVNCGEEEL2GwUJhBBCCEmKggRCCCGEJEVBAiGEEEKSoiCBEEIIIUlRkEAIIYSQpChIIIQQckSYPXt2BmNs9LJly9zJlpeXlxd/9tln7eaVmD59ep8777wzBwBmzJiRvWnTJrkj9rWroCCBEELIEeGll17KOuqoo0LPPvtsViq299xzz/XYsmULBQmEEELI4ayhoUGoqKjwz5o1a9Mbb7yRCQChUIidddZZg4qKisomTZo0KBqNxnMoeL3eUbHpWbNmZU6ePDk/cXuzZs3KXLFihXfq1KmDSkpKykKhUJfNv3AwKMETIYSQTqPOquzHt6spTRXN+rrCrqt7t5s46vnnn8846aSTGoYPH65mZGSYCxcu9M6bNy/g8XistWvXrly8eLHn+OOPL9vX97z66qvrHn/88V4PPPDA1vHjx4cP/lN0TdSSQAghpNt7+eWXs6ZMmVIHAJMnT6599tlnsxYuXOi/4ooragDgmGOOiRQVFXXbyv5AUUsCIYSQTrO3M/6OsHPnTvGrr75KW7t2reemm26CaZqMMcbLysrCjCW/SpBYHolEuuWlhH1BLQmEEEK6tWeffTbzggsuqNmxY8fy7du3L9+5c+f3eXl52siRI8PPPfdcFgB888037rVr18Yvg2RnZ+tLly51m6aJt956KzPZdv1+v9nQ0CAmW9ZdUJBACCGkW3vllVeyL7jggrrEsnPPPbdu8+bNrqamJrGoqKjsr3/9a+6wYcOaYsv/9Kc/bT/33HMHjx07tjgnJ0dPtt2pU6dW33zzzQO6c8dFShVNCCGkQ1Gq6K6NUkUTQgghZL9RkEAIIYSQpChIIIQQQkhSFCQQQgghJCkKEgghhBCSFAUJhBBCCEmKggRCCCFHhK1bt0pnn332wLy8vGFDhgwpHTlyZMns2bMzOuv9X3zxxfTS0tKy4uLisoKCgiF///vfewDA5MmT82fNmpX0gU2HGj2WmRBCSLdnWRbOPvvswZdeemnNO++8sxEA1q5dq7zyyisZnfH+qqqyX/ziFwO+/PLLVQUFBXokEmFr165VOuO9Dwa1JBBCCOn23nnnnYAsy/zWW2+tipUVFRVpd9xxx+41a9Yoo0ePLi4rKystKysr/eijj3wAMHfu3MDRRx9dfOaZZw7Kz88f+rOf/azv448/njVs2LDSoqKish9++MEFADt27JBOO+20gqFDh5YOHTq09MMPP/S1fv/6+nrBMAyWk5NjAIDH4+EjRoxQY8sXLFjgHzVqVEleXt6wWKuCZVm44YYb8goLC4cUFRWVzZw5MxMALr/88v7PP/98OgBMnDix4MILL8wHgIceeqjHLbfc0ieVx41aEgghhHQabfaqftaOppSmihb6+MLK1NJ2E0ctX77cM3z48KRZHvv06WN8/vnna71eL1++fLlrypQpg1asWLEKAFavXu159dVXN/Tq1csYMGDAMJfLVb18+fJV99xzT68HH3yw1zPPPLP1hhtu6Dd9+vRdp512WmjdunXKaaedVrhhw4YfEt8jJyfHnDhxYn3//v2HH3/88Y1nnnlmw/XXX18rinbqh127dskVFRWrv/32W/f5558/+Oqrr66bPXt2xvLlyz2rVq36obKyUiovLy899dRTQ+PHjw9+9tlngcsuu6xh586dyu7duzkAfPHFF/4pU6bUpuSgOihIIIQQcsS54oor+n/99dd+WZb5ggUL1l5zzTUDVq5c6REEAZs3b3bF1hs2bFjTgAEDdADo37+/esYZZzQAwIgRIyILFiwIAMAXX3yRtm7dOk/sNaFQSKyrqxMyMzOtxPecM2fO5q+//nr3e++9F5gxY0buvHnz0l577bVNAHDOOefUi6KI0aNHR2tqamQA+PzzzwMXXXRRrSRJ6Nevn3HMMceEFi5c6J04cWLo0UcfzVmyZIm7qKgoUl9fL27evFlesmSJb+bMmVtSeZwoSCCEENJp9nbG31GGDRsWSczm+Oyzz26prKyUxowZU/qXv/wlp1evXvprr7220bIseDye0bH1XC5XPMGRIAhwu908Nm2aJgMAzjkqKipW+f3+FsmQxo0bV1hdXS2PGDGiac6cOZsBoLy8PFJeXh65/vrrawcPHjwMwCYA8e3Gtpc4bm3gwIF6Q0OD9M4776SfcMIJwdraWmn27NmZPp/Pah2YHCzqk0AIIaTbO/vss4OqqrL77ruvZ6wsFAoJANDQ0CD27t1bF0URjz32WLZpmvu17XHjxjXed999vWLzixYt8gDAwoUL161evXrlnDlzNjc0NAhz584NxNZZvHixp0+fPlp72z3xxBODr776apZhGNixY4f09ddf+0844YQmABg9enToiSee6HXKKaeETjrppNCjjz6ae8wxx4T2a8f3AbUkEEII6fYEQcA777yz/uc//3m/GTNm5GZlZRler9e86667th177LHhyZMnF7z55puZ48aNC3o8nv06G3/yySe3Xnvttf2LiorKTNNkxxxzTPC4445r0exvWRb+/ve/59x0000D3G635fV6raeffnpje9u94oor6hctWuQvLS0dwhjjf/rTn7b179/fAIBx48aFPv/887ShQ4eqqqpqDQ0N4vjx44P7f2TaR6miCSGEdChKFd21UapoQgghhOw3ChIIIYQQkhQFCYQQQghJioIEQgghhCRFQQIhhBBCkqIggRBCCCFJUZBACCHkiHDbbbflDh48eEhRUVFZSUlJ2SeffOLr27fvsMrKygN+ZtCiRYs8c+bMSU/lfnYl9DAlQggh3d68efN8H3zwQcby5ctXejweXllZKamqyg5mm7quo6KiwltRUeG7+OKLG1K1r10JBQmEEEK6ve3bt8tZWVmGx+PhANC7d28jtuz+++/v9cEHH6QbhsHmzJmzYdSoUdFdu3aJl112Wf6WLVtcHo/HevLJJzcfc8wxkenTp/eprKyUt2zZomRlZRkVFRX+aDQqlJSU+H/9619XXnfddXWH7lOmHgUJhBBCOo32/OJ+VmV9alNF984IK5cd027iqPPOO6/xb3/7W5/8/Pyh48aNa5wyZUrtpEmTQgDQo0cPY+XKlavuvffenvfee2/OnDlzNt966619RowYEZ43b976t99+O3DllVcOXL169UoA+P77772LFy9e7ff7+YwZM7IrKip8s2fPTmn2xa6C+iQQQgjp9tLT060VK1asfOSRRzb37NnTuPLKKwtmzJiRDQCXXnppHQCUl5eHt27d6gKAr7/+OnDNNdfUAMA555wTrK+vl2pqakQAOP300+tbZ3zsrqglgRBCSKfZ2xl/R5IkCWeddVbwrLPOCg4fPjzy7LPPZgPNaZolSeKGYcTTP7fGGOMA4PP5UpqOuSujlgRCCCHd3nfffedavny5Kza/bNkyT15eXpupmo899tjgrFmzsgFg7ty5gczMTCMrK2uP4CAtLc2MpZzujrrtByOEEEJiGhsbxalTpw4sKCgYUlRUVLZ69WrPfffdt6Ot9e+7774dS5cu9RYVFZXdcccdff/zn/8kTet8xhlnBNeuXespKSkpmzlzZmbHfYJDg1JFE0II6VCUKrpro1TRhBBCCNlvFCQQQgghJCkKEgghhBCSFAUJhBBCOpplWdZBPQKZdAzne2nzlk4KEgghhHS0FVVVVekUKHQtlmWxqqqqdAAr2lqHHqZECCGkQxmGce3OnTuf2rlz51DQyWlXYgFYYRjGtW2tQLdAEkIIISQpiugIIYQQkhQFCYQQQghJioIEQgghhCRFQQIhhBBCkqIggRBCCCFJ/X929OmvIj7s6wAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "genre_yearly_trends = exploded_genres.groupby(['start_year', 'genres']).agg(\n",
+ " average_rating=('averagerating', 'mean'),\n",
+ " movie_count=('movie_id', 'count')\n",
+ ").reset_index()\n",
+ "\n",
+ "sns.lineplot(data=genre_yearly_trends, x='start_year', y='movie_count', hue='genres')\n",
+ "plt.title('Genre Popularity Over Years')\n",
+ "plt.xlabel('Year')\n",
+ "plt.ylabel('Number of Movies')\n",
+ "plt.legend(title='Genre', bbox_to_anchor=(1.05, 1), loc='upper left')\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Market Share by Genre\n",
+ "Analysis: Analyze the number of films produced by each genre compared to total film production.\n",
+ "Insights: Understand the market share of different genres, which can inform decisions on which genres to focus on for the new studio."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEuCAYAAACplOSzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABNKElEQVR4nO3dd5ycdbX48c95ZntP772RShIgQAjVXaXYENeCClhQ71XRgNeSX641ol6vJSgGlasUURApKkhgKUmABZKwhDTSSM+m9+1Tzu+P59lks2zfmXlmZs/79ZpXpjzlzGZ3znzL8z2iqhhjjDHd5fgdgDHGmNRgCcUYY0xUWEIxxhgTFZZQjDHGRIUlFGOMMVFhCcUYY0xUWEIxLRKRkSKiIpLmw7lVRMbG+7zeubeLSLEf5/aDiPxVRD7odxwAIvILEfmi33GYrrOEkuS8D8AGEenb7PlV3gfzyDjH024iEpEiEfmjiOwTkZMisklEvhnPOONBRPK9D8ntIlItIjtF5O8iMsvv2ABEZBpwNvAPEZknIlXerU5Ewk0er4vS+T7R5JhVIlLj/a6c423yM+D/iUhGNM5n4s8SSmrYBny88YGITAWyu3qwOLRKfgnkAROBQuD9wNvRPokfrasm584EngemAu8FCnDf74PA1TE4X1fe6xeAB9R1u6rmqWoe8EXglcbHqjo5GjGq6gNNjpkH/CewFajwXt8LbMD9fTBJyBJKargfuKHJ4xuB+5puICLXiMgbInJCRHaJyPeavNbYqvisiOzE/SCk2f7Xed+0p4iIIyLfEpG3ReSwiPxNRHp7my7z/j3mfQu9sIV4zwP+oqpHVTWiqhtU9e/NtikWkc0iclRE7hQR8eIYIyLPe+c9JCIPiEhRkzi3i8g3RWQ1UC0iaSJygYiUi8gxEXlTRC5r5+d5nois9879JxHJ8o69VkTe1+Rc6V4M01s4xqeAocAHVXWtqoZVtVpV/66q32tyjLNEpExEjojIRhH5SJPX7vHe+5NeS+41ERnT5HUVkS+JyGZgs/fce73W6THvPU9r431eBSxt52eBiMwWkRUictz7d3aT15aIyI9FZLn3+j+a/C6050bgPj1zuY4lwDUd3N8kGlW1WxLfgO1AMbAR9xtwANgFjAAUGOltdxnut2UHmAbsx/2wAxjpbXsfkIvbuml8Lg34NLAFGOtt/zXgVdwPzEzgd8Bfmx0rrY2Y7wbWeccd18LrCjwBFAHDgYPAld5rY4ES77z9cBPYr5r9PFYBw7z3MQQ4jNsqcLx9DwP92vh5rvX27w28DCzwXvsG8FCTbT8ArGnlOA8C97Tzf5fr/V992vs5zwQOAZO91+8BjgCzvNcfAB5s9nMq8+LM9vY/AJzv/R7c6L2fzFbOrS39HICbgJe8+72Bo7gJMg23JXwU6OO9vgTYA0zxjvkI8OcO/N6OAMLAqGbPfwio8Pvvym5du/kegN26+R94OqHMB34MXOl9yKTRJKG0sN+vgF9690d6245u8nrjc18H1gNDm7z2FvCuJo8HAUHvnI37tZVQsoF5wOvefluAq5q8rsCcJo//BnyrlWN9EHij2c/jM00efxO4v9k+TwM3tvHz/GKTx1cDb3v3BwMngQLv8d+Bb7RynGeBnzR5PB04BpwANnrPfRR4sdl+vwO+692/B7i7WSwbmv2crmjyeBHww2bH2whc2kJ8Q7z9s1p47SZOJ5RPAcubvf4KcJN3f0mz9zkJaAAC7fze/jewpIXnS4Ctfv9d2a1rN+vySh33A9fjfhjc1/xFETlfRF4QkYMichy3n7xvs812tXDc/wLuVNXdTZ4bATzmdascw00wYWBARwJV1Vp1++zPAfrgJoyHm3WV7GtyvwZ3zAUR6S8iD4rIHhE5Afy5nfcxAihtjNWLdw5uEmxN0/134CYSVLUSt8VyndfNdhVuq6Elh5ueQ1VXqWoR7jfwzCaxnd8stk8AA5scp8WfQxvv9bZmxxvWGH8zx7x/81uJv9Fg3J9BUztwE1JLMewA0nnn/0lzNwD3tvB8fpPYTJKxhJIiVHUH7uD81cCjLWzyF+CfwDBVLQTuAqT5YVrY793AfBG5rslzu3BbFEVNblmquqeVY7QV9wngdtzuklEd2OXH3jmmqWoB8Ml23scu3BZK01hzVfUnbZxjWJP7w4HKJo/v9c5ZijtwvaeVYzwHvFtEcts4zy5gabPY8lT1P9rYp7nm7/VHzY6Xo6p/fcdOqtW4EyHGt3P8StxE1dRw3G6uRs1/XkHcrrsWichFuImq+bgZuN22b7YTk0lQllBSy2dxu0CqW3gtHziiqnXiTlu9voPHXIfbjXaniDTOvrkL+JGIjAAQkX4i8gHvtYNABBjd2gFF5L9F5DwRyfAGvL+K+610YwfiyQeqcAf9h+C2oNryZ+B9IvIeEQmISJaIXCYiQ9vY50siMtRrMc0DHmry2uO4YxVfpYWWYBP3AXtxW3JTGs8NnNtkmyeA8SLyKW+AP937uUxs5z215g/AF73WqIhIrriTMVprhfwbuLSdY/7bi/F6b4LDR3G7tZ5oss0nRWSSiOQAPwD+rqrhNo55I/CIqp5s4bVLgafaickkKEsoKURV31bVla28/J/AD0TkJPAd3G6mjh73Tdypr38QkauAhbitnWe8472KOxCMqtYAPwJe9rpdLmjpkMCfcL/FVuL2m1+jqlUdCOf7uB/ox4Enabk11jT2XbiD5/Nwk90u3CTU1u/+X4BncKe0bgUWNDleLe7A86i2zq2qdcDluONPT+KNneDOcPuIt81J3Bbgx3B/DvuAn3K6S6xTvP/7m4Hf4A6cb8HtAm3N74FPNM6ga+WYh3H/72/D7cb7BvBeVW3aArkfd7xnH5AF3NLa8byk+hFa6O4SkUG4yerxNmI2CUxUrcCWMZ0hIt8BxqvqJ/2OpbtE5C/A31T18S7uvwR3VtfdUYjl57gTIH7b3WMZf/h24ZcxycjrBvss7uynpKeqHe36jDlVvc3vGEz3WJeXMR0kIjfjdpk9parL2tvemJ7GuryMMcZEhXV5GZPgRCQMrMH9e90GfEpVj/kalDEtsC4vYxJfrapOV9UpuEuxfMnvgIxpiSUUY5LLK3hXqYvIdBF5VURWi8hjItLLe36JiPxSRJaJyFvetS2PirvY5qkp0CLyuIi8LiLrROTzTZ6vEpEfibuQ5qsiMsB7foB3nje922zv+U96i0OuEpHfiUggrj8RkzAsoRiTJLwP6nfhXgME7sWT31TVabhdYt9tsnmDql6CexHqP3BbNVOAm0Skj7fNZ7zlb84FbmnyfC7wqqqejbv45s3e83fgXtl/Nu61QOu8izA/ClykqtNxl+D5RHTfuUkWllCMSXzZIrIK98LC3kCZiBQCRarauPz8vcAlTfZpTDprgHWquldV63Ev1GxcKuUWEXkT98LUYcA47/kGTl8J/zrugp8AV+AuQIm6y/Efx01w5wArvBjfRRurJJjUZoPyxiS+WlWd7iWRJ3BbGy0trNhUvfdvpMn9xsdp4taEKQYuVNUa7wLFLG+boJ6e/hmm7c8JAe5V1W938L2YFGYtFGOShNciuAW3pEANcFRELvZe/hQdKJbVRCFw1EsmZwEtLZHT3HPAf4Db/SYiBd5zHxaR/t7zvRvXeDM9jyUUY5KIqr6Buxrvx3AXWfyZuNUpp+MuzNhRi3FbKquBH+J2e7Xnq8DlIrIGtytssqqux63F84x3rDLaLg1gUphd2GiMMSYqrIVijDEmKiyhGGOMiQpLKMYYY6LCEooxxpiosIRijDEmKuzCRtMjlTilubjTW4uAXs3+bbxlAgHAueJDRw9+8zc7+wIhIOjdGu/X4NaP3914cwZuOhyv92JMorCEYlJSiVMaAMbg1n5vehvp/du3M8fLzI4sB2Z1dPvIvvG1wB7cBNP4b9PbTmfgpgOdicGYRGcJxSS9Eqc0E5iKu2DhDO82Dcj2MaxsYKx3a1Fk3/h9uBcIrvT+XeEM3LQvPuEZE32WUEzSKXFKB+MuVHg5cB4wkeT8XR4IXOPdAIjsG18JvAa86N3ecAZuCvsTnjGdk4x/hKaHKXFKe+MmjytwV7Od4G9EMTUYuNa7AZyM7Bv/Cu4y8kuBVyzBmERlCcUkpBKndBrwYdxv79PpuTMS84F3ezeA/ZF94x8B/ga86AzcFPEtMmOasYRiEkaJUzoTN4lcB4z3OZxENQD4T+9W6SWXh4ByZ+AmW5jP+MoSivFViVM6A/g4bhKxwkydMxj4infbHdk3/mHgb87ATR1ZOdiYqLOEYuKuxCnNA64HPo9b7c9031BgLjA3sm/8DuBh4CFn4KaV/oZlehJLKCZuvC6tL+Amkzyfw0llI3CLcH09sm/8BmAhcK8zcFOtv2GZVGcJxcSUd43Ip3Ar/c30OZye6CzcOvALIvvG/w640xm4qdLnmEyK6qkzZ0yMlTileSVO6deBbcAfsGTitz7APGB7ZN/4+7fsOnua3wGZ1GMJxURViVPau8Qp/T6wA/gZVg420aSr8tFlNb2eWrihePHCDcWX+BmMiFwrIurVtW9ru6+JSE6Tx/8WkaKYB2g6xRKKiYoSp3RwiVP6c9xE8h2gt88hmVYcjqS/dlLTBgPvAZYu3FC8bOGG4ot9CufjwEvAx9rZ7mvAqYSiqler6rHYhWW6whKK6ZYSp7RXiVP6M+Bt4FZssD2hqaJlNX2atxovBpYt3FD8r4UbiqfEKxYRyQMuAj6Ll1BEJCAi/ysia0RktYh8RURuwZ0i/YKIvOBtt11E+nr3bxWRtd7ta95zI0XkLRH5g4isE5FnRMTPtd16BBuUN13iDbbfAnwbd9l3kwSqNLDiUDijtVWT3wtcvXBD8Z+B73z1rGd3xDicDwKLVXWTiBwRkZnA+birQc9Q1ZCI9FbVIyJyK3C5qh5qegAROQf4tLefAK+JyFLgKDAO+Liq3iwif8O91unPMX5PPZq1UEynlTilpcAG4H+wZJJUXqjp3d63dAe4Adi4cEPxLxZuKC6KYTgfBx707j/oPS4G7lLVEICqHmnnGHOAx1S1WlWrgEdxW1wA21R1lXf/ddzSBSaGrIViOsy7qn0hp/9gTRKpj8iaHaHsqR3cPBP3QsnrF24o/q+vnvXs/dGMRUT64C72OUVEFLeQmeJ+8HdmCRlp47X6JvfD+FvOoEewFoppV4lTmlPilP4vsAJLJknrpbpeXbmwcQBw38INxS8s3FA8MYrhfBi4T1VHqOpIVR2GO8W8AviiiKQBiEjj5I6TuAtlNrcM+KCI5IhILu4qzS9GMU7TCZZQTJtKnNJ3AWuA23C/RZokFFLeXt+Qe143DnEZ8ObCDcW3L9xQHI1v+h8HHmv23CO4g+87gdUi8ibuqgoAvweeahyUb6SqFcA9wHLcOjJ3q+obUYjPdIGo2gKl5p1KnNJewC+Am3wOJSFc9YnDy7/2s90dLgGcaF6rLXxpeX3hnCgdbjvw2a+e9ezzUTqeSRHWQjHvUOKUfgR4C0smKSGi7F1ZXxDNZDgSeHbhhuJfLtxQnBXF45okZwnFnFLilOaXOKUP4NbXGOB3PCY61jfkbYogGVE+rOBebLhy4Ybi6VE+tklSllAMACVO6Tm4A6LXt7etSR6qHH+ptiiW66hNBl5buKH42ws3FNvnSQ9nvwCGEqd0LlAOjPU7FhNd20PZq4I4Lc2OiqYM4HbcZVyGxPhcJoFZQunBSpzSPiVO6b9wB9+j3SVifKZK3fM1vSfF8ZRzgDcWbih+VxzPaRKIJZQeqsQpvQhYhbvchklB+8MZy2s00C/Op+0HPLNwQ/H/W7ihuK2LDk0KsoTSA5U4pTcBz+OWjTUpSJXIszV9Rvh0egdYADyycENxrLvbTAKxhNKDlDilTolT+lPgT1gXV0o7Hkl77Wgk3a+E0uha3AH7cT7HYeLEEkoPUeKU5uIunPcNv2MxsfdcTe9Cv2PwTAReWbih+EK/AzGxZwmlByhxSofhFjH6gN+xmNiriThvVIaz4jkY354+wHMLNxRf63cgJrYsoaQ47/qS5cB0n0MxcbKstlfE7xhakA38feGG4q/4HYiJHUsoKazEKb0YeAEY6HcsJj6CKhs2B3PP8TuOVjjAHQs3FP+vzQBLTZZQUlSJU/puYDEtL/ltUtRrdYXtFaRKBLcBDyzcUGz1mFKMJZQUVOKUfgD4J5DjdywmfsLKrlX1+ef7HUcHfRz4qyWV1GIJJcWUOKXXA3/HrbhnepDV9fnbFEmmmjUfBh5auKE43e9ATHRYQkkhJU7p54D7sdLOPY4qh16pK+xOAS2/fAj4myWV1GAJJUV4V7//Hvs/7ZE2B3PWhnGStWb6B3FngNnFtknOPnxSgDdmcjdujQrTw6hSvbS219l+x9FN7wcetjGV5GYJJcmVOKWX4RbESqa+cxNFe0KZK+s00MvvOKLg/cDv/A7CdJ0llCTmXbT4T2wAvsdSJfRcbZ9UqmPzmYUbin/kdxCmayyhJKkSp3QC8BR2nUmPdiSS/tqJSFqqFbWat3BD8Zf9DsJ0niWUJFTilA4FynBrT5gerKymd3+/Y4iRhQs3FJf6HYTpHEsoSabEKc0GHgeG+RyK8VlVJLDiYDgzVZeGd4D7F24ovtTvQEzHWUJJPncDibpWk4mjF2p6p/o020zcIl2j/A7EdIwllCRS4pR+A7je7ziM/+pV1m4PZSf7VOGO6AP8c+GG4jy/AzHts4SSJEqc0quAH/sdhznTseNhSj+3l0lztjP54u28srL2jNePHgvzoU9XMv2KHVxw1U7WbqgH4OChEJe8fxfTLtvB409Vndr+gzdVUrkv1O55y2uLqqP7ThKXKpM3n+y3YNbieXadVYJL6YQiImERWSUi60TkTRG5VUSS7j2XOKXjgb+S4v9fyehr/32Q91yew/qXRvLGcyOYOO7MXqgf33GE6VMyWfX8CO65YyBz//sgAA8+XsWnPlLAy08M4+eLjgLwr2eqmDk1k8ED2762L6xsW9uQl4zLrHSaKidfOzxy+fLDo74KfNPveEzbUv0DqlZVp6vqZKAEuBr4bvONRCRhr84tcUoLgH8AiVLS1XhOnAzz4qu1fPb6AgAyMoSiwjOvL12/qYEr5riLPp81LoPtu0LsPxgiLR3q6pT6esURCIWUO/5wjK//R/vXJ75eX7Abku+LUWeFVbb9u3LKwber+jeuoLxg1uJ5xb4GZdqU8r+UjVT1APB54MviuklEHhaRfwHPiEieiDwnIhUiskZEPgAgIiNFZIOI3C0ia0XkAREpFpGXRWSziMzytpslIuUi8ob374Qohf5b4KwoHctE0dYdIfr1CfCZr+3nnJKd3HzbfqprziyWePakTB77t9ultfyNOnbsDrK7MsT11+bz9JJqrr5+D9/5eh8W3XOcT5YWkJPT9p9kRNm3oq4wWZao77LqUMbyR3bO6HMsmDO6ydMB4MFZi+el2nU3KaPHJBQAVd2K+54b5+5fCNyoqlcAdcC1qjoTuBz4uYg09tmOBRYC03A/3K8H5gBfB+Z522wALlHVGcB3gNu7G6+3FP0nunscExuhkFKxpp4v3ljE62XDyc12+Omvj56xzTe/0oujx8PMLN7Bb/7vGDOmZJKWJhQWBHjiz0NY/vRwZk7N5Imyaq67Jo/P37af0s/tfcdYTKO3GnI3RJCUnd2liu6s7rX08d1nnxfUtIIWNukD3GvjKYkpYbt6YqjpL2KZqh5p8vztInIJEAGGAAO817ap6hoAEVkHPKeqKiJrgJHeNoXAvSIyDlCgW8txlzilI3FbJyZBDR2cxtBBaZw/MwuA696bx09/c2bBxIL8AH/8lVuBWVUZM2s7o4af+Wf3w18cYd5Xe/HXx04yc1om138on2tv2stzjww9YztVjr9U22tmDN+Sr1Q5ufzwyPVbqvq3d+3Ju4C5wC/iEJbphB7VQhGR0UAYOOA91XSmzCdwrzw/R1WnA/uBLO+1+ibbRZo8jnA6Kf8QeEFVpwDva7Jvp5U4pQHgz9i4SUIb2D+NYYPT2LilAYDnX6ph0vgzGw/HjodpaFAA7n7gBBdfkE1B/ulxls1bG6jcH+LS2TnU1kZwHEFEqKvXd5xvRyjrjQaclr61J72wyvZ/V04+sOX0eEl7bp+1eN7UmAZlOq3HJBQR6QfcBfxGVd/51+p+eB9Q1aCIXA6M6OQpCoE93v2buhyo6/8BF3XzGCYOFv6oP5/60j6mX7GDVWvr+fYtvbnr3mPcde8xAN7a3MDUy3Ywac52Fj9fza9+eOZqOfN/cpgffrMPAB+7Np/7/naC2dfs4tYvFp2xnSr1z9f0nhSP9xRv1aH0FY/snNHrWDB3TCd2ywT+PGvxPFsYNYGkepdXtoiswu1+CuFWM2ytmfwA8C8RWQmswh0T6Yz/we3yuhV4vkvRAiVO6YW4YzAmCUyfksnyp4ef8dwXbyw6df/Cc7PZWD6y1f0f+v2gU/f7903jpX+1vKLOgXDG8mpNu7hbwSYYVXR3TdGyZQfHXdzFWWvTcMcqb4tyaKaLpOUv68YPJU5pFrAaSNX1mZLWVZ84vPxrP9s9y49zqxL5y8mBO45EMlJmCRJVqlYcGbF288kBF3T3UEDx8itv7/KXOBM9PabLK0l8B0smppkTkcDyVEomYZUdT+2dvC8KyQTcyTS/n7V4XpfHLE30WEJJECVO6VTgv/yOwySe52r7pEzNm5pQ+spHd80oOtqQG82iYGOAb0fxeKaLLKEkgBKn1AH+QOqPaZlOqo04q/aEsib7HUc07K4pWvrY7ukzGyJpsZi9+M1Zi+dZ695nllASw+eAlL/62XTestpe7a8UmeBUqV5xeMQrSw+MvzSGS8ZkAnfG6Nimg+wbsc9KnNK+2CrCpgVBlU2bgrnnNn1u/7Zq7r117anHh3fVctVXRnPZjadnmq157iD/vmMr4kAgIFz77fGMPqeIqiMN/N9XVlN7IsTVXx3DtGJ3CvPdX3qT0u+eRWH/6M/AjajseHrvpIYjDbkXRv3g71Qya/G8jy6/8vaH4nAu0wJLKP77CdDb7yBM4lleV3gQGN/0uQGjcvnGY25jNhJWvnvZS6cSQ6PxF/RiyhWzEBEqN57knrlrmffvC3n9yf3M+sAgZlwzgN/dvIppxf1Y+8JBhk7Kj0kyqQ2lr3yicurYhkhaUdQP3rpfzlo876nlV95+Io7nNB7r8vKRNxD/ab/jMIknoux+oz6/zW7QTa8eoe+wbHoPyT7j+czcNBqXoauviZxabCiQJjTURwg1RBAHwqEIS+/bxRWf6ew1vO3bU1O49FF3vKQo6gdv2yBaWFHcxIclFH/9GPs/MC1Y3ZD/ttJ2WYWKf+9n5jUDWnxtddkBbr/6Ff7wH6v4+AL3Avtz3juQjS8d5nc3r+LKL43mpb/u4bwPDCIjO9DiMbpCleqVh4e/suTAhFiOl7TnS7MWzxve/mZtE5GqZo9vEpHfdPe4qcy6vHxS4pReDFzjdxwm8ahy5JXawjYLaIUaIqx7/hDvm9vyaiXTSvozraQ/b684ylN3vM1//mkm2flpfP530wGoOR7kubt38Jk7pvLgf79F7Ykgl900glEzuj4BK6Ky8+m9E+uPNOTFY7ykLZnA94DP+BmEiKSpaqi1xx3dL5nYt2P//NTvAExi2hLMXh3CyWlrm7dePMzQSfnk92177GPMeb04tKuWqqMNZzz/9G+3UfKFkVQ8uZ9hk/P5+I8m8eSvtnQ55tpQ+uuP7Jqef6QhL1Gm7t4wa/G8ibE6uIiM8Oonrfb+He49f4+I/EJEXgB+2sLj6SLyqrffYyLSy9tviYjcLiJLga/GKu5Ys4TigxKn9IO4tViMOYMqNUtqe09rb7uKJ/e12t11cEcNjUsq7Vp3gnBQyS06XU3h4PYajh+oZ+ysXjTUhRFHQCBYH2nxeO3ZU1O45LHd06c3RNLbLzcZPwFgQTePke2VEF/lrQn4gyav/Qa4T1Wn4a4DeEeT18YDxap6WwuP7wO+6e23hjPHe4pU9VJV/Xk34/aNdXnFmbc0fbeLb5nUVBnOXFGngTbrgTTUhtlYfoSPfP/0F/CXH9wNwEUfG8qbzxxg5T/24aQL6ZkON/5iyqlBeoAnF77NNV91u8pmXjOQ//vyapbdt4urbhlNZ6hSU3F0+KoNJwZe1qkd4+dDsxbPO2/5lbev6OL+tV4pC8AdQwEap3FfCHzIu38/7uKwjR5W1XDzxyJSiJs0lnrP3ws83GS7pJ/ubAkl/m4AYtYUN8lLldCzNb3bXcI9IzvA7a+emXMu+tjpYlzFN4+k+OaRre5/0y9PlxHJ75PB1/56bqvbtiaisuuZvRNrDjfkze70zvF1O1ASh/M0XWW3utlrzR+3pqPbJSzr8oqjEqdUgG/6HYdJTEcjaa+diKQPbX9Lf9WG0yoe2TU973BD3gS/Y+mA4lmL57VXAbIryoGPefc/AbzU3g6qehw4KiKNZQg+BSxtY5ekYy2U+PoAkAx/hMYHz9b06et3DO2prC1YumT/hDmKRG+ucex9k+h/cN8C/FFE/gs4SMevJ7sRuEtEcoCtndgvKVg9lDgqcUpfBhK9i8C0INb1UKojgZV/PDGk831PcaJKzRtHh61668SgZP39nbb8ytvX+B1EqrMurzgpcUpnY8nEtOKFml4J21sQUXY/s2/SriROJgDf8DuAnsASSvxYrRPTogaVddtCOdP9jqMldeG0ikd3zcg5VJ8U4yVt+eisxfMG+x1EqrOEEgclTul44P1+x2ESU3lt0Um/Y2jJ3tqCpY/umnF2fSQ9FRYvTQe+5HcQqc4SSnzciv2sTQvCyrY1DXm+1KpvjSq1bxwZ9vLz+8+6NMkG39vz+VmL52W3v5npKvuQi7ESpzQPd1qhMe9QUV+w28dFFN/BHS+ZuGP9iUEX+R1LDPQFPu53EKksYX6RU9hHgDy/gzCJJ6IcWFFXmDCtk7pw2huP7pqRfag+/yy/Y4khXxeMTHWWUGLPfoFNizYGc9eHkehXtuqCfbX5Sx/dNWNqfSS9j9+xxNhFsxbPG+t3EKnKEkoMeYPxqdh1YLpJlRPLanrNSIA46t44MvTl5/ZPvLS9+isp5Ca/A0hVPeUXyC8J2ToJa5jXWUKECIrSnyGMkcls1tUcZC8ODtnkMolzSZeMDu0LsFlXc5j95FHIFHF7cvbqDoI0MFwSZVXzxLAzlFXRgHOZnzFElD3P7pt44mB9fk/70nPDrMXzvrP8ytu7tryyaZUllBjxVhW+we84WuLgMJNLSZM0IhphJS/QVwfSm/6MYQqOOGzW1WxnA+OY1qF9cyngOIe5QEpYq69RpcfJJo9KtjODi1uJpGdSpeH5mt6+jlPUhdNWPbln6tC6SHpPXKh0GPAuoMzvQFKNdXnFzlW49a0TjoiQ5vVuqNfSAOgjA3G8CUeF9KGe2g7vC7itFlXChBGEHWxkGONOHdO4DobTl1dp2kC/zr+/Ln/po7tmTKmLpCf82mExdJPfAaQi+0uPnY+1v4l/VJVXtYxl/Ive9KdQzhyLrWQ7fWj5M6+lfdMknf4M5TWeJZtc0kjnBEfpL3ZxclOq6LM1fXz5oahS9+bRIS89u69HjZe05tpZi+cV+B1Equnpv1QxUeKUppPg9eJFhAsoIagNrOYVqvQ4eeLWE9+mbyEIAxneqX1HygRGeospr9eVjGYSe3TbqXGV0dITe1fOdDISWH44knF+vM8bUSqf23fWsQP1BXPife4ElY3bi5D0Ra0SibVQYuNSoMjvIDoiXTLoRT8Osw+ASt3OIfYyhVlnVPnryL6NTuhRAHLJZy87mCYXUM1xajQhVxiJq+dq++TG+5z14cCbj+2ann6gvmBSvM+d4Gw5pCizhBIbH/Q7gLY0aD1BbQDcWVtH2E8O+RzSfexgI2dzEYFWekRa27epraxjDJNPzQRzCWHC9GR1EWf17lDWlHie80Bd3rJHds2cXBfJ6BfP8yaJq2ctnme9NFFkP8zY+IDfAbSlnlrWsdLt0EcZwFD6yWBe1qeIEKGCZaDuwPxEmUm91rKe15khc1rdt9EB3UMBvckUd8mkQu3NK/oM+RSSL0U+vePE8GJtUX28zqVK/epjQ1asPT7kknidMwkVAZcAz/scR8qwhBJlJU7puUBCl3HNlyIuoPgdz18kV7W4faZkM4M5be7bqL8MoT9DTj0eL2d3M9rUEFLZvCGYG5cCWhFl73P7zjra2fGSfY8t5+DiNxGB7JH9GHXre3EyTn9E1O46zLZfPEHNlv0MufFSBn3YHQoKHqthyw8fIVxdx5AbLqXX7PEAbP7+3xnx5feQ0Se/xfMliPdjCSVqrMsr+hK6dWL8sbyu4AC0MygVBfXhwJuP7Z6e1tnxkoZDJ9n/j5VMvuMmptx1MxpRjixdf8Y2aflZDP9iCQOvO3NOwZGl6+hbPJWJv7iBfY+8CsCxVzeTM3ZAoicTgPf5HUAqsYQSffYLas4QUfZU1BfEfGbXwbq8ZY/smjGpLty18RINR4g0hNx/64Ok9z5zTdP0olzyJgxG0s782JBAgEhDkEgwDCJoOMK+x1cw8LoLuv5m4mf0rMXz4jqulcqsyyuKSpzS3tDs0nLT461tyNuiyJD2t+waVerXHB+8fM2xoV0eL8nom8/A687nzRvuxMlIo2DmKArPGd2hfXtfPomtP/0nh55by7BPX86BJ16n77umEMhK72o48XYlsNbvIFKBtVCi62Ig5t0aJnmocvTl2qKYjZ1ElL3P7Z+wZc2xod1a3yZ0spZjr25m2p/+k7Mf+AqR+iCHnu/YZ2xabhbjf/ARJt/xaXLGDuDYa1voNecsti38N1sWPErVW7u7E1o82NpAUWIJJbpsRo05w9vB7DdDODG59qQhHFj92O7pafvrCid391gnVm0nc0Ah6UU5OGkBes2eQNX6zieCyr+8zKCPXcSRJevJHTuQUXOvYfc9S7sbXqxdNGvxPPsiGAWWUKLLEoo5RZXaJbW9Y9I/f7Au98W/75oxsavjJc1l9CugakMl4bogqsqJVdvJHta5pb7q9hyh4UgVBdOGE64PunMQBCINoWiEGEt9AFvGIQpsDCVKSpzSfMD3+hYmcewNZ6yo1UBUv2So0rD2+ODXVnezi6u5vLOG0HvOBNZ/5Y9IwCFnzAD6XTWdA09WAND/mpkEj1Sx7pZ7CNfUI46w//EVTP3dzQRy3Rphu+9dytAbLwWgz2WT2PyDR9j/j5UM+VRS9ChdDKxvdyvTJlHV9rcy7SpxSq8EnvI7DhMbV33i8PKv/Wx3h8v1qhK+/+SgyuOR9GHRiiGi7Hth/4RD++oKbVZS9P15+ZW3f8rvIJKddXlFj3V3mVOORdJei2YyaQgH1jy+e7pYMomZpGhGJTpLKNFznt8BmMTxbE2fqNVmP1Sf++Iju2ZMqA1nDIjWMc07jJi1eF5Cr3CRDGwMJXrs+hMDQHXEqdgXzpzZ3eOo0rDu+KDX3jw2zL49x8dMIOHnOCcya6FEQYlTOgDo73ccJjEsre3d7WOosv+F/RM2WjKJK1t4rpushRIdU/0OwCSGBpW33g7mdKt10hAJrH1iz9R+teEM+72KL0so3WQJJTqsu8sA8Ept0bHu7H+4PvfFZ/ZOPD+CkxGlkEw7VDmuEdkZqg/4HUrSs4QSHfZN0hBWdqxuyOvSIpCqBNefGPTqqqPWxRUrqtSosj3SEDgSqksLB2vT84K1aUMiocBA3L/hSaPv+Hnm1ltui1vdmlRjCSU6rIViWFWfvxNkRGf3U+XAC/vH79tbV2TJJApUaUDZEQ45B0N1acFgTXp2qDZ9YDjoDAVpa1n/ADAOWyiyyyyhdFOJU+oAVqu7h4soB1+rK+r01PGGSGDdk3um9K4JZ9qXkk5SJQLsjISc/aG6tLpgbVpGsDa9f7g+MAJkHG5y6KyJWELpMkso3TcQyPI7COOvTcGcdWHkss7sc7g+58Vn9k6aFcHJjElQKUSVPZGQUxluCNQEa9LTgrVpfUL1aSNRGQmMjOKpzorisXocSyjdF7WroU1yUuXkstreHV7HTZXgWycGvvLG0eG2ukIzqhzUsOwONQROhmrTnWBtWlGoLm24RpwhQMxqyjQxPA7nSFmWULrPrq7t4XaFsirq1bm0I9uqcnDJgfF7K2uLenQy8WZW7Qg3BI6F6tII1qQXBuvShmrY6QdEZQXlLhrs47mTniWU7rMWSg+mSvD5mt7jO7JtMOKsf3LP1F7VPWi8RJVqVXZEGgJHgt7MqtDpmVWJ+HOwhNINllC6zxJKD3Yokv7aSU2b0952R+pzXnp676TzUnW85NTMqmDgYKg+0DizalAHZlYlGkso3WAJpfusy6uHUkWfre4zqJ1tQhtODCivODoiJbq4VAmj3syq+rT6YG1aZrA2vV83Z1Ylkn6j7/h5+tZbbgv6HUgysoTSfdZC6aFOamDFoUhGqzVSVDm49MC4yj21vZIumaiiQGUk5FSG6wM1wdr0tGBtWt9QfdoIVEYBo/yOMUYEGATs9DuQZGQJpfusidxDvVDTO7u115qMlyT8+lCqHGgysyoQrE3rFeeZVYlmMJZQusQSSvf18jsAE391EVm9M5Td4qDy0YbslxbvnXxuRJ2Euj5JlWPezKoTodo0DdamFwbr0oZp2OmPrZbdlH1J7CJLKN3gXSWf73ccJv5equtV1/w5VUIbTw4of/2Iv+MlqlRrRHZEgo47s6omPT9UlzYkEgoMAIr8jC1JFPkdQLKyhNI9Bbh9rqYHCalseash94xlVlQ5tPTAuN3xHC9Rpd6bWXUoVJcWDNam5QRr0wdFgs6QJJtZlWha7co0bbOE0j0Ffgdg4m9lXcF+kLGNj4MR560nK6cUVIeypsfifC3MrMoI1qYPCNcHhoOMBzp0HYzpMEsoXWQJpXty/A7AxFdE2ft6fcGpmV3HGrJffmrv5HOiMV7izazaEwk5e8P1gepgbXpGD5lZlWgSauwrmVhC6R5LKD3Muoa8TRFkkCqhTSf7l688MrJLXVyq7New7Dk1s6omvVewLm0EKkOxa5v8Zi2ULrKE0j32i9eDqHLs5dqic1Q5vOzguJ27a9ofL1HlqEZkV7ghcCxYm0awNr0oVJs2TCPOAGBAHMI2nWd/111kCaV7rExrD7ItlP1mTSRtwL8rp+RVhbLOWF1YlSpvZtXRJjOrhkZCgf7Y1PJkYwmliyyhdE/Y7wBMfDSEJPLY0aHBRyqnDAhHAgfDwUC5N7MqO1ibPtibWTXZ7zhNVFhC6SJLKN0T8jsAEwdZmTufPTFjb+VzfbPrnDQHsZlVKS7gdwDJyhJK91hCSWVZmTsYN2I3OVnnB0NpR7M2ZZ6d6ejJuj76Yn0vehPAWiSpqd7vAJKVJZTusYSSirKztjFueCXZWRcgMgJAwpoFIBHJzz4oF2cfhFCWbq7rr3tDOUxB6O1v0CaKav0OIFlZQukeSyipJCfrbcaO2Ed25oWInHHNhxPS3Oabp9XJuLydMk5F6+t78Up9H83SANOR1Fo94fgLyzj56msAZAweRN/rP4qTnn7GNrWbt3DksX+i4TCB3FwG3fKfhKuq2H/3PURqa+l1zVXkTpsCwP4//Ik+H/kQaYWFcX8vHWQJpYssoXSPJZRUkJO9hXHDD5CVeQEiY1raRMKa19ruopKZdYQLs44I4XTdVTdAtwbzGI/QZq2UZBA6dpwTy15kyLe/gZORzoE/3Ud1xSryzz+98ky4ppbDDz/KwC/eTFrvXoRPngSg6vU3yJt1Lnkzp7PvrrvJnTaFmrXryBg6JJGTCcA71mkzHWMJpXtsllcyy83ezLgRh8jMuAA5vZRKSyTcsUVAA0EZlrtbhikabihkRX1fjUTSOQdJ3r81jUTQYBANOEQaggQKz1xxqPr1CnLOnkpab3d2dCDf/VFJIODuFwqDCBoOc3zJiwz4/Gfi/h46yVooXZS0v+QJosrvAEwX5OVsZOzwo2RmnI9IhyoMCgRQrUKk1ZbKmdtLIPM452UeFyJpeqCun77VUMAIHEZ2K/Y4SysqpPDyy9j1vQVIejrZZ40n56wJZ2wTPHgIDYfZ++vfEqmrp+DSi8mfdS5558zgwH0PULXidXq/7xpOvFRO3qxzcDIS/vIta6F0kSWU7jnsdwCmE/Jz32Ls8JNktl5lsR1VQIcSSlNOSPrn7JX+OXshmKdv1vbTqkgmM5HEv94hXFNDzdq1DPvuPJzsbA786T6qVrxO3nnnnNpGI2Eadu1m4Je+gAZDVP7y12SNHEF6/34M/MLnTh3n2HMvMOCzN3LwwYeJ1NRQePmlZI0a6dM7a5O1ULrI8TuAZFYWebgOa6Ukvvzc9cyYuILJYyd2I5mAdv//Or1Kzi7Y5lxUsEkaMg+zjAgbu3vMWKrbuJm03n0I5OUhgQA506ZSt237GdukFRaRPXECTmYmgbxcssaMpmFP5RnbHFtcRtG730XV62+QOXQI/a7/KEefeCqO76RTavwOIFlZQum+Q34HYFpRkLeWmZNWMnnsJDIzzmt/h7aJRu+bqxORwuwDziVFG50JedtlQ6CGZSjHo3X8aAn0KqJ+xw4iDQ2oKnWbNpM+8MwlyHKmTqbu7W1oOEykoYH6HTtIH3C6AGTwwEHCJ06QPXYM2hAEx/3Y0VDCzmk52JmNRaSPiKzybvtEZI93/5iIrO/gMb4oIjd49+8RkQ9795eIyLmdfwv+sC6v7jsEydUvnvIK81czZliQjPRz2t+4EyJaTyD6M4LTauWs/B1ylorW1vfmpfo+WqABWiwvHG9ZI0eQe/Y0Kn/2S3AcMoYOoWD2BZx4qRyAgjmzyRg4gOyJE9jz05+DCPkXnk/G4NMT3I4++RS9rrkKgLxzprP/7ns4sfRFel31Hl/eUwfs78zGqnoYmA4gIt8DqlT1f0VkJPBEe/uLSJqq3tX5MFs8VkBVfZssZAml+6yFkiiK8t9kzPAI6Wkz2t+48yRMg6a3v12Xj6+SnXWYOVmHhXCmbqvtrztDuUxC6Be7s7av19XvodfVZ374F8yZfcbjonddTtG7Lm9x//6fvuHU/UB+PoPnfiX6QUZXpxJKOwIi8gdgNrAH+ICq1orIEqAcuAj4p4jk4yWi1g4kIu8Gvg9kAm8Dn1bVKhHZDvwReDfwG+DBKMbfKdbl1X2WUPzWq2AV50xexVmjz45VMgFwwhq3PppAvYzK2+VcWrhBirL3ymsSZCVKJF7n78EUOBDF440D7lTVycAx4LomrxWp6qWq+vP2DiIifYH5QLGqzgRWArc22aROVeeoqm/JBKyFEg2d6m81UdS78A1GD3VIS5sej9NJWOP+gS5IeuYxzs88JoTTtbKun24OFjAGsSJcMXJg6y23BaN4vG2qusq7/zpndo8/1InjXABMAl4WEXBLZ7zSxWPFjCWU7tvhdwA9Tp+i1xk1NIO0QMxaIy0Rn8eQA0EZnFspg7VSI8F8Kur6a7130WTCX9iRRHZF+XhNF5oMc+bS+NWdOI4AZar68VZe78yxYsYSSvdt8TuAHqNvr5WMHJJFWiC6g+0d5IQ1IbqIBXEyTjIz46QQCejhun66tqGQoTi0uGyM6ZRoJ5RoeRW4U0TGquoWEckBhqrqJr8Da8oSSvdt9juAlNev1wpGDsklEPB1+qQT0oSrk+GEpU/OPrk0Zx8Ec3VtXT89Fs5iBsI7FrM0HZKQCUVVD4rITcBfRSTTe3o+kFAJRVTV7xiSWolTmo57ZW3CfdgkOaV/7xWMGJxPIDDR72AA6nqlLa8entn1CyPjRN2aLausZkuXfHnrLbfd6XcQycpaKN1UFnk4WOKU7gBG+x1LilAG9HmN4YN7EXAS6sPbCWlm+1v5r3nNltr+ujecw1TEatt3wDq/A0hmllCiYzOWULorwsC+rzFsUF8CzgV+B9OSxiJbySStTsbln67ZUl7fR7NTsWZLFK31O4BkZgklOrYACXvZb4KLMLDvqwwfNADHudDvYNrSUpGtZOHVbJmdijVbomj/1ltus+vKusESSnQk9AJ/CSrMoH6vMmzgIBxndvub+6+tIlvJpHnNlrq+qprOzGSu2RIl1t3VTT39FyhaKvwOIImEGdz/FYYOGILjXOR3MJ0hYfJRVbwry5JdizVbChmJMMLv2Hxi3V3dZAklOipwywHbz7N1IYYMeJUh/YfhOHP8DqYrxJ3JdxI6Vr0xmTSr2bKqtp9WJ0vNliiyhNJN9gEYBWWRh2tLnNJ1wNl+x5JwhCBDBr7K4P4jcSQpE0kzVaRgQmkqvUqmp1cJEUeP1/fVFfW9GIDDhPb3THrW5dVNllCiZwWWUE4TaWDogFcZ3H80Ihf7HU7UKNU9ZX6UW7NFLsk+AKFs3VDbXw+Gs5mGUOh3bDEQAt70O4hkZwklepYDn/M7CN+J1DNs4GsM6jcWkUv8DifaRKntiZcCN6nZUlPfm5fr+2h+otRsiZKKrbfclhDrYSUzSyjRs8LvAHwlUsfwQcsZ2HdcKiaSU2JUZCtZiEpO1mEuSrSaLVGwzO8AUoEllOhZi7sES08axARHahk+eAUD+kxI6UTiiXWRrWTi1myRUYoGG4p4ra6vBjSNmUhS1lmyhBIFyfgfn5DKIg+HgNf8jiNuHKlh1NClnDf1JAP7XoLIgPZ3Sn7xLLKVLNyaLXJ+4Rbn3Py3ZV/6cZai7PY7rk5Q4CW/g0gF1kKJrmeAy/wOIqYcp5qRg1fQr/dkRC71O5x486PIVjJJ0pota7fecttRv4NIBZZQousZ4Ha/g4gJx6li1JCV9O01FZHL/A7HL34X2UoWSVazxbq7osQSSnRV4JYETvYBytMCzglGDq2gb9G0npxIGiVKka1kkgQ1WyyhRIn9cURRWeRhBZ71O46oCDjHGTt8CedOidCv12WI9PY7pESQiEW2kkl6tUzJ3+7MKdwkkcxDvEjY94sJw8ALPseQMqyFEn1PA63VfU58gcAxRg9dRe/CGdYieScJ2hyvaEigmi3lW2+57WCcz5myLKFE3zN+B9AlaYGjjB72Jr0KZloiaV2yFNlKJj7XbHksDufoMazLK8rKIg/vBVb7HUeHpQUOM2HUEs6ZnEbvwssQKfA7pESWjEW2koVbs0VmF252ZuS/LbvTT7IUZW+MT/t4jI/fo1gLJTb+Dgm+LEV62kHGDFtHYf551iLpOCeUGjVREl2cara8ufWW27ZF8Xg9niWU2HgQ+IHfQbQoPe0gY4evpyDPEkkXpEqRrWQR45otj0fhGKYJUe2JS93FXolT+jow0+84TslI38+Y4RspyD0PkZ61PEwUKUSOTMuRVCmylayiVLNl+tZbbrMVhqPIWiix81cSIaFkpO9l7PDN5OfO6glrbcWauOOOKVlkK5lEoWbLNksm0WcJJXYeAv4HfKqekZleydgRW8jLOd8SSdSlfJGtZNGNmi1/i0uAPYzN8oqRssjDu4DyuJ84M2M3k8cuY/rEvuTnXoKITXONNsXqZiQgt2aLc3HhRknPOiAvS7jN2ZZ/iltgPYi1UGLrQeCiuJwpK2MXY0dsJzf7AkSGxuWcPVRPLbKVLDpQs+WVrbfcttHXIFOUJZTY+gvwMyB21y5kZe5g3Ihd5GRdgMiwmJ3HnNbDi2wlk1ZqtvzR77hSlXV5xVBZ5OEjuK2U6MvO3M608S9x9oSh5GbPQcS+HMSJhGnwOwbTOU1qtpxVtMF5yO94UpV9CMXencBNUTtaTtZWxo7YS3bmBYiMjNpxTYc5YQ1ZUZSk9deKRXNP+h1EqrIWSoyVRR5eSTTqzedkvc3ZE8qZOn4kOVkXIWKr3vrEimwltd/5HUAqsxZKfNwJ3NOlPXOzNzN2xCGyMi5AJBGLE/U4VmQrab1esWju634HkcosocTHQ8DPgT4d3iMvZyNjhx8lM+N8RMbFLDLTaVZkK2n9yu8AUp39YcRBWeThOuD/OrRxfs5bzJi4nMljx5OVeYEt8ZF4rMhWUtpGrCbImFOshRI/dwJzgZYLNOXnrmfs8GoyM86La1Sm06zIVlL6WcWiudZZGWPWQomTssjDO4EH3vFCQd46Zk5ayeSxkyyZJAcnZDVRksw+sGtP4sFaKPH1Y+AGwKEwbw1jhjeQkX6O30GZzhFLKMnmlxWL5tb7HURPYC2UOCqLPLyJooI7OWdSBRPHTLVkkpycsOb4HYPpsKPAIr+D6CmshRJvZ436HfAlv8MwXSdhjctKwzteeJATO9aTlp3HxI9+A4CaQ3vYtexhNBwCx2HYnOvIHfDOWlMt7Quw59V/cWLnBrL7DmHkFdcDcGTTSkJ1NfSflpKLUv/GLmSMH2uhxFlZ+fx1uNOITZKSMPnEoTJdnwnnMeaaz5/xXOWr/2Lgue/hrNKvM+jcK6l89YkO7xuur6V633YmfuS/IBKh9nAlkVADhzeuoN/k+KxhGmfVwEK/g+hJLKH443tA2O8gTNd4RbaqYn2evMFjCGQ2710TIg11AIQb6kjPLej4viJoJIyqEgkHESfA/lUv0G/KxUggJWdC/7Ji0dzDfgfRk1hC8UFZ+fxNwJ/9jsN0S8wTSkuGXvRB9rz6L9be/wMqX/kng8+/psP7BjKyKBo1jY1//zkZ+b0JZGRTc3AXRaOmxDBi3+wFfuJ3ED2NjaH45/8BHwZy/Q4kVtZteYxDRzeSkZ7LhdO/AsDJ6r28tfWfRCIhRBzOGvU+CvPfWb4lGKrlrbcfp6rmAAhMGnMtRfnD2bzjaQ4f20xezkCmjPswAHsPriIYqmX4oAvj9+aUaj9qcR5a9zJDZ3+AotFnc3TLKnYseYhx7/uPDu8/YMYVDJhxBQA7lzzEoPOu5NBbr3Jy10ay+wxm4DklsQo93uZXLJprhdDizFooPikrn78H+JHfccTS4P4zmDHxhjOe27zjaUYPvZwLzv4SY4a9i807n25x303b/02fonHMnvFVLpj2JXKz+xEK1XH85C4uOPvLgFJVvY9wOEjlgTcYOmBWHN7RaaLUxvWEnsObVlI4ahoARWPOpubAzi4dp+bQbgAyC/txZNNKRr37RmqP7KXu2MGoxeqjN+jq2nmmWyyh+OvnwBa/g4iVXgUjSU/LbvasEAq7lwSEwnVkpr9zwlQoVMfRE9sZ3N+dVe04ae5xRIioOwYQjrhjADsqX2LYoAtwnDiPAUTUl+sa0nMKqKp8G4CqPZvJLOzXzh4t27t8MYPOuxKNRCDiLp4sIkRCKVHq5daKRXNtRWgfSBwmq5g2lMxecA3Q8lSdFFBbd5RVG/58qsuruuYAFW/dByiocu7Uz5OdWXTGPier9/LW2/8gN6c/J6v3UpA3hAkjryYQyGD7nhfZd2g1vQtHM2LwHN7a+g+mn/XJuL+voxOyyyNZzuxYnmPbs/dTVbmFUF016dn5DDr3PWQW9Wf3y4+jGsYJpDPs4uvI6TeMYPVxdi556NTMrpb27TPxAgCObVtD7eFKBp37HgD2vPJPTuzaQHbvwYwsjv/PMsoer1g091q/g+ipLKEkgJLZC54ErvY7jlhonlA2bnuSooKRDOgzmf2H1rDnwEpmTvr0GfucqNrDijW/59wpn6Mwfxgbtz1JWiCTMcOLz9hu/duPM3TgLE5WVXL4+BbycgYyeuhlcXlfx8dmLQvlBlLywo0k1gBMrlg0N2Vb/YnOurwSw9egZ5SVrTz4Bv17TwKgf58pHK/a845tMjMKyMwsoDB/mLfdZE5U7z1jmxPVlQDkZvVl78FVTBv/Mapr9lNTG59ZolZkKyH92pKJvyyhJICy8vmbgV/4HUc8ZGbkc/TEdgCOnthKTtY7S8RkZuSTlVFIda07QHzk+Fbyss8cK9i68znGDLvCHVOhsZUthCPxyctWZCvhvA18x+8gejqbNpw4FgCfAIb5HUi0rNn0N46e2EYwVMOLr/+M0UOvYNLoD7Jx+7/dMQAnnYmj3w9AfcMJ1r/9+KlZYRNGXcPazX9HNUx2Zi8mjf3QqeMeOLKegrwhZGa4F/UV5g3jlVW/Jj93IPm5g+Ly3qzIVkJR4DMVi+bW+B1IT2djKAmkZPaCK4BnwY8rHExn1PZPf7lmUEZKrleShH5TsWjuV/wOwliXV0IpK5//PHCH33GY9klQM/yOwQCwFfiW30EYlyWUxPMtYL3fQZi2OSFLKAlAgc/aFfGJwxJKgikrn18HfAoI+h2LaZ2EtPkVmyb+FlUsmrvE7yDMaZZQElBZ+fwK4Ad+x2FaZ0W2fLcN+KbfQZgzWUJJXD8GXvE7CNOyeBXZMi1qAD5WsWiuLys+m9ZZQklQZeXzw7j1561/OAHFq8iWadGtFYvmLvc7CPNOllASWFn5/C3A5/yOw7xTvIpsmXf4S8WiuXf6HYRpmSWUBFdWPv9B4H/8jsO0yBJKfK0HPt/uVsY3llCSw7eBlguHGP+odUfG0UngQzZFOLFZQkkCZeXzI8DHSOHaKcnIryJbPdRnKxbN3eh3EKZtllCSRFn5/GPAB7BulsThU5GtHuhXFYvmPux3EKZ9llCSSFn5/PW4Fz3a7KIEIOGeUXLAZ/8Evu53EKZjLKEkmbLy+Y9jFz0mBCestoh9bL2Ke71J2O9ATMdYQklO3wf+5HcQPZ0V2YqpTcB7KxbNtXGqJGIJJQmVlc9X4GbgEb9j6cmsyFbM7AOurFg0Nz7lN03UWEJJUt6V9NcDz/gdS0/lhKzIVgycBK6uWDR3m9+BmM6zP4gkVlY+vwH4ELbmly+ckAb8jiHFBIHrKhbNfcPvQEzXWEJJcmXl86uBq4HVfsfS00hI0/2OIYWEgRsqFs0t8zsQ03WWUFKAd43Ku7ELH+PKCWmm3zGkiCDubK4H/Q7EdI8llBRRVj5/P1CMWyfCxIEV2YqKBuDDFYvm/t3vQEz3WUJJIWXl83cAc4C1fsfSE1iRrW6rAz5YsWjuP/0OxESHJZQUU1Y+vxK4BPeiMBNDVmSrW2qA91UsmvuU34GY6LGEkoLKyucfxe3+sinFMWRFtrqsCndq8LN+B2KiyxJKivJmf70P+JvfsaQqK7LVJYeBd1csmrvU70BM9FlCSWHedSofB37ndywpzBJKx70FzKpYNNeum0pRYi32nqFk9oIfAP/tdxyp5vDUnC04MtbvOJLAM8BHKhbNPe53ICZ2rIXSQ5SVz/8OUIp9o44qK7LVIb8FrrFkkvqshdLDlMxeMBl4HLBv1VFwZFL2Sk13zvU7jgQVBuZWLJr7a78DMfFhLZQepqx8/jrgPODffseSCqzIVqtO4C4/b8mkB7GE0gN5S7W8D/gRVv2xW6zIVotW4w6+L/Y7EBNf1uXVw5XMXnAtcC9gF+l1wYlRmUuDBWmX+h1HAvk98NWKRXPr/A7ExJ8lFEPJ7AUTgPuAWX7HkmyqhmUsqe+dfpnfcSSAE8AXbIHHns26vAxl5fM3ArNxpxUHfQ4nqUjI/oaAl4GzLZkYa6GYM5TMXjADuB+Y7HcsyaC2X/rLNYMzLvI7Dp+EgB8CP6pYNDfsdzDGf5ZQzDuUzF6QiftBcRvWim1TXa+05dXDM3tiV+Fq4OaKRXOX+x2ISRyWUEyrSmYvmAPcA4zxOZSE1ZAfePPk6Kyz/Y4jjmqA7wG/rFg012a4mTNYQjFtKpm9IBf4AXALkOZzOAknmO1sOjE+e7zfccTJk8CXKhbN3eF3ICYxWUIxHeJdYf8b4DKfQ0ko4QzZfWxizlC/44ixSuCWikVzH+nugURkIPAr3Itr64HtwNdUdVN3j92Bc28HzlXVQ7E+V09lCcV0SsnsBR8FfgYM8zuWRBAJcPzolNxCv+OIkQhwJzC/YtHcE909mIgIUA7cq6p3ec9NB/JV9cXuHr8D59+OJZSYsgFX0yll5fMfAiYA3wGqfQ7HdylcZOsxYGrForm3RCOZeC4Hgo3JBEBVVwEvicjPRGStiKwRkY8CiMhlIrJURP4mIptE5Cci8gkRWe5tN8bbrp+IPCIiK7zbRd7zfUTkGRF5Q0R+B4j3/A9F5KuNMYjIj0Tklii9xx7NWiimy0pmLxgELABuBAI+h+Obw9NyTiKSKisNPAfMi8XsLe9De5Sqzm32/HXAF4Ergb7ACuB83C8ujwMTgSPAVuBuVf2ulxBGqerXROQvwG9V9SURGQ48raoTReQO4JCq/kBErgGeAPoBecCjqjpTRBxgMzBLVQ9H+z33NDbIarqsrHz+XuCzJbMX/AT4NvBJIN3fqHxRRfIvXbMC+HbFornP+XDuOcBfVTUM7BeRpbhjLCeAFaq6F0BE3uZ0Wes1uC0ecMtdT3J71AAoEDfBXwJ8CEBVnxSRo9797SJyWERmAAOANyyZRIclFNNtZeXzNwOfKZm94PvAt4BPA5n+RhVHSjXS/mYJaj3uGMljcTjXOuDDLTzf1k+vvsn9SJPHEU5/fjnAhap6Rm0aL8G01gVzN3ATMBD4Y1tBm46zMRQTNWXl83eUlc//D9zrVhZCzyg+laRFtpYB1+KOk8QjmQA8D2SKyM2NT4jIecBR4KMiEhCRfrgti850uT0DfLnJMad7d5cBn/Ceuwro1WSfx3C72M4Dnu70OzEtshZKMyISxm1Op+MuLXEv8CtVjfgaWAd4f0iDVdXXWidl5fP3AF8rmb3gdtyr7b8ApOpMKIhoPYGkaKIEgYdwL0qsiPfJVVVF5FrgVyLyLaAOb9ow7rjGm7gtim+o6j4ROauDh74FuFNEVuN+pi3DHZP5PvBXEakAlgI7m8TSICIvAMe8rjYTBTYo34yIVKlqnne/P/AX4GVV/a6/kbVPRG7CnRb55fa2bbJPmmpsa3qUzF6QA3wEN7FcEMtz+eHohOzySJYz2+842nAYuAu4s2LR3L1+B5MIvMH4CqBUVTf7HU+qsITSTNOE4j0ejTtg2Rd3XGARcC5u6+VWVX1BRALAT4H34H7D+oOq/rrpvHcRORf4X1W9TES+B4wCBgHjgVtxP2ivAvYA71PVoIicA/wC99vbIeAmVd0rIkuA13AHJYuAz3qPtwDZ3jF+DGzDvYgsG7f76dOqutFLPNcAWUCut/3fVfUf3nt+AHhIVf8ZpR/rKSWzF0wFPo87gF8U7eP74fjYrBdDuYGL/Y6jBa/hjg/cX7FobjJ2y8WEiEzCnfH1mKre5nc8qcS6vNqhqlu9bzP9cT8EUdWpXnP8GREZjzsIPQqYoaohEendgUOPwU0Ik4BXgOtU9Rsi8hhwjYg8Cfwa+ICqHvTm5v8I+Iy3f5qqzhKRq4HvqmqxiHyHJi0UESkALvFiKgZuB67z9r8QmKaqR0TkUmAu8A8RKcRdyv7Grv/UWldWPn8N8JWS2Qu+AXwUN7lcGItzxYuEE6rLZDPwAPBAxaK5W/wOJhGp6npgtN9xpCJLKB3T2EE+B/dDHlXdICI7cFsYxcBdjV1HqnqkA8d8ymuFrMG9hqOxXOoaYCTuHPwpQJk3WyUANO2ueNT793Vv+5YUAveKyDjcllPTKb1ljXGq6lIRudPr4vsQ8Eisu8HKyufX4i48eY9X4Ota79zn0vasn4TjhHxv5R/AHRv5s63+a/xkCaUdXpdXGPePtrUPOqHl6YkhTs+ky2r2Wj2AqkZEJKin+x4bp0MKsE5VW/v23jh9Mkzr/48/BF5Q1WtFZCSwpMlrza9yvx93RszHON0KiguvwNdPgJ+UzF4wFPggboK5hCT4HfWpyNYu3NlJjwJltvKvSQQJ/8fqJ28K413Ab7wZKo3TEJ/3urqGAxtxpy1+UUSWNHZ5ed/+twPnAE9xuqupozYC/UTkQlV9RUTSgfGquq6NfU5y5gV2hbjjI+DOuW/LPbhTNfe1c46YKiufvxt3EcrflMxe0Bt4H25yuRwo8CuutjghjccqAXW4s5cWA09XLJq7Pg7nNKZTLKG8U7aIrOL0tOH7cQfGAX4L3OV1U4VwB8nrReRu3K6v1SISBP6A+6H4feD/RGQe7gBph3nTGj8M3OGNa6ThDrC39WH/AvAtL/4fA/+D2+V1K+41AG2db7+IvIW71EVCKCuffwR32va9JbMXBIBpwMVNbgN8DO8UCWksVgeIAG8Bz+ImkaU2sG4Snc3yMgCISA7u+M1MVT3udzwdUTJ7wThOJ5eLcCc6xL37KUpFtrYAK73bCqCiYtHcqm4HZ0wcWUIxeDPA/gj8QlV/5XM4XVYye0E2cBbuYoKTmvw7lhi2xjtRZEuBfbjTubfitjZXAq9XLJp7NFbxGRMvllBMyiuZvSAdGIfbLTkIdwr4gBb+7dLV/F6RrYG4K+I23g7gJo7G5LEV2G7dViaVWUIxxlMye0Em0BvIwJ2mndbk1vSx4M6Sq/JuJ8vK59f4EbMxicQSijHGmKiw1YaNMcZEhSUUY4wxUWEJxRhjTFRYQjHGGBMVllCMMcZEhSUUY4wxUWEJxRhjTFRYQjHGGBMVllCMMcZEhSUUY4wxUWEJxRhjTFRYQjHGGBMVllCMMcZEhSUUY4wxUWEJxRhjTFRYQjHGGBMVllCMMcZEhSUUY4wxUWEJxRhjTFT8f8Ow0bAQG+BbAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Calculate market share by genre\n",
+ "market_share = exploded_genres['genres'].value_counts(normalize=True).head(7) * 100 # Get top 10 genres\n",
+ "\n",
+ "# Create a pie chart for the top genres\n",
+ "plt.figure(figsize=(7, 5)) # Set the figure size for a smaller chart\n",
+ "market_share.plot(kind='pie', autopct='%1.1f%%', startangle=90, cmap='viridis')\n",
+ "plt.title('Market Share by Genre (Top 7)')\n",
+ "plt.ylabel('') # Hide the y-label for better aesthetics\n",
+ "plt.axis('equal') # Equal aspect ratio ensures the pie chart is circular\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Top Genres by Average Rating\n",
+ "\n",
+ "This section analyzes the average ratings of different movie genres. The genres are grouped, and their average ratings are calculated. The top 5 genres with the highest average ratings are then visualized using a bar plot, providing insights into the most highly rated genres in the dataset.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAFDCAYAAAAwIBXIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAphUlEQVR4nO3dd5hcZd3G8e+dBAggTYkigoQiKEURAVEsNJFepDdBmvJaaBbwRcCCBQHFCrGASBEpCohKUcAXaSYBCyCK9GpAegvlfv94niWTNdnMZncyu2fvz3XNtTNzzpzzzOzM7zzn95Qj20RERPOM6nYBIiKiMxLgIyIaKgE+IqKhEuAjIhoqAT4ioqES4CMiGioBPhpJ0nhJljSm22UZKSTdKGmdbpcjpkmAH8YkPdlye0nSMy2PdxnE/bxP0mWSnpD0sKQbJH1G0tjB2sdwIGmPetDYvttlGaiWA2DP9+UOSYf04/UnS/pS63O2V7J9+aAXNmZbAvwwZvsVPTfgLmDzludOG4x9SNoOOBs4HVjK9quAHYAlgCUHYx+99jeUa9y7A/+pfwddl977wvX7sy3wOUnv60IZolNs59aAG3AHsEG9Pw/wTeC+evsmME9dtg5wD/BZ4KH6ul1msk0BdwMHz2Lfo4BDgH8BDwM/B15Zl40HTAmKd9V9/m/La4+kHEBOBR4H9gYWAn4E3A/cC3wJGF3XXw64AnisbuvMmZSpZ7/71s/g/p73ASwGPA28qmX9twFTgLlmsr2lgJeAbYAXgNfU508Ajum17nnAQfX+4sA5ddu3A5+YxXtfE7gaeLSW+TvA3C2v2RC4pb7/79XPYu+W5XsCNwOPABdRDsp9fT5jWp67DvhUy+OzgAfqvv4ArFSf3xd4HpgKPAlcMIPv4JH1e3AK8ARwI7B6y7ZXA66vy84CzgS+1O3fUdNuXS9AboP0j5z+x/UF4Brg1cA44Crgi3XZOjVAHUc5ELwXeApYYQbbfGMNAuNnse8D6v6WqNs8ETijLusJJD8A5gXeAjwHvKkuP7IGi60oB4p5gV/Wbcxf38N1wIfr+mcA/1vXHQu8ayZl6tnvGXU7q1CCbM9n9Gtgv5b1vwF8u4/3+Dngunr/r0wL4O+hHARVHy8CPEMJ7KOAScDhwNzAMsBtwPv7eO9vA9YCxtT3cDNwQF1/UcqB4AN1+f719XvX5VsBtwJvqssPA66axeczpj5ei3LQ27plnT2BBZhWYbihZdnJ9ArI/HeAfxbYBBgNfAW4pi6bG7izln+u+n6m9t5eboMQF7pdgNwG6R85/Y/rX8AmLcveD9xR769DCfDztyz/OfC5GWzzXTUIjG157meU2uXTwG71uZuB9VvWeW0NPD1BysASLcuvA3as948E/tCy7DWUA8C8Lc/tBFxW758CTGjd3kw+j579vrHluaOBH9X7OwB/rPdHU2qqa/axvX8yLdAeCvy53hflzOQ99fE+wO/r/bcDd/XazqHASTN67zPZ7wHAL+r9DwJXtyzrOcPqCfC/AfZqWT6q/p+W6uPzeZRyQDJwDPVANYP1F67rLFQfn8ysA/ylLctWBJ6p999DOTNTy/Ire28vt4HfkoNvpsUpNaQed9bnejxi+6k+lvd4uP59bc8Ttne0vTAwmRIYoaQvfiHpUUmPUgL+i5Rg3eOBlvtPA69oeXx3y/2lKLW6+1u2dyKlJg/waUpgu6722thzBuVu1brt1vd5HrCipGWA9wGP2b5uRhuQtDawNOXgBqU9YhVJq7pEp59RDkIAOwM97R9LAYv3vI/6Xj7L9J9La/mQtLykX0l6QNLjwJcpNXdq2V9ev+77npaXLwUc37Kv/1A+q9fN8JMpFqX8Lz5JOfjPVcsxWtJXJf2rluOOlvXb1ft/Pra2MywO3FvL32O6zyEGRwJ8M91H+bH3eH19rscikubvY3mPv1NqWh+Yxf7uBja2vXDLbazte9ssb+8f+nPAoi3bWtD2SgC2H7C9j+3FgQ8D35O0XB/bbm0Ifvl92n6WcuayC7Ab8NM+trE7JVDeIOkB4Nr6/Afr3zOAbSUtRam1n9PyXm7v9bksYHuTmbx3gO9TPvc32F6QckBQXXY/JQ0GgCS1Pq77+3Cv/c1r+6o+3hu2X7R9LCWl8j/16Z2BLYENKG0i43t2O5Ny98f9wOtq+XsMeoN9JMA31RnAYZLGSVqUkgM+tdc6n5c0t6R3A5tRGrqmU2tYBwNHSNpH0iIq3sD0tdATgKNqgKPud8vZKbjt+4GLgWMlLShplKRlJb23bns7ST1B7RFKoHmxj01+TtJ8klYCPkRpzOtxCrAHsAX//flQ9zcW2J7SsLhqy+3jwC6Sxti+npLf/yFwke1H68uvAx6vXUrnrbXilSWt0Ud5F6Dk2Z+U9EZgv5ZlF1LOHLaqNeGPUhqMe5wAHFrfK5IWqr2g2vVV4NP1PS9AOdA+DMxHOZNo9SClTWF2XE35n31M0pj6XVlzNrcVfUiAb6YvAROBv1AaBCfX53o8QAmO91HSCR+x/fcZbcj2mZQAtyulhvgQpeY7gWkHheOB84GLJT1BaXB9+wDK/0FKQ9xNtZxnMy1NtAZwraQn6z73t317H9u6gtLw+DtKb5eLW97bHyk9YybbvmMmr9+KkqM+pZ49PGD7AUovn9HARnW9Myi13dNbtv8isDnlgHA75bP7IaVGPDOfpNSen6A0TL98QLL9ELAdpS3hYUpeeyIlEGP7F8DXgJ/VtMrfgI372FdvF1I+730oB787KWdwN1H+p61+RElxPSrpl/3YB7anUs4K96K0AewK/KrnfcTg6Wn5jxGijjQ81fYSs1h1RJD0e+B02z/sdln6S9IoSg5+F9uXdbs8AyHpWuAE2yd1uyxNkhp8jFg1VbIa06dthjRJ75e0sKR5mJaf7127HvIkvVfSYjVFszvwZuC33S5X0wzlUYMRHSPpJ5T0y/62n+hycfrjHZQ0UE8Kayvbz3S3SLNlBUqq7xWUbr3b1vaXGERJ0URENFRSNBERDTWkUjSLLrqox48f3+1iREQMG5MmTXrI9rgZLRtSAX78+PFMnDix28WIiBg2JN05s2VJ0URENFQCfEREQyXAR0Q0VAJ8RERDJcBHRDRUAnxEREMlwEdENFQCfEREQyXAR0Q01JAayTpQ4w+5sNtFAOCOr27a7SJERKQGHxHRVAnwERENlQAfEdFQCfAREQ2VAB8R0VAJ8BERDZUAHxHRUAnwERENlQAfEdFQCfAREQ2VAB8R0VAJ8BERDZUAHxHRUAnwEREN1dEAL+lASTdK+pukMySN7eT+IiJimo4FeEmvAz4BrG57ZWA0sGOn9hcREdPrdIpmDDCvpDHAfMB9Hd5fRERUHQvwtu8FjgHuAu4HHrN9caf2FxER0+tkimYRYEtgaWBxYH5Ju85gvX0lTZQ0ccqUKZ0qTkTEiNPJFM0GwO22p9h+HjgXeGfvlWxPsL267dXHjRvXweJERIwsnQzwdwFrSZpPkoD1gZs7uL+IiGjRyRz8tcDZwGTgr3VfEzq1v4iImN6YTm7c9hHAEZ3cR0REzFhGskZENFQCfEREQyXAR0Q0VAJ8RERDJcBHRDRUAnxEREMlwEdENFQCfEREQyXAR0Q0VAJ8RERDdXSqguie8Ydc2O0iAHDHVzftdhEiRqwE+Gi8HOxipEqAjxhBcrAbWZKDj4hoqNTgI2JEGglnM6nBR0Q0VAJ8RERDJcBHRDRUAnxEREMlwEdENFQCfEREQyXAR0Q0VAJ8RERDJcBHRDRUAnxEREMlwEdENFQCfEREQyXAR0Q0VAJ8RERDJcBHRDRUAnxEREMlwEdENFQCfEREQyXAR0Q0VAJ8RERDJcBHRDRUAnxEREMlwEdENNSYWa0g6aAZPP0YMMn2DbN47cLAD4GVAQN72r66/8WMiIj+mmWAB1avtwvq402BPwEfkXSW7aP7eO3xwG9tbytpbmC+AZU2IiLa1k6AfxWwmu0nASQdAZwNvAeYBMwwwEtasK6zB4DtqcDUgRc5IiLa0U4O/vVMH5ifB5ay/QzwXB+vWwaYApwk6XpJP5Q0/+wXNSIi+qOdAH86cI2kI2rt/Y/AGTVY39TH68YAqwHft/1W4CngkN4rSdpX0kRJE6dMmdL/dxARETM0ywBv+4vAvsCjlMbVj9j+gu2nbO/Sx0vvAe6xfW19fDYl4Pfe/gTbq9tefdy4cf1+AxERMWPt5OABrgfu61lf0utt39XXC2w/IOluSSvYvgVYn75r/BERMYja6Sb5ceAI4EHgRUCULo9vbmP7HwdOqz1obgM+NPtFjYiI/minBr8/sILth/u78dpPfvX+vi4iIgaunUbWuym594iIGEbaqcHfBlwu6UJaukXaPq5jpYqIiAFrJ8DfVW9z11tERAwDswzwtj8/JwoSERGDa6YBXtI3bR8g6QJKr5np2N6ioyWLiIgB6asG/9P695g5UZCIiBhcMw3wtifVu6vaPr51maT9gSs6WbCIiBiYdrpJ7j6D5/YY5HJERMQg6ysHvxOwM7C0pPNbFi0A9HvQU0REzFl95eCvAu4HFgWObXn+CeAvnSxUREQMXF85+DuBO4F3zLniRETEYJllDl7SWpL+JOlJSVMlvSjp8TlRuIiImH3tNLJ+B9gJ+CcwL7A38O1OFioiIgaurfngbd8qabTtFymX4Luqw+WKiIgBaifAP13nc79B0tGUhtdcWzUiYohrJ0WzW13vY5Trqi4JfKCThYqIiIFr55qsd9p+1vbjdeKxLwI7dr5oERExEDMN8JKWlDRB0q8k7S1pPknHArcAr55zRYyIiNnRVw7+FMp8M+cAGwHXADcCb7b9wBwoW0REDEBfAf6Vto+s9y+S9CCwhu3n+nhNREQMEX32opG0CKD68AFgPknzA9j+T4fLFhERA9BXgF8ImMS0AA8wuf41sEynChUREQPX11w04+dgOSIiYpC10w8+IiKGoQT4iIiGSoCPiGiotgK8pHdJ+lC9P07S0p0tVkREDFQ788EfAXwGOLQ+NRdwaicLFRERA9dODX5rYAvKRGPYvo9yXdaIiBjC2gnwU22b0vednoFOERExtLUT4H8u6URgYUn7AJcCP+hssSIiYqBmecEP28dIeh/wOLACcLjtSzpesoiIGJB2L9l3CZCgHhExjMwywEt6gpp/b/EYMBE42PZtnShYREQMTDs1+OOA+4DTKROP7QgsRrnwx4+BdTpVuIiImH3tNLJuZPtE20/Uy/ZNADaxfSawSIfLFxERs6mdAP+SpO0ljaq37VuW9U7dRETEENFOgN8F2A34N/Bgvb+rpHmBj3WwbBERMQDtdJO8Ddh8JouvHNziRETEYGmnF81YYC9gJWBsz/O292xnB5JGU3rc3Gt7s9ksZ0RE9FM7KZqfUnrNvB+4AlgCeKIf+9gfuLn/RYuIiIFoJ8AvZ/tzwFO2fwJsCqzSzsYlLVHX/+HsFzEiImZHOwH++fr3UUkrUy7GPb7N7X8T+DTw0sxWkLSvpImSJk6ZMqXNzUZExKy0E+AnSFoEOAw4H7gJ+NqsXiRpM+Dftif1tZ7tCbZXt736uHHj2ilzRES0oc9GVkmjgMdtPwL8AVimH9teG9hC0iaUxtkFJZ1qe9fZLm1ERLStzxq87ZeYzb7utg+1vYTt8ZTpDX6f4B4RMee0k6K5RNInJS0p6ZU9t46XLCIiBqSdycZ6+rt/tOU50490je3LgcvbLlVERAxYOyNZl54TBYmIiME1yxSNpPkkHSZpQn38htpDJiIihrB2cvAnAVOBd9bH9wBf6liJIiJiULQT4Je1fTR1wJPtZygX/oiIiCGsnQA/tU4NbABJywLPdbRUERExYO30ojkS+C2wpKTTKAOY9uhgmSIiYhC004vmYkmTgLUoqZn9bT/U8ZJFRMSAtDMf/PnAGcD5tp/qfJEiImIwtJODPxZ4N3CTpLMkbVsvAhIREUNYOymaK4Ar6pWZ1gP2AX4MLNjhskVExAC008hK7UWzObADsBrwk04WKiIiBq6dHPyZwNspPWm+C1xeZ5mMiIghrJ0a/EnAzrZfBJC0tqSdbX90Fq+LiIguaicH/1tJq0raiZKiuR04t+Mli4iIAZlpgJe0POVCHTsBDwNnArK97hwqW0REDEBfNfi/A/8HbG77VgBJB86RUkVExID11Q9+G+AB4DJJP5C0PplkLCJi2JhpgLf9C9s7AG+kXI3pQOA1kr4vacM5VL6IiJhNsxzJavsp26fZ3gxYArgBOKTTBYuIiIFpZ6qCl9n+j+0Tba/XqQJFRMTg6FeAj4iI4SMBPiKioRLgIyIaKgE+IqKhEuAjIhoqAT4ioqES4CMiGioBPiKioRLgIyIaKgE+IqKhEuAjIhoqAT4ioqES4CMiGioBPiKioRLgIyIaKgE+IqKhEuAjIhoqAT4ioqE6FuAlLSnpMkk3S7pR0v6d2ldERPy3MR3c9gvAwbYnS1oAmCTpEts3dXCfERFRdawGb/t+25Pr/SeAm4HXdWp/ERExvTmSg5c0HngrcO0Mlu0raaKkiVOmTJkTxYmIGBE6HuAlvQI4BzjA9uO9l9ueYHt126uPGzeu08WJiBgxOhrgJc1FCe6n2T63k/uKiIjpdbIXjYAfATfbPq5T+4mIiBnrZA1+bWA3YD1JN9TbJh3cX0REtOhYN0nbVwLq1PYjIqJvGckaEdFQCfAREQ2VAB8R0VAJ8BERDZUAHxHRUAnwERENlQAfEdFQCfAREQ2VAB8R0VAJ8BERDZUAHxHRUAnwERENlQAfEdFQCfAREQ2VAB8R0VAJ8BERDZUAHxHRUAnwERENlQAfEdFQCfAREQ2VAB8R0VAJ8BERDZUAHxHRUAnwERENlQAfEdFQCfAREQ2VAB8R0VAJ8BERDZUAHxHRUAnwERENlQAfEdFQCfAREQ2VAB8R0VAJ8BERDZUAHxHRUAnwERENlQAfEdFQCfAREQ3V0QAvaSNJt0i6VdIhndxXRERMr2MBXtJo4LvAxsCKwE6SVuzU/iIiYnqdrMGvCdxq+zbbU4GfAVt2cH8REdFCtjuzYWlbYCPbe9fHuwFvt/2xXuvtC+xbH64A3NKRArVvUeChLpdhqMhnMU0+i2nyWUwzFD6LpWyPm9GCMR3cqWbw3H8dTWxPACZ0sBz9Immi7dW7XY6hIJ/FNPkspslnMc1Q/yw6maK5B1iy5fESwH0d3F9ERLToZID/E/AGSUtLmhvYETi/g/uLiIgWHUvR2H5B0seAi4DRwI9t39ip/Q2iIZMuGgLyWUyTz2KafBbTDOnPomONrBER0V0ZyRoR0VAJ8BERDZUAHxHRUAnwfZA0tuX+vN0sSzSHpBmNERm2mvZ+miQBfiYkvQLYUNKKdVTuFnV+nRgASYtLWqDb5egGSatJGusG9WyQpJ73I2kHSW9KwJ81SctKWqzT+0mAn7nRwDzAycDRwK9tv5gv7+yrX+hjgEXq40Z/lq3vT9JrgL2At9fHjfjttQT3jwKHAVObdADrBEmLAAcCi9XHHfsdNOJLNph6Pmzbj1FG374auAZ4Q30+X97ZZPsB4HHgqNaaX1O1BL9lbT8I3A5sXpe9NJwPcL0OXm8E9qTMPfUvSe+TtIGkxbtXwqHL9iPA88AR9XHHfgcJ8L20/Ch3A1YGdgIuAfaTtEFdtrykhbtWyGFG0mI1CAB8FvgP8Nq6bNgGuXZIWg84X9KBwPeAtSUdDMO7stDyO1kKeAH4P+Bzkk4A/hf4BPCu7pVw6JE0XtI768ODgfskvaMu68jvIAF+BiStBWwDHGX7asqX96/AjpJOBI4ln11baoD7GvApSV8B5gLeCGwCwzvItemflAPagcBuwM+BjSWt1NVSzaZeNfflKSm3R4HfUeaa+p7tdYDJwGpdKOKQVNv0PgwcKembwCqU38JK0LnfQYIU0760KsYC6wLLUII8tm8Fzqu3VwCH2v5Pl4o7bNTayqcp7RiHActTTuUXBT4iaZnula6zaoriAEo7zm7AGZTvzhhgPWCz4Xj20lJzf5Xtf1AmFTzB9gW2v2D7L5J2plz74eQuFrWrWttYJL0WGGX7UGBbSmDfhPI9OFxSxw6EnZwueFjolQseBzxu+yuSHgHeKGlr27+wfSdwp6QLbb/UvRIPD5KWBT4DTLB9WX16m3pK/xAl9bUUcFuXijioJI3q9b14kvJD/grlPf4VuM32VZIeBK4brmcvkrYDvirpWErK7XBJH7P9nXr2uxnwQdt/72pBu0TSqykB/GRJGwJfB+aRNMH2cZI+DoyltMlsASwNTO5Eu1TmoqkkfQLYDngRuBb4ArA3MB64xvaZ3Svd8NHzJZX0fuAQyun7rraf6rXebpTazHb1il/DVq+ugttQ2hf+AUwEFgJOAhanfLdWtf1ct8o6GCQtBJxF6Wn2LKWNamng07afk7Sg7ce7WcZukvQBykHub8D6lHz73MBPgFNsf6Nl3a2BfYCtOvE7SIoGqMFoN0qtcmfg3cARto8H/g28uebQYiZa0g3jJI22fRHwSeB+4CBJ89X1es4aH6UEv2H/HWwJ7vsCn6fU3L9Iybk+TOk5czxwN7Vr3HAkaRdJ+wPzAt8GvgycTcm1f5zSzsBIDu4Ats8FLqb0vBsL3Gv7L5T05M6SPt2y+pPAayipvEE3ImvwvU+FJL0X2N72R+vj+Si1r49SGotGJ+c+a5I2BQ4Hrgaetv3Z2ktgR8oX+SjbT6sMGFuX8sW/uXslHhz14LYA8GPgK7YnSVqZUnObbPvb9cA2l+1nulnW/pjB72QVykH7X0y7mM8XKHn4XYBJTfh/zq4ZfF7rUw58FwNn2n5Y0tsobROb275D0qrAs51KZ424HPxM8lyPAStKGm/7jhqELqT8IB/rQjGHHUnvofSW2R7YCjhQ0mts71WD286UNMWttl8ELu1aYQdB6/eo/n1c0r+B9ST93fbfJJ0CfFbSj2uK6oVulrk/eqWddqfU2h8CPgS8l5I73o9yHeWdbJ/arbIOFTU1uTHwjvrUUcB8wIbAtpLOqQf/d9p+or7mhk6WadifHveHpGVavrQHSPqRpM8BtwLnAqdJ2kvSJ4GNaUgDYCdImrul99EilHzs9pSa3ZbAOpTU1g9s/x+l59Gt3SrvYJI0b8v3aM2Wvs2/pgyOW7c+XogysGvYBPbeJH2E0hb1V0oXzy1tX2b7QEra6RGG8fsbDC2/g7dQ0lZ3Uro//hq4EvgVsCawQ63sPDWTTQ1+2UZKikbSq4CrgJ9STpmOBU4E3kzJle1G+WG+hdJF8usj+XSzL/VL+m5gQUoj22rAjyhnQj+gnI5eKOkYSk3vA7b/1q3yDqaapliX0mC2MyUNcztliP6mkvahHNwWBRYG9rX95+6Utv8kvR542PZT9TfzLcqgpe2ArYFNgTG2n63rL5SzXJC0BiUdc53t79Tnvg+sYHs9STsBf7Z905ws14hI0UjajHJE3Q84jhKcvmb7V5LGUf4xpwCfsH1BbSR8sXslHvJMyakfTjlF38H2v+sYgieB19bP/PXAJk2puVfzU1IUYymDVdaw/YikSyVdYHtzSScBqwL3uEzPMCyozJdzMHC3pBNqzngKpVb6akpPjxckfULS9bUmP+KDezUfZeT7CypjBB62vZ+kX9bHZ3SjUI1P0dRAcxTwL9u/p9RAXkVJI2B7CuVU81bgOElzUQJYzEQ9+N1GGbhzPbBc7Qf+LCW3vhali+TPmhLcJa0raT/b11AqCasCr6M2NtreAJhb0iTbL9ieOJyCezUF+BOlreRDNfVwP7A7pV/7M5K2B3YF7uhaKYeAlrTMeEnz276C0ktmGcp4jxVrg+oqlFRdd8rZ5BSNyuyFZ1D65/6p/iOekvRuSo392JbTqVdSRps91MUiD2ktfdwXs/1ATdW8HdgDuLkO4piPMmL1VttPzqRRe1iRtBElVXEgcKXtx2re/RPAH4Df2L69rnsucKDLwLhhQdIbKN/9W2rg2ozSBvVn2ydK+h7lDPhuYDlgH9t/7V6JhwZJW1BGav+93k6gnNF+g9IucRNlFtpfd+t30PQUzXOUWdueremDT0laB3iQ8mX9jKRxto9IN8hZq8F9c8ooxpsoAeBLKhOvbSXpp5RAsIftJ3te070SD5yk5SjtNXvb/kM9qOEyIvUxykjOUZJ+a/tW2x/oZnn7q+bZbwEekvR5ymCsCZRa53KSPmz7f1S6fY4BHrJ9T/dKPDRIejslRbkp5TvwQcpI+C8D/wN8F7jF9q+he7+Dpgf4R4GLKBMirURJH5wK3EwZfHI+JTB9p6Zqog812O1MabN4EDhJ5QIWh0m6i9Lf/XSXQR1NMT9wYw3ui1B6QqxDSc8cRpk58VvAc5LusD2sepTUPPsGlN/GKEongzMpbSlTgZVrrf7knobVka62VSxFGYG6GrA2cGR9/JV6/1DguypTnpzWrQDf6BQNvDyL2yqUXOl5rsPEax/lnwKXDvdaZqfVH/iSwM8oufc9bU+VtARlJOM1tg9oXb8pn2ltk7mFMn3Fmyk56nvqc9+izIy5LHCH7fu6Vc6BkvQ+yvt5C2Vk5XqUA/aalDz82iO5QbUlPbkWJS2zF+Ug+A3gh7ZvkPRdyoC3L9v+u6R3AXd3M13X+AA/IyqTJR1C6f3RiEbATugdqFUGvHyYUju5yvbztVvdeZSRjDc3JbDDtAnEak+rj1HOWs6idCN8SdKPKO04c7TrW6eojET+BrCW7f/UM5a5gPls39HVwg0BKiNTtwTOt31pfe4MSnfhoyhXftvfZTDTkKjkND1FMx2VaTt3oJxKJbj3oaXG8j7gnZQeFqcBogT4L0u62vZdktbyMJ9Aa0ZqEB9V03dHwHSfy07A2ygDmRrBZezCS8A1kt5h++Ful2mIWYlyoL+85bk9KFMP/C9wjO1JMHTankZUgKfk5P9JGY2X4N6HGsQ2peQTjwL2pwza2L+mvb5MyUFf3pTgPoMzltaLWyxp+25gcUl7Ugb+7Ni0Bkfbv5E0N3CppLc5U2OjcnGWuW1/S9I8wI8l/aU2qj8H7KQ64Guo1Nx7jKgA7zLR04XdLscw8i7K6MXVKAN7jgNwmff7ReDpLpZtULX+MGvefVT98VrS2sDnVYbtP0T5LHZsSmqmN9vnSfrdSA7uvXLu3wQWk7SV7a/XA/8VkjZwHe3e0z4xlII7jNAcfMyayoyPx1NGoy5AaVi9vfb9ncv2OV0tYIdIOghYkdJL4vPAn4HLgCNt/6quM6RqadEZktal9Io5nNKougjwGdvXq8xhdRClN9UzQ/X70PiRrNE/kt4qaRWX0aonUObpuaAG9/dQupw2cjCYpA8BG1HyrPNTBvQ8AWztMq2FEtxHlA2Bi21fbHsHYBJwuqS32P4isKbtp4fy9yE1+HhZrbH8ELiLMjHbRZQ03rcoUxK8Gfis7UamuVSu6nUp5XJr61OmPX4BWMT2QwnuI4vKVcfeAnzVdYS7pGsps0Xu6WEwUntE5eDjv7XkGuelTKK1LaU74L7A+ymDXtYGXkmZRfCfXSvsINJ/X0MVyuyPp1KGmG9m+0WVKxi9WtLhzgR0jdXyO3g7ZSbQp4DrKFNgbyTpT5SrLt1MGSdwGHDIUA7ukBTNiFe/1FtQGpI2ofQWuI8y9/dUSpfSlW3f3pTgDqULJJS+/ZI+qDK3zDGUbqD3AgvX3jL7AD9NcG8uldlje7oEn0EZ3HUKsAblKl3rUnqNnU65gPZPGCbdYxPgRziVixQcQLk4wY3AzyW9svYQOZsyx3tjcu69uj5uTOm/vDxlmtwPUOZyX57yQ96GcinHjlxOLbqrjsSmnqnNTxnEd5DtIyiVnd2A+W3vRTmjXY9ycfFDKNOcDHlJ0YxgkpamBLZbbZ8HnCfpeOBalcuK3SjpKy6Xmxv2enWFfAOlB8R2tv+scl3eAyntUlvXdRaojazRMPVAv6+ks2z/1WWW2bso6bixLpdc/AJwtKTzXObsmZ+Sstndw+QCNqnBj1CSXk2ZUfNW4PV1UBO296d0C7y+9gcfNheJ7kuv4P5xyqn354H1JY0C/kgZpr97bWyFMtdINJCLw4EnJF1Qn55MuZbBsvXxU5TBkS/U1zwFfMjD6QpdQ7yNIDpA0qLAOZRukD+jnHIuClxi+7d1nRWbOJBH0paUWtg+lPlztgGOs32xps1vf2fTRqhGIWlZysVaXrT9S5VpxM8AnrD9wdq/faW6+vLAF23/ojulHbgE+BGiVw12Hqb19z6Bkk88iDK450KXOUlm1MtkWFOZ5vUE4LW216rPfYTSHfI7PQOZopkkLQ+cS+n++w7KFMgTVC5ScxLlurq7SVqKEtwftj15qHeF7EtSNCNE7SWwpqRF6hD831CmHvgY8D5KL5r7KNMB04Tg3tqgCmD7Qcq8Os9KOqo+dwLlB79XzbFGA0lakdLl91DbBwPfA0bXQUtPUy5LKEkXAnfZvsT2ZBh60w/0R2rwI4jKVd7XADZ0mQ52XuBTlIt4fIYyDWojvhC9zlj2oHQoeN72T1SulflJSuPy5+o6C9t+tFvljc5SmZv9D7ZH1cd/oXSHfS3wN9u71nTNjykpu4ndK+3gSQ2+wXpqsJLWlrSJ7f2AicC5tSb/DPA34HfAvxsU3Ee3BPdPUPLttwLfkfQZlyldvw6sVnOuULqDRkPZvhLYVNJtki4Fzra9MaXP++qSPutyxardmhLcITX4xqt9vY8HPmz7svrcBMrFky+h9PXd3fafulfKwVNrastTplaYApwI7ATsTWl3WA34nu3DJa0KTLF9b5eKG3OYykU7LqIM6OsZ7LYXsLDtY7tauA5IDb6h6rxYi1AGb+xp+zKVeb6xvS/lIgVTgYMbFNw3Ar5N6da2cO0Jsztl2uPtbW9IuTjyYZIOtH1DgvvIYvt3wBbAP+Dl6wx/CvhrN8vVKRno1FA1RfGIpKcpw+5F7c9bewmc7nqB6OHcS6BHHaj0HWAX29e2LFqIUpP/Y308L/A1ysjdGIFs/1rSS/W3cTtwgO2Lu12uTkiKpkFaJkxaiDJn+0O1t8jDwKm2/y1pdcpFgw9qUl9vSQdQjmvHtzz3dcol1a6i1NgWo+RcN3QXL4QcQ0NN1yw4nPu5z0pq8A1Sg/sWlFPOUZIuoeQbDwDeLOk54N2UrmKNCO4tZx/L0tJQWtseXg1sSklH3UiZJOqLCe4BL6drGnEGOzOpwTdAS819RUoQ2xf4N2Ue92vqc28ClgT+Yfu6pn2pa23sEMoVdybXaRZke6qkQymjU0/vbikj5qzU4IexliAtwMDclL69t9h+WtLewJWUniInt762ScG9uoaSZ99R0hjb1wFI2gnYjNJbKGJESYAfpuqw691qvn20pKMpV2J6GniLylXfH5H0XWDYj0qdFZfZAH9AuXbm0ZKup0yUti2wle3bulrAiC5IimYYkrQCZbKwH1GC93KUucw3okyWtTFwNSVNczjl2qKXdae0c1YdnbsaZfqFe4HL3aALlUT0RwL8MFPz7KcBR9g+v+X5wyiDed5GCXBrUi6YfXpTu4BFRN8S4IeZGcypMW+dcgBJ36QM8NmjPp7L9vPdKmtEdFdGsg4zLXNq/EvSq2w/UydJgpKWmatl9RfmfAkjYqhIgB+GbP+GMs3vdSrXT322LnoOeFTSXE3rBhkR/ZcAP0y1BPmJ8HLD61eBC2w/n+AeEcnBD3N1xOY5lDk1PmU7c6xEBJAA3wgjYU6NiOi/BPgGSd49IlolwEdENFQaWSMiGioBPiKioRLgIyIaKgE+RhRJr5F0uqTbJE2SdLWkrbtdrohOSICPEaNel/aXlLl8lrH9NmBHYIlB2PbogW4jYrAlwMdIsh4w1fYJPU/YvtP2tyWNlvR1SX+S9BdJHwaQtI6kyyWdLenvkk6rBwok3SHpcElXAttJ2rCeEUyWdJakV3TnbUYUCfAxkqwETJ7Jsr2Ax2yvAawB7CNp6brsrZTr2q4ILAOs3fK6Z22/C7gUOAzYwPZqlCkkDhr0dxDRD7miU4xY9WpX7wKmAndSLky+bV28EGU+/anAdT0XKZd0AzCecilEgDPr37UoB4A/1gr+3JTZPSO6JgE+RpIbgW16Htj+qKRFKbXtu4CP276o9QWS1qHM0tnjRab/3TzVsypwie2dBr/YEbMnKZoYSX4PjJW0X8tz89W/FwH7SZoLyjVvJc3fj21fA6wtabn6+vnqdXMjuiY1+BgxbFvSVsA3JH0amEKpgX8GOIuSeplcG1GnAFv1Y9tTJO0BnCFpnvr0YcA/Bqv8Ef2VuWgiIhoqKZqIiIZKgI+IaKgE+IiIhkqAj4hoqAT4iIiGSoCPiGioBPiIiIb6f8XZptnCJUy4AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "top_movies_by_genre = (\n",
+ " exploded_genres.groupby('genres')['averagerating']\n",
+ " .mean()\n",
+ " .nlargest(5) # Get top 5 genres by average rating\n",
+ ")\n",
+ "\n",
+ "top_movies_by_genre.plot(kind='bar')\n",
+ "plt.title('Top Genres by Average Rating')\n",
+ "plt.xlabel('Genre')\n",
+ "plt.ylabel('Average Rating')\n",
+ "plt.xticks(rotation=45)\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Start by Loading the CSV files\n",
+ "Perform descriptive statistics on the csv files so as to have deeper understanding of the dataset"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "#sql\n",
+ "# Connect to the database\n",
+ "conn = sqlite3.connect('im.db')\n",
+ "\n",
+ "# Query the data\n",
+ "query1 = \"SELECT * FROM movie_basics;\"\n",
+ "query2 = \"SELECT * FROM movie_ratings;\"\n",
+ "data1 = pd.read_sql_query(query1, conn)\n",
+ "data2 = pd.read_sql_query(query2, conn)\n",
+ "# Step 3: Close the connection\n",
+ "conn.close()\n",
+ "\n",
+ "# Merge the DataFrames on a common column \n",
+ "merged_data = pd.merge(data1, data2, on='movie_id')\n",
+ "\n",
+ "category_counts = merged_data['genres'].value_counts()\n",
+ "\n",
+ "top_10_categories = category_counts.nlargest(10)\n",
+ "# Create a pie chart\n",
+ "plt.figure(figsize=(8, 8))\n",
+ "plt.pie(top_10_categories, labels=top_10_categories.index, autopct='%1.1f%%', startangle=140)\n",
+ "plt.title('Top 10 Categories/Genres based on ratings', fontsize=16, color='purple', pad=20)\n",
+ "plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAGoCAYAAABbkkSYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABjr0lEQVR4nO3dd5xU1fnH8c+zIB2xIB0XVOxYUbBFrGDv2BFrYks0iT81sUUTNaaYqNGgkRhNLNiCGo0h6tppRhS7SBEUXAsIS4d9fn+ce93ZZWZ3ZnZmZ3bn+3695jUzd+6988zsYbnPnnOeY+6OiIiIiIiINF5ZoQMQERERERFpKZRgiYiIiIiI5IgSLBERERERkRxRgiUiIiIiIpIjSrBERERERERyRAmWiIiIiIhIjijBEhGRZsPMRpnZK3k478ZmVmVmrXJ97lwzs1lmtn+h4yhmZvaMmZ1W6DhEpDQpwRIRKQJmVmFmC8ysbaFjaSwzu8bMVkUJy0Ize83Mdit0XInqJinu/qm7d3L3NXl4LzezJdH38ZWZPWBm6+X6fbKI6xoz+3sjjt/azJ4ws2/NbLGZvWBmu+cyxnre+93o+6wyszVmtjzh+c/c/SB3/1tTxCIiUpcSLBGRAjOzfsBegAOH5+H8rXN9zjQ85O6dgI2AV4DHzMzq7tQceoxyZPvo+9gEWB+4prDhNI6ZbQq8CkwD+gO9gMeB/+Qjma7bTtx9mygh7gS8DFwQP3f363P9/iIimVCCJSJSeCOBCcA9wGkAZtY26v3ZNt7JzDYys2Vm1i16fqiZTU3oJdouYd9ZZnapmb0NLDGz1mZ2mZl9EvU2vGdmRyXs38rMfhf1sMw0swuinpfW0etdzOxuM5tnZp+Z2S/TSY7cfRXwN6AHsKGZ3WNmd5jZ02a2BNjHzLaKevAWRj0T3yWZZrZh1EuyyMwmAZsmvNYvMcZoW4WZnZXw/Gwzez/hM+9kZvcBGwNPRj0e/1f3XGbWK3rfb8xsupmdnXDOa8xsrJndG533XTMb1NB3EX0fi4AngK3r/Kz2T3heq2fJzE41s9lm9rWZ/TzxfGbW3sz+FvV+vh99lrkJr/cys0fN7Mvo5/rDaPtw4GfA8dF38Fa0fZSZzYg+10wzOznFR7kGeN3df+7u37j7Yne/BbgP+HV0rn+b2QV14n3LzI6OHm9pZuOj7/hDMxuRsN9a7SSd7zfh+O/aQfSZXjWzm6M2NsPMdo+2zzGzSksYTmjh395vzexTM/vCzP5sZu0zeX8RKW1KsERECm8k8I/oNszMurv7CuAx4MSE/UYAL7p7pZntBIwBvg9sCIwGnrDaQwxPBA4B1nP31cAnhJ6yLsAvgL+bWc9o37OBg4AdgJ2AI+vE+DdgNbAZsCNwIHAWDYjiGQXMdfevos0nAb8COgMTgSeB/wDdgAuBf5jZFtG+fwKWAz2BM6JbWszsOEIiMBJYl9A7+LW7nwp8ChwW9XjclOTwB4C5hJ6ZY4HrzWy/hNcPBx4E1iMkTLelGdP6hO92Qpr7bw3cAZwaxbIh0Cdhl6uBfoSesQOAUxKOLSN8t28BvYH9gIvMbJi7/xu4nqin0d23N7OOwC3AQe7eGdgdmJoitAOAh5NsHwvsYWYdgPtJaL/RZykH/hW91/hon27Rfreb2TYJ50psJ42ddzcYeJvw/d1P+NntQmjPpwC3mVmnaN9fA5sT/i1sRvjurmrk+4tICVGCJSJSQGa2J+Gic6y7v0FIgk6KXq51gRptvz96fDYw2t0nuvuaaL7JCmBIwv63uPscd18G4O4Pu/vn7l7t7g8BHwO7RvuOAP7o7nPdfQFwY0KM3QnJ10XuvsTdK4GbgRPq+WgjzGwhMAfYmdoJ2zh3f9XdqwkXsZ2AG919pbs/DzwFnBj1kB0DXBW97zuERC9dZwE3uftkD6a7++yGDjKzvsCewKXuvtzdpwJ/ISQ5sVfc/eloztZ9wPYNnPZ/0ffxFaH3bHSan+FY4Cl3fylKuq8EqhNeHwFc7+4L3H0uIUGK7QJs5O7XRt/tDOAu6v+5VQPbmll7d5/n7u+m2K8rMC/J9nmEa4v1CUMGdzCz8ui1k4HHos9xKDDL3f/q7qvd/X/Ao9HnjX3XTtx9eT0xp2Nm9F5rgIeAvsC17r7C3f8DrAQ2MzMj/Nu6OO6ZIySi9X1nIiK1KMESESms04D/JPTu3B9tA3geaG9mg6OL1B0IF60QkrKfREOeFkYX730JvRyxOYlvZGYjrWZI4UJgW8KFMtFxc1IcWw6sA8xLOHY0oechlbHuvp67d3P3faPkMdm5ewFzomQrNpvQa7AR0LrO/g0mSAn6EhLWTPUC4ovrujHF5ic8Xgq0s/rnuu3k7usB7Qg9Ui+bWbs0Y/nu87v7EuDrVK+z9s+tV5028jOge7I3is59PPADws/6X2a2ZYq4viL0KtbVk5CkLYi+v39Rk5ycQOiljWMbXCe2kwlDSZN9lsb6IuFx/AeHutviOYMdgDcS4vp3tF1EJC2FmPgsIiKE+TOEHohWZhZfsLcF1jOz7d39LTMbS+jF+oLQkxFf9M8BfuXuv6rnLTzhvcoJvRf7EebOrDGzqUBceGIetYee9U14PIfQO9Y1GmrYWJ7w+HOgr5mVJSRZGwMfAV8ShiX2BT5IeC22JLrvACyKHte9QN+U5DzF9jimDcysc8L3vTHwWT3HpMXdV5nZX4A/EBLcKYTP0SFht8TPMA/YKn4SDb3bsM7rfYD3oud1f24z3X1AqnCSxPcs8GzUNn9JaDN7JTn2v8BxwF/rbB9BaF9Lo+cPAFeb2UtAe+CFhNhedPcDUsSWNL4m8BUh2drG3Rv98xaR0qQeLBGRwjkSWEMoeLBDdNuKUBVtZLTP/YRehZOpGR4I4cL3B1HvlplZRzM7xMw6p3ivjoQL1i8BzOx0wgV+bCzwIzPrbaGE+KXxC+4+jzBH6ndmtq6ZlZnZpma2d7YfPMFEQoLxf2a2jpkNBQ4DHoyGcz0GXGNmHaI5PN8VI3D3LwlJzykWinScQe2E6i/AT81s5+g72ixhuNoXhHlLa3H3OcBrwA1m1s5C8ZAzqel9yVo07PF0wkX8jGjzVOCE6PMPovYwuUeAQ81sTzNrA1xL7f+7xwKXm9n6ZtYbSCwqMQlYZKHYSfvoO9rWzHaJXv8C6BfN1cLMupvZ4dH8qBVAFaF9JvMLYHcz+5WZbWBmnc3sQkK7vTRhv6cJvVXXEuZ7xUn0U8DmFgp4rBPddjGzrSigKL67gJutpphMbzMbVsi4RKR5UYIlIlI4pwF/jdZgmh/fCAUTTjaz1u4eJyC9gGfiA919CmGuyG3AAmA6oZhEUu7+HvA74HXChfVAQpnt2F2EJOpt4E3ChfFqai6wRwJtCD0lCwgX/smGiGXE3VcSCkYcROg9uB0Y6e5xj9UFhKFb8wlVFuv2mJwNXEIYNrcNITGKz/0woUjC/cBi4J/ABtHLNwBXRMPAfpoktBMJxSM+JwzLvNrdx2f/SXnLzKoI391pwFHu/k302pWExHABIXH5LpGO5kCdH22bF+0zN+G810bPZxJ6lR4hJEdECephhMR9JuH7/QuhyAnUFKn42sz+R7gm+En0mb8B9gbOS/Zh3P1jwjy17YFZUWzHAMPc/dWE/eJiLfvX+VyLCYVSTojebz6huEQxrAN3KeHf0wQzW0T4Xreo/xARkRrmXogeeBERKWZmdhDwZ3cvb3BnKRpmdi5wgrvnondRRESyoB4sERGJ11M62MJ6Wb0J5b8fb+g4KSwz62lme0TDNrcg9EDp5yYiUkDqwRIRkbh4wovAloT5Qf8CfuRhYVwpUtGcsn8B/YGFhPWdLo+GXoqISAEowRIREREREckRDREUERERERHJEa2D1cS6du3q/fr1K3QYRWHJkiV07Nix0GFIEVBbkERqDxJTW5CY2oLEiqktvPHGG1+5+1oLkSvBamL9+vVjypQphQ6jKFRUVDB06NBChyFFQG1BEqk9SExtQWJqCxIrprZgZrOTbdcQQRERERERkRxRgiUiIiIiIpIjSrBERERERERyRAmWiIiIiIhIjijBEhERERERyRElWCIiIiIiIjmiBEtERERERCRHlGCJiIiIiIjkiBIsERERERGRHFGCJSIiIiIikiNKsERERERERHJECZaIiIiIiBS16mqYPx969hzM/PnhebFSgiUiIiIiIkWruhqmTYMhQ2DLLdszZEh4XqxJlhIsEREREREpWpWVcMQRMHt2eD57dnheWVnYuFJRgiUiIiIiIkVrxYqa5Co2e3bYXoyUYImIiIiISNFq2xbKy2tvKy8P24uREiwRERERESla3brBuHE1SVZ5eXjerVth40qldaEDEBERERERSaWsDAYOhDFjoH37NfTv34pu3cL2YqQES0REREREilpZGVx6KbRqtZAJEzYsdDj1KtK8T0REREREpEZVVejBKnZKsEREREREpOgpwRIREREREckRJVgiIiIiIiI54K4ES0REREREJCdWroTVq5VgiYiIiIiINFpVVbhXgiUiIiIiItJISrBERERERERyRAmWiIiIiIhIjijBEhERERERyRElWCIiIiIiIjmiBEtERERERCRHlGCJiIiIiIjkiBIsERERERGRHFm8ONx36KAES0REREREpFHiHqy2bZVgiYiIiIiINEpVFXTsCGXNIHtpBiGKiIiIiEgpq6qCTp0KHUV6lGCJiIiIiEhRU4IlIiIiIiKSI0qwREREREREckQJloiIiIiISI4owRIREREREckRJVgiIiIiIiI5ogRLREREREQkR5RgiYiIiIiI5IgSLBERERERkRxYtQpWrFCCJSIiIiIi0mhLloR7JVgiIiIiIiKNtHhxuFeCJSIiIiIi0khVVeG+c+fCxpEuJVgiIiIiIlK04gRLPVgiIiIiIiKNpARLREREREQkR5RgiYiIiIiI5IgSLBERERERkRxRgiUiIiIiIpIjSrBERERERERyJE6wOnYsbBzpUoIlIiIiIiJFq6oK2rWD1q0LHUl6lGCJiIiIiEjRqqpqPsMDQQmWiIiIiIgUMSVYIiIiIiIiOaIEqw4z62dmoxKeb2xmL5jZm2b2tpkdnPDaaWb2cXQ7LcX5NjCz8dE+481s/YTXLjez6Wb2oZkNS9i+s5lNi167xcwsyXktem16FNdOCa8Nj8453cwuSycWERERERFpPCVYCczsXOBZ4DozqzCzHsAVwFh33xE4Abg92ncD4GpgMLArcHWKhOUy4Dl3HwA8Fz3HzLaOzrcNMBy43cxaRcfcAZwDDIhuw5Oc96CE18+JjiE6x5+i17cGTozeK2UsIiIiIiKSG4sXN68EK2+1OMysM/AL4DBgK6ACWAI4sG60Wxfg8+jxMGC8u38THT+ekAg9UOfURwBDo8d/i857abT9QXdfAcw0s+nArmY2C1jX3V+PznsvcCTwTJLz3uvuDkwws/XMrCfQD5ju7jOi4x+M9n2vnljqfhfnEJI2unfvTkVFRdLvrNRUVVXpuxBAbUFqU3uQmNqCxNQWStsXXwyiV69lVFS82yzaQj6LHVYDbYiSKXefBWBm1wD/MbMLgY7A/tH+vYE5CcfPjbbV1d3d50XnnGdm3RKOn5Dk+FXR44bOm+r9k20f3EAstbj7ncCdAIMGDfKhQ4cm263kVFRUoO9CQG1BalN7kJjagsTUFkqbO/Tv34mhQ4c2i7aQtyGC7r4EGAlcTxgi+Fsz6wCcCNzj7n2Ag4H7zKwMWGteFKG3K12pjk/3vI09XkREREREckxzsBK4+xPAccBNwEbAT4AzgbHR668D7YCuhJ6hvgmH96Fm+GCiL6Khe0T3ldH2VMfPjR43dN76jk8VV6pYREREREQkB5RgRcysk5mVR08XA+8DnYFPgf2ifbYiJFhfEophHGhm60fFLQ6MtmFmN5jZUdG5ngDiCoOnAeMStp9gZm3NrD+hWMWkaAjfYjMbElUPHBkfY2ZHmdkNCcePjKoJDgG+jY6dDAwws/5m1oZQSOOJBmIREREREZFGWrMGli1rXglWPudgrQOMJvRObUhIrE4iFLa4y8wuJgy1GxUVlvjGzK4jJDQA18YFL4CB1CQ1NwJjzezM6JzHAbj7u2Y2llB8YjVwvruviY45F7gHaE8obhEXuNgUWBQ9fpowZHE6sBQ4PTrvajO7gJDstQLGuPu79cUiIiIiIiKNt2RJuFeCBbj7AmC4mfUDhrr7PdFLnwF7pDhmDDAmyUvrxFUA3f1roh6wJMf/CvhVku1TgG2THLIDcHG0jwPnpzjv04QErO72lLGIiIiIiEjjVFWFeyVYtS0EpjbmBO4+rOG9sjrvKfk4r4iIiIiINJ4SrCTcfSGNTLBERERERKT0NMcEK69VBEVERERERLKlBEtERERERCRHlGCJiIiIiIjkiBIsERERERGRHFGCJSIiIiIikiOLF4d7JVgiIiIiIiKNpB4sERERERGRHKmqgnXWgTZtCh1J+pRgiYiIiIhIUaqqgs6dCx1FZpRgiYiIiIhIUaqqal7DA0EJloiIiIiIFCklWCIiIiIiIjmiBEtERERERCRHlGCJiIiIiIjkiBIsERERERGRHFGCJSIiIiIikiNKsERERERERHJECZaIiIiIiEgOVFfDkiVKsERERERERBpt2TJwV4IlIiIiIiLSaIsXh3slWCIiIiIiIo1UVRXulWCJiIiIiIg0khIsERERERGRHFGCJSIiIiIikiNxgtW5c2HjyJQSLBERERERKTrqwRIREREREckRJVgiIiIiIiI5ogRLREREREQkR5RgiYiIiIiI5EhVFbRqBW3bFjqSzLSu70Uz2w04BdgL6AksA94B/gX83d2/zXuEIiIiIiJScqqqQu+VWaEjyUzKHiwzewY4C3gWGE5IsLYGrgDaAePM7PCmCFJEREREREpLnGA1N/X1YJ3q7l/V2VYF/C+6/c7MuuYtMhERERERKVnNNcFK2YOVJLnKah8REREREZFMtbgEC8DMjjezTaLH25nZdDP73MyOaZrwRERERESkFC1e3AITLOAS4LPo8XXAj4CdgavzGZSIiIiIiJS25tqDlXIOlpldDfQGLjWzVsCewJvAIKCLmV0FVLj7S00SqYiIiIiIlIwWl2C5+y/MbF9gLtAdeNbdrwEws+Hufm3ThCgiIiIiIqWmuSZYDQ0R/AEwDNgK+AmAmW1NWAdLREREREQkL5prglXvQsPu/j5wfJ1t7wHv5TMoEREREREpXe4hwercudCRZK6+hYZPMbP6Xt/UzPbMT1giIiIiIlKqli+H6uqW14O1IfCmmb0BvAF8CbQDNgP2Br4CLst7hCIiIiIiUlKqqsJ9i0qw3P2PZnYbsC+wB7AdsAx4HzjV3T9tmhBFRERERKSUtMgEC8Dd1wDjo5uIiIiIiEjeNecEq6EqgiIiIiIiIk1KCZaIiIiIiEiOtOgEy8z6p7NNREREREQkF1p0ggU8mmTbI7kOREREREREBJp3gpWyyIWZbQlsA3Qxs6MTXlqXUK5dREREREQk5xYvDvctKsECtgAOBdYDDkvYvhg4O48xiYiIiIhICWuRPVjuPg4YZ2a7ufvrTRiTiIiIiIiUsKoqMIP27QsdSebSmYP1tZk9Z2bvAJjZdmZ2RZ7jEhERERGRElVVBR07QlkzrHmeTsh3AZcDqwDc/W3ghHwGJSIiIiIipauqqnkOD4T0EqwO7j6pzrbV+QhGRERERESkpSdYX5nZpoADmNmxwLy8RiUiIiIiIiWrqgo6dy50FNmpr4pg7HzgTmBLM/sMmAmckteoRERERESkZDXnHqwGEyx3nwHsb2YdgTJ3X5z/sEREREREpFRVVUHXroWOIjsNJlhm9uM6zwG+Bd5w96n5CUtEREREREpVVRX061foKLKTzhysQcAPgN7R7RxgKHCXmf1fQwebWT8zG1Vn2wgze8/M3jWz+xO2n2ZmH0e301KcbwMzGx/tM97M1k947XIzm25mH5rZsITtO5vZtOi1WyzKEuuc16LXppvZ22a2U8Jrw6NzTjezy9KJRUREREREstOchwimk2BtCOzk7j9x958QEq6NgO8Bo+o70MzOBZ4FrjOzCjPrYWYDCGXf93D3bYCLon03AK4GBgO7AlenSFguA55z9wHAc9FzzGxrQvn4bYDhwO1m1io65g5CYjggug1Pct6DEl4/JzqG6Bx/il7fGjgxeq+UsYiIiIiISPZaeoK1MbAy4fkqoNzdlwErUh1kZp2BXwAjgSsJydgS4GzgT+6+AMDdK6NDhgHj3f2b6LXxJE+EjgD+Fj3+G3BkwvYH3X2Fu88EpgO7mllPYF13f93dHbg34Zi6573XgwnAetGxuwLT3X2Gu68EHoz2rS8WERERERHJUnNOsNKpIng/MMHMxkXPDwMeiIpevFfPcdVAG2BdAHefBWBmm0f3rwKtgGvc/d+E4YdzEo6fG22rq7u7z4vOOc/MukXbewMTkhy/Knrc0HlTvX+y7YMbiKUWMzuH0CtG9+7dqaioSLZbyamqqtJ3IYDagtSm9iAxtQWJqS2UllWrjFWr9qaycgYVFZ/Weq05tIV0qgheZ2ZPA3sCBvzA3adEL59cz3FLzGwkcD3Qw8y2Ba6K3nMAYR5XH+Dl6LW15kURrb2VplTHp3vexh6fkrvfSSh1z6BBg3zo0KGZHN5iVVRUoO9CQG1BalN7kJjagsTUFkrL11+H++2224ShQzep9VpzaAspE6xoTlRsZnT77jV3/6ahk7v7E2b2NqHXaxDwE0IP0AR3XwXMNLMPCQnXXELSFesDVCQ57Rdm1jPqMeoJxEMM5wJ96xz/ebS9T5LtdaU6vk2K7fXFIiIiIiIiWaiqCvfNdYhgfXOw3gCmRPdfAh8BH0eP32joxGbWyczKo6eLgfeBzsA/gX2ifboCmwMzCMUwDjSz9aPiFgdG2zCzG8zsqOhcTwBxhcHTgHEJ208ws7Zm1p+QtE2KhvAtNrMhUfXAkfExZnaUmd2QcPzIqJrgEODb6NjJwAAz629mbQiFNJ5oIBYREREREclCc0+wUvZguXt/ADP7M/CEuz8dPT8I2D+Nc68DjAa6EioRfgqcROj9OdDM3gPWAJe4+9fRua8jJDQA1yb0kg2kJqm5ERhrZmdG5zwuivddMxtLmBe2Gjjf3ddEx5wL3AO0B56JbgCbAouix08DBxOKYywFTo/Ou9rMLiAke62AMe7+bn2xiIiIiIhIdlpsgpVgF3f/QfzE3Z+JEqF6RZUAh5tZP2Cou9+T8PKPo1vdY8YAY5Kcbh13fz3a52tgvxTv+SvgV0m2TwG2TXLIDsDF0T4OnJ/ivE8TErC621PGIiIiIiIimSuFBOsrM7sC+DuhuMMpwNcZvMdCYGrGkSVw92EN75XVeU/Jx3lFRERERCQ7zT3BSmcdrBMJCws/Tpg/1S3alhZ3X+juU7MJTkRERERESkucYHXuXNg4spVOmfZvgB81QSwiIiIiIlLimnsPVoMJlpm9QJJ1n9x937xEJCIiIiIiJavFJ1jATxMetwOOIVTpExERERERyak4werQobBxZCudIYJ117x61cxezFM8IiIiIiJSwqqqQnLVqlWhI8lOOkMEN0h4WgbsDPTIW0QiIiIiIlKyqqqa7/BASG+I4BuEOVhGGBo4Ezgzn0GJiIiIiEhpavEJlrv3b4pAREREREREWnSCZWblwBJ3/8rMhgB7AtPd/Z9NEZyIiIiIiJSWxYtbaIJlZlcCowA3sweB/YEK4BAzG+ruFzVFgCIiIiIiUjqqqqBLl0JHkb36erBOBLYCOgCfAj3cfamZtQamNkFsIiIiIiJSYqqqoHfvQkeRvfoSrOXuvhJYaWafuPtSAHdfbWYrmyY8EREREREpJS15DtZ6ZnY0oXrgutFjoufNuNNORERERESKVUtOsF4EDosev5TwOH4uIiIiIiKSUy02wXL305syEBERERERKW0rV8IDD8Amm8D8+dCtG5SVFTqqzDSzcEVEREREpCWqrob33oOLL4YddoAhQ2DatLC9OVGCJSIiIiIiBVdZCUceCbNnh+ezZ8MRR4TtzYkSLBERERERKbgVK2qSq9js2WF7c1JfkYvvmNnuQL/E/d393jzFJCIiIiIiJaZtWygvr51klZeH7c1Jgz1YZnYf8FtgT2CX6DYoz3GJiIiIiEgJWb0a7r47JFUQ7seNC4UumpN0erAGAVu7u+c7GBERERERKU233AKvvAIvvQTuoeeqOVYRTCfBegfoAczLcywiIiIiIlKCli6Fv/wF9tsPNt640NE0TjoJVlfgPTObBHw3xczdD89bVCIiIiIiUjIeeAAWLIALLyx0JI2XToJ1Tb6DEBERERGRlqO6OpRXX7Gi4aF+7nDbbTBwIOy1V9PGmQ8Njmh09xeBD4DO0e39aJuIiIiIiEgt1dVhgeAhQ6Bfv4YXDH71VZg6FS64AMyaMtL8SKeK4AhgEnAcMAKYaGbH5jswERERERFpfiorwwLB6S4YfNttsN56cPLJTRZiXqUzRPDnwC7uXglgZhsB/wUeyWdgIiIiIiLS/GSyYPDnn8Ojj8IPfwgdOzZNfPmWTtHDsji5inyd5nEiIiIiIlJi4gWDE6VaMPjOO2HNGjj33KaJrSmkkyj928yeNbNRZjYK+BfwdH7DEhERERGR5qhbt7BAcOKCwXffDWPGhGQqtnIljB4NBx0Em21WmFjzocEhgu5+iZkdA+wBGHCnuz+e98hERERERKTZKSuDbbeFW2+F3r2hV6+QcP385/DBByHRat06DA2cPz8Ut2hJ0pmDhbs/Cjya51hERERERKQF+OQTOPzwsHjwTjvB978PX34JV14ZFhI+/3zo3x+efhoOOKDQ0eZWygTLzF5x9z3NbDHgiS8B7u7r5j06ERERERFpdiZODPeDB9dsu+KKMFywVy/YbbdQ+KK8PPRuDRyYep2s5iZlguXue0b3nZsuHBERERERae4mToROnWCrrWpvP+CAsC5W3RLuEyZAjx5NH2c+pLMO1n3pbBMREREREYGQYO2yC7RqVXt7JiXcm6t0OuK2SXxiZq2BnfMTjoiIiIiINGfLl8Nbb9UeHhjLpIR7c5UywTKzy6P5V9uZ2aLothj4AhjXZBGKiIiIiEiz8eabsGoV7Lrr2q8lK+E+blzY3lLUNwfrBuAGM7vB3S9vwphERERERKSZSlbgIlZWFgpaTJgQhgW2bRuSq5ZS4ALSK9M+ycy6uPu3AGa2HjDU3f+Zz8BERERERKT5mTgR+vQJ1QKTKStrOQUtkkknV7w6Tq4A3H0hcHXeIhIRERERkWZr4sTkvVelIp0EK9k+aS1QLCIiIiIipePLL2HmTCVYDZliZr83s03NbBMzuxl4I9+BiYiIiIhI81Lf/KtSkU6CdSGwEngIeBhYDpyfz6BERERERKT5mTgxrH21cwkv6tTgUD93XwJc1gSxiIiIiIhIMzZxImy7LXTsWOhICqfBBMvMXgC87nZ33zcvEYmIiIiISLNTXQ2TJsHxxxc6ksJKp1jFTxMetwOOAVbnJxwREREREWmOPvoIvv22tOdfQXpDBOsWtHjVzF7MUzwiIiIiItIMqcBFkM4QwQ0SnpYBOwMteGkwERERERHJ1MSJ0LkzbLlloSMprHSGCL5BmINlhKGBM4Ez8xmUiIiIiIg0LxMnwi67hCqCpSydIYL9myIQERERERFpnpYtg7ffhksuKXQkhZcywTKzo+s70N0fy304IiIiIiLS3Pzvf7B6teZfQf09WIdF992A3YHno+f7ABWAEiwREREREVGBiwQpEyx3Px3AzJ4Ctnb3edHznsCfmiY8EREREREpdhMnwsYbQw+VwqMsjX36xclV5Atg8zzFIyIiIiIizcykSeq9iqWTYFWY2bNmNsrMTgP+BbyQ57hERERERKQZqKyEWbOUYMXSqSJ4gZkdBXwv2nSnuz+e37BERERERKTYVVfD119DRQX06hWel6XThdOCpbMOFsBrhDWwHJiUv3BEREREpLmqrg69GStWQNu20K2bLrZbsupqmDYNjjgCZs+G8nIYNw4GDiztn3uDH93MRhCSqmOBEcBEMzs234GJiIiISPMRX2wPGQL9+oX7adPCdmmZKitrkisI90ccEbaXsnR6sH4O7OLulQBmthHwX+CRfAYmIiIiIs1HqovtCRNUWa6lWrGi5ucdmz07bC9l6XTelcXJVeTrNI8DwMz6mdmoJNuPNTM3s0EJ204zs4+j22kpzreBmY2P9hlvZusnvHa5mU03sw/NbFjC9p3NbFr02i1mZknOa9Fr083sbTPbKeG14dE5p5vZZenEIiIiIlJKdLFdetq2DcMCE5WXh+2lLJ1E6d8JVQRHEaoIPp3Oyc3sXOBZ4DozqzCzHtH2zsAPgYkJ+24AXA0MBnYFrk6RsFwGPOfuA4DnoueY2dbACcA2wHDgdjNrFR1zB3AOMCC6DU9y3oMSXj8nOoboHH+KXt8aODF6r5SxiIiIiJQaXWyXnm7d4LHHan7u8Rysbt0KG1ehmbunfjH09PQBdgH2BAx4KZ0qglES9QlwGLAVUAF87e6LzewPhGGGPwV+6u5TzOxEYKi7fz86fjRQ4e4P1Dnvh9F+86JFjyvcfQszuxzA3W+I9nsWuAaYBbzg7ltG22u9T8J5a71f/D5AP+Aadx8Wbf/ufVLFkuS7OIeQtNG9e/edH3zwwYa+vpJQVVVFp06dCh2GFAG1BUmk9iAxtYXmpVOndYFtOfbYNt8VPHjkkZXAO1RVLWrUudUWitesWX3o0mUzBgxYQZs2y1m06JNG/7zrU0xtYZ999nnD3QfV3V7vHCx3dzP7p7vvDDyW4XtWA22AdaNzzQIwsx2Bvu7+lJn9NGH/3sCchOdzo211dY8XPo4SmzhH7g1MSHL8quhxQ+dN9f7JtsdV/lPFUou73wncCTBo0CAfOnRost1KTkVFBfouBNQWpDa1B4mpLTQ/U6fCzTfDBhuE5zvt1Iaysp3qPSYdagvF67bb4PTTYf78tnTv3hZo/M+7Ps2hLaRT5GKCme3i7pMzObG7LzGzkcD1QA8z2xa4CrgZGJXkkLXmRRHKwqcr1fHpnrexx4uIiIiUtOefh5/8BPbeO8y/mjmz0BFJvs2YAR06aFhgonTmYO1DSLI+iYo/TDOzt9M5ubs/ARwH3ARsBFwCbAtUmNksYAjwRFToYi7QN+HwPsDnSU77RTQcj+g+LsCR6vi50eOGzlvf8aniShWLiIiISMmZNAk23hiGDYNZs+DbbwsdkeTbzJnQvz+sXUKudKWTYB0EbALsS5hPdWh0Xy8z62Rm8VTHxcD7QEd37+ru/dy9H2FI3+HuPoVQDONAM1s/Km5xYLQNM7vBzI6KzvUEEFcYPA0Yl7D9BDNra2b9CcUqJkVD+Bab2ZBoTtnI+BgzO8rMbkg4fmRUTXAI8G107GRggJn1N7M2hEIaTzQQi4iIiEjJmTgRBg+G7bcPz6dNK2w8kn8zZsAmmxQ6iuKScohgNJ/oZ8BmwDTgBnfPZMbaOsBooCuwIfApcFKqnd39GzO7jpDQAFzr7t9EjwdSk9TcCIw1szOjcx4XHf+umY0F3gNWA+e7+5romHOBe4D2wDPRDWBTIP5MTwMHA9OBpcDp0XlXm9kFhGSvFTDG3d+tLxYRERGRUlNZGXqtzj8fttsubHvrLdhzz4KGJXnkHhKsIp8S1eTqm4N1L/AGcCuh1+oWks+dSsrdFwDDzawfodLePUn2GVrn+RhgTJLTrePur0f7fA3sl+I9fwX8Ksn2KYShiXXtAFwc7ePA+SnO+zRJStPXF4uIiIhIKZk0KdwPHgy9e4dCF2+nNalEmlJ1dUiGV6wIJfS7dYOytFe4re3rr6GqSj1YddX3dfZw95+7+7PufiGwXZbvsRCYmuWxAMQl0nPN3U9x9y/zcW4RERGRUjJxIrRqBTvtFObjbLdd6MGS4lFdHYZtDhkC/fqF+2nTwvZszJgR7pVg1VZfgmXRfKgNokWAW9V5nhZ3X+juUxsdqYiIiIgUrYkTYdttoWPH8Hz77cPF+5o19R8nTaeyEo44IlR4hHB/xBFhezbiKpH9++cmvpaiviGCXQhDBBNrgvwvundC4QsRERERKXHV1TB5MowYUbNt++1h6dLQyzFgQOFikxrLltUkV7HZs8NwwWzEPVhKsGpLmWBFVf5EREREROr18cewcGGYfxVLLHShBKvp1Z1r9c47sHw5lJfXTrLKy8Pr2ZgxI8zhinstJchySpuIiIiISDBxYrjfddeabdtsE+ZkqdBF00s218oM3ngDHnssJFUQ7seNy36R4JkzNf8qmfqGCIqIiIiINGjSJOjUCbbaqmZbu3awxRYqdJGuXFb3SzbX6swz4fXXoXt3mDABPv8c5s4NP7Ns32fGDNhtt+yObcnUgyUiIiIijTJxIgwaFHqsEjWXSoLV1TB/fkhE5s/PvqpeY94/m+p+yeJevBi+/DL5XKuVK0My1aNHTYGLCROyi3n1avj0U82/SiatBMvM9jSz06PHG5mZvkoRERERYfnykEQlzr+Kbb99uJD/9tumjytduS5dno1sqvsli3vCBDjySJg+vWYYYKzuXKt99w0J8bPPZhfznDmhQqSGCK6twQTLzK4GLgUujzatA/w9n0GJiIiISGGl26szdSqsWpU6wYLinoeV69Ll2VixIvPqfsniPukkuPpq2GyzMLeqvrlWXbrA7rtnn2BpDazU0unBOgo4HFgC4O6fA53zGZSIiIiIFE4mvTrJClzEEisJFqtskptca9u24R6nulLFXV4OAweG24QJMGtWuB84cO25VsOGhcIX2SSTWgMrtXQSrJXu7oS1rzAzFWIUERERacEy6dWZOBF69w63unr1gg03LO4erGySm1xr0wbGjKnd4zRmTJgzlcqqVfXHHc+1Ki8P98kKWQwbFu7Hj8885hkzoHVr6NMn82NbunQSrLFmNhpYz8zOBv4L3JXfsERERESkUDLp1Zk0KfnwQAilwbffvrh7sBYtgrvvrp3c3H033HNP083D+vWv4Wc/gxdeCD1OFRVh2/77w9dfr73/yy/D2WeHGBtTcn2nnaBr1+yGCc6YEd6zbmETSaNMu7v/1swOABYBWwBXuXsWea6IiIiINAdxr05DC9J+9RV88km42E9lu+1g9OhQEKHYLsZXr4aTTw69bK+8EmJs2xYefRQuvzwUi7jzzuzLmKfjyy/htttCcYrE4XZXXQX77Re2jx8fyt4DPP88HHYYbLxxKLE+YUL2pd3LyuDAA+E//wnJZCbHag2s1NL6Gt19vLtf4u4/VXIlIiIi0rJ16wYPPFC7d+Shh9buHZk0Kdyn6sGC0IO1bFlIxIrNH/8IU6bA6aeHoW7xcLrzzoMrrww9WdddB/PmZVbCPZOy77/5TajEeOWVtbfvsQf87W8h8fvlL8N5PvgglGE/4ojQy9W9e8PDABsybBh88UXmvYwzZijBSqXBHiwzW0w0/yrBt8AU4CfuPiMfgYmIiIhIYbiHIWpjxsCmm4aenCuugL//PVzUxyZNChf1gwalPldioYvNN89v3Jn45JOQ1Bx2GIwYUfs1M7j22tBL1L9/WEw3LiAxblzyghGxuEBIPIetvmMqK+FPf4ITT4Qtt1z7XMcfH5LTvn1DoZH4fP/8J2y0UU6+Bg48MNw/+yzsuGN6xyxeHHovVeAiuXTy3N8DlwC9gT7ATwlzsB4ExuQvNBEREREphPHjQ1Lw1Vfhgr53b3jpJbjootr7TZwIW28NnTqlPtfWW4ehgbmeh9WYxYHd4ZxzQpGG228PCVUyhx4KZ56ZWQn3TAqE/Pa3yXuvEg0fvnYMRx6ZuzLyPXrADjtkNg8rriCoHqzk0kmwhrv7aHdf7O6L3P1O4GB3fwhYP8/xiYiIiEgTGz069JAceWR4vuWW8POfw4MPwtNPh23u9Re4iLVrF47PZSXBbBcHjpOy996DCy4IRSLqq4KXTQn3dI+Je69OOgm22CK3MWRq2DB49dXQM5WOeA0s9WAll06CVW1mI8ysLLoldqLWHTooIiIiIs3Y55/Dk0+GeUlt2tRsv+yy0Bt17rlQVRWG2H3zTfL1r+rabrvc9mBlszhwYlK27bZw8cVh+GN9SVk2JdxTHeN1rppTzb3KRQyZGjYslH1/4YX09tciw/VLJ8E6GTgVqAS+iB6fYmbtgQvyGJuIiIiINLG77w7V9OpWBmzTBu66C+bMCUlBvMBwQz1YEApdfPopLFiQmxiXLs28VyebpKxbtzBUMpNS6O3bJ1/T6swz4cUXQw/ajBmw557he2xoXlo2MWRqjz2gY8f0hwnOnAldusD6GsuWVDpl2mcAh6V4+ZXchiMiIiIihbJmDfzlL2H9pc02W/v13XcPPVgTJoT5SS++GC70Gyrxvf324X7aNPje9xoX45NPhvt0ysjH3ENyl2lSVlYWilNMmBDmo338cc32VO68M5R5f+65MMerbdvw/fTpE8rCJxareOyxhr+7xBiyLcfekDZtYN9900+wZswIwwNTzV0rdQ3+aMysnZmdb2a3m9mY+NYUwYmIiIhI03n22dDT9P3vp97nhhvg+utDj8zee4cKew3Nf0qsJJiJeM5Uz56D+fzz8N6HHx5Kxj/22NqLA994Yyg5nlj84q23QlL3wQfZDbUrKwuFIPr1g1GjQnXFVFavhltvhQ4dwvDDuHx6r14h9rrFKo4+Or1iFXEMjSnH3pBhw8Kwz+nTG95Xa2DVL50fz31AD2AY8CKhkmCaU+BEREREpLkYPTr0jhx+eOp9li4N87MyGWrXsyd07ZpZgpU4Z2rLLduz++5hvtett4ZkaocdQq/OrFnh/uuv4c034d13axe/+Oor6Nw5nK8xQ+06dYIzzoCHHw7rYiXz+ONhCGXdaosQ5jjlu1hFYwwbFu4b6sWqrlaC1ZB0EqzN3P1KYIm7/w04BBiY37BEREREpCnNnQtPPRWSiMTiFnVlU9XOLAwTzKSSYLI5U2eeCcceG3qd6vbqjBgRFuY944y1j7nrLjjmmJqhdnFSVt96Vsmcf34YRjl6dPLX//CH0HN1yCFrv9YUxSoaY7PNQuwNJVjz54fiHKogmFo6TWpVdL/QzLYFugD98haRiIiIiDS5MWNC70Td4hZ1ZZsobLcdvPNOSFAaku2cKbPkx6xeHR43dqjdZpvBQQfBn/8MK1fWfm3SJHjtNfjhD8O6X3U1RbGKxjrnHDjrrJCAplpbTGtgNSydZnWnma0PXAE8AbwH1DP6VERERESak7i4xYEHNnzhnG2isO++8I9/hAv0xIv3ugsGz54deoCymTPVFL1EF14Y5nk9/HDt7X/8YxiKOGpU8uMSi1Vk24OWT9XVsM8+IUHs3z/12mJaA6th9f5IzawMWOTuC9z9JXffxN27uXuKjlERERERaU6qq+Gjj+C+++DmmxterDebRKG6OszDuvhiGDCg5uJ99eq1FwyePj0MQVu2LPNEril6iQ48MJRWv/XWmm2ffQZjx4bhiOuum/rYpihWka3KSjjuuIbn1s2YEXoK6yayUqPeMu3uXm1mFwBjmygeEREREWkicSGJeK5TnJA0lDDFiUK6KivDHKi6F+/PPpt8ntVLL8HGG4f4JkyAb79dRpcu7RssT94UJc3LyuCCC0JPz+TJsMsucMcdoRfwwgtz9z5NLd25dTNnQu/e0K5d08XW3KTT3Mab2U/NrK+ZbRDf8h6ZiIiIiORVNovvZiPVxXuqOVPu4XGcyM2bNzHtHp+m6CU67bRQVfDWW0NP25//HL635jwvKd3hlfEaWJJagwsNA2dE9+cnbHOgGTchEREREcmmImA24ov3ugsDt2+f2YLBxWLddeGaa0LVvY8+ClUKN9640FE1Tjy8sm5vZt3hlTNnwn77FSbG5qLBBMvdlaOKiIiItECpEp9cJzipLt579kzvor7YxAUhjj66dtzV1cU1ryoTicMrFy6E998Pn2377Wv2Wb48zDdTD1b9GkywzKwD8GNgY3c/x8wGAFu4+1N5j05ERERE8qZbN7j3Xhg5Mr8JTn1zo/I9ZyofKitrkiuoGVo5YUJmc9OKTTy8snt3OOGEsDjyoYfW/Dzi4ZvNeShkU0hniOBfgTeA3aPnc4GHASVYIiIiIs2YGVx3XSif3qdPfhOcVIUxMi2YUQyaamhloZjBJZfAKafAM8/ULJysNbDSk84/n03d/SaiBYfdfRlgeY1KRERERPLuk0/gv/+F994rztLhxaop1tsqtBEjoG9fuOmmmm1aAys96fwTWmlm7QmFLTCzTYEWkp+LiIiIlK7Jk8P9LrsUNo7mpinW2yq0ddYJ65a99BJMmhS2zZgRyrM3tx7HppZOgnUN8G+gr5n9A3gO+L98BiUiIiIi+Td5crhg3mabQkfSvGSz2HJzdNZZsN568JvfhOczZ4beq5b2OXMtnSqC/zGzN4AhhKGBP3L3r/IemYiIiIjk1eTJsOOOobdCMtMc545lqnNnOPdcuPFGmD5da2Clq8H808yeAA4EKtz9KSVXIiIiIs3f6tXwv/9peKDU78ILQwL++9+HBEsFLhqWThXB3wHHAzea2STgIeApd1+e18hERERESlR1dSgFns/S5e+/D0uXKsGS+vXsCVdfDVtvDccfHxZZbs7rfTWFBr8ad3/R3c8DNgHuBEYAlfkOTERERKQUVVfDtGkwZAj06xfup00L23NpypRwrwRL6lNdDcOHw0UXwdChcNRR+WmPLUlauWdURfAY4AfALsDf8hmUiIiISKmqrAyL1tZdxLYyx3/enjw59EYMGJDb80rLkmpR5Vy3x5akwSGCZvYQMJhQSfBPhLlYyllFRERE8iDbRWwzHVY4eTIMGqShXlK/lr6ocj6k80/qr4TFhn/g7s8Du5nZn/Icl4iIiEhJymYR20yHFa5YAW+9peGB0rBSWFQ519KZg/VvYKCZ/drMZgG/BD7Id2AiIiIipahbN3jssdqL2D7wQP2L2GY6rPDtt2HVKiVY0rBSWFQ511IOETSzzYETgBOBrwnVA83d92mi2ERERERKTlkZfPQR3HwzbLcdzJkD11wDjz8OHTokPybTYVyTJ4d7JVjSkMRFlfNZ1bIlqe+r+QDYDzjM3fd091uBNU0TloiIiEjpuv9+uOQS2HRTaN0a/vMfGDMm9f6ZDuOaPDlcJPftm7uYpeWKF1UuLw/3Sq7qV9/XcwwwH3jBzO4ys/0Aa5qwRERERErTqlVQUQEHHBCe77EH7LYb/O53YXHgZMrKQgKWOIzroYdSD+OaPDn0Xpmu7ERyLmWC5e6Pu/vxwJZABXAx0N3M7jCzA5soPhEREZGSMnEiLF4M++8fnpvBpZfCrFnw8MPJj7nkErjqqpCYzZoFo0eHW7KehqqqsMiwhgeK5Ec6RS6WuPs/3P1QoA8wFbgs34GJiIiIlKL//jckRvvuW7PtsMNgq63g178G99r7v/463HsvfO97oYJgeTl88AH89a+hmEVd//tfqC6oBEskPzIaQenu37j7aHfft+G9RURERCRT48eH9anWX79mW1lZ6KV6660wHyu2Zg1ceCH07g0/+1nN9lNOgTZt4O671z5/XOBi0KD8xC9S6jRFTURERKRIfPttGCIYDw9MdPLJ0KtX6MWK/fWv8MYb8JvfQKdONds33BCOPhruuw+WL699nsmTYeONVWZbJF+UYImIiIgUiYqK0CsVF7hI1KYNXHwxvPBCSJIWLoTLL4e99oITTlh7/7POggULQnn3RHGBCxHJDyVYIiIiIkXiv/8Na13ttlvy1885J8zNWrYMZs6EO+8Mt2TVAPfZB/r3h7/8pWbb11/DjBlKsETySQmWiIiISJEYPx723jv1+lWdOsEvfwkjR8JOO4UerRUrQtGKusrK4Iwz4Pnn4ZNPwrYpU8K9EiyR/FGCJSIiIlIE5syBDz9MPv8qVlkJJ54Is2eH57NnwxFHhO3JjBpVs0YW1BS42HnnnIUtInUowRIREREpAv/9b7hPNv8qtmJFTXIVmz07bE+mTx846KBQDGP16tCDtcUW0KVLbmIWkbUpwRIREREpAuPHQ/fusO22qfdp2zasc5WovDz1kEIIxS7mzYN//1sFLkSaQutCByAiIiJS6qqrQw/WgQcmL1gR69YNxo0LwwJnzw7J1bhx9ZdcP+SQ0IvVti3cfz+su254vzL9mV0kL5RgiYiIiBTYtGnw5Zf1Dw+EkBQNHAgTJoRhgW3bhuSqvmSpVSu44go46aTaSdnAgUqyRPIh7/+szKyfmY1KeP5jM3vPzN42s+fMrDzhtdPM7OPodlqK821gZuOjfcab2foJr11uZtPN7EMzG5awfWczmxa9dovZ2n8bsuCWaJ+3zWynhNeGR+ecbmaXpROLiIiISLrGjw/39RW4iJWVQY8eIVHq0aPhJKmysia5goYLY4hI4+Q1wTKzc4FngevMrMLMegBvAoPcfTvgEeCmaN8NgKuBwcCuwNUpEpbLgOfcfQDwXPQcM9saOAHYBhgO3G5mraJj7gDOAQZEt+FJzntQwuvnRMcQneNP0etbAydG75UyFhEREZFMjB8PW20FvXvn/tyZFsYQkcbJW4JlZp2BXwAjgSuBUcASd3/B3ZdGu00A+kSPhwHj3f0bd18AjCd5InQE8Lfo8d+AIxO2P+juK9x9JjAd2NXMegLruvvr7u7AvQnH1D3vvR5MANaLjt0VmO7uM9x9JfBgtG99sYiIiIikZflyePnlhocHZiubwhgikr18zsGqBtoA6wK4+6wk+5wJPBM97g3MSXhtbrStru7uPi865zwzi6d19iYkbHWPXxU9bui8qd4/2fbBDcRSi5mdQ+gVo3v37lRUVCTbreRUVVXpuxBAbUFqU3uQWCm0hU6d1qVVq8155plOdOq0hClTPqSqalHO3+ORR7bl2GPbfDcH65FHVjJ37jt88EFu3ytfSqEtSHqaQ1vIW4Ll7kvMbCRwPdDDzLYFrop7r8zsFGAQsHd0SLKaOZ7BW6Y6Pt3zNvb4lNz9TuBOgEGDBvnQoUMzObzFqqioQN+FgNqC1Kb2ILGW3haqq0Nxi5qKgB0ZN24nvve93BefqK6uWxijDWVlOzV8YJFo6W1B0tcc2kJe52C5+xPAcYR5VhsBPwEws/2BnwOHu3s8Angu0Dfh8D7A50lO+0U0dI/oPp6imer4udQMQ6zvvPUdnyquVLGIiIiI1Kuysia5gvwWn8i0MIaIZC+fc7A6JVQIXAy8D3Q2sx2B0YTkKvFXyLPAgWa2flTc4sBoG2Z2g5kdFe33BBBXGDwNGJew/QQza2tm/QnFKiZFQ/gWm9mQqHrgyPgYMzvKzG5IOH5kVE1wCPBtdOxkYICZ9TezNoRCGk80EIuIiIhIvVR8QqRlyuccrHUIiVRXYEPgU+AkQjGITsDDUbX0T939cHf/xsyuIyQ0ANe6+zfR44HUJDU3AmPN7MzonMcBuPu7ZjYWeA9YDZzv7muiY84F7gHaE+Z8xfO+NgXiwcdPAwcTimMsBU6PzrvazC4gJHutgDHu/m59sYiIiIg0JC4+kZhkqfiESPOXzzlYC4DhZtYPGOru90QvpVzhwd3HAGOSvLSOu78e7fM1sF+K438F/CrJ9inAtkkO2QG4ONrHgfNTnPdpQgJWd3vKWERERETq8+67cPfdcOaZtRcA7pa0ZJaINBf57MGKLQSmNuYE7j6s4b2yOu8p+TiviIiISH1WrYJzz4WddoLXX4eVK+PiE5ofJdLc5T3BcveFNDLBEhEREWlJ7roLPv4Yfv976Nmz0NGISC7pbyQiIiIiTWjxYvjFL+B734NDDil0NCKSa00xRFBEREREIr/7XSjF/sQTYMlW2xSRZk09WCIiIiJNZP58+O1v4dhjYfDgQkcjIvmgBEtERESkifziF2Gdq+uvL3QkIpIvGiIoIiIikkfV1WFIYFUVDBsGm2wCAwYUOioRyRclWCIiIlKS4sRnxYr8lUivroZp0+CII2rWunr88bBd5dhFWib90xYREZGSEyc+Q4ZAv37hftq0sL2h4+bPD8nS/PkN719ZWZNcQbg/6qiwXURaJiVYIiIiUnKSJT5HHFF/4pNNUrZiRc17xGbPDttFpGVSgiUiIiIlZ9myzBOfTJOyefPgk0/CsMBE5eVhSKKItEyagyUiIiJNrinmP6XyzjswZ05IdBKTrPJyaF3PldHChcmTsnnzQuxdu9Z8pqVL4aKLYPlyeOghOP74mjlY48aFzysiLZN6sERERKRJZTv/Kdv3SpwzVVEBu+0Gt94Kjz5a07tUXg533w1XXAFffbX2eW6/HT74IHlv1KxZMGIETJxY85kOOgh+9jO45x7YZReYMCHsN2ECDByoAhciLZn+eYuIiEiTmjcv+VC7mTPBvSYp6tlzcFqFJFJJlsitWRMW+b3rLthxx9qJT+vW8OCDsOeeIcb588Nrr70G994LL78M//xn7aRs3DjYYQe49lo48cTan+m006B9+5BM9egR9u/RQ8mVSEunIYIiIiKSN4lDAVu3hmeegS22SD7Ubu5cuOwy+PGP42Sl/XdJTDa9PsnmTJ15ZkiYevUK23r0qNm/Rw/4z3/gmmtCb9Xpp9cM67v/fth11xDDhAlrD20sK1MxCxEJ9DcUERERyYu6PUh77AH9+0ObNsmH2q23Hpx77to9QXEhiUxLpKeq4LdqVepj9toL7ryzJrmKjznppDB0MFVvVNu2KmYhIoESLBEREcmLVD1Im2wSeqXqDrUbOBA23TR5UjR/fug5SnfeVlUVfP55dklP69aZ90Z165b8M6mYhUjp0RBBERERyYulS5MnKkuXhmQq2VC7uCeobnW/9u3hyCPX7tl69VXo3bv2UMQVK+DSS8M8qvvvD71PmVTwSxVDfYlZWVnqzyQipUUJloiIiOTc8uU1a0AlS1TioXZ1xT1Bcc9XnBS1a5c8WZs+Ha6/Hk49FU44oeaYe+6BLl1g++0zT3pSxdBQYpbqM4lIaVGCJSIiIjnlDmecATNmwMMPw3HHpZ+oJPYEffvtMrp0aU+3bqF3Klmy1q4dHH54TXIF4X7UqHCObJIe9UaJSGMowRIRESkShVx8N5euvRYeeCD0LO28c+aJSpwUffDBRLbYYiiQuldp4MCwaHCuK/ipN0pEsqUES0REpAjEFfeSJRDNKcl64IFQ5vy000LJdbPcJCr19SplM2dKRCRfmtGvbBERkZYrWcW9uDx5sYvLp3/0UShGcc45MHp0SK5yKVWJdFXwE5Fioh4sERGRIrB8efNcqDZZz9s//wnrrNN0MWjOlIgUE/3qERERKbAFC0JBiOa4UG2ynrcjj2z6nrdUvVsiIk1NPVgiItLiNKdiETNmwCGHwIYbwtixMGJEZqXBC23FiubZ8yYiki9KsEREpEXJtlhEUyZl8XstWgQffgh9+sAVV8CgQWGY25w58NVXzaPAhQpMiIjUVuS/tkVERDKTTbGIOCkbMgT69Qv306aF7bmW+F5bbAEXXgi//jXstVfNMLdXXoGDD4bPP8/9++dat25w330qMCEiElOCJSIiLUo2Q9aasoJfsvc6+uja77XPPuH+hRdy//65tmxZ6H174AGYNSv0wDWHnjcRkXzRrz8REWlR2rTJvFhEU84jSue9ttsONtgAnn8+9++fa//+N7z0Uki0VGBCREQJloiItDBPPQV33117yNqYMfUP92vduukq+K2zTsPvVVYGe+/dPHqwHn00FOj43vcKHYmISHFQgiUiIi3GtGlw3nmhR2XChDBk7cUX4brr4NRTkydZ7nD77WsnZQ8/nJ95RG+/vfZ7JZuztO++oWdr5szcx5Ary5fDk0/CUUeFJFVERFRFUEREWojVq+GMM2D99UPhiK5da1478UT4/vdh9Gg499zax91xB1x/PWy+ec1CtdOmhTlFu+yS+zhvugm6dGl4UdzEeVj9++c+jlwYPx6qquCYYwodiYhI8VAPloiItAg33wxTpsBtt9VOrgDOPhsOOAAuuSSsOxV74w24+OJQse/UU2sWqp04Ef74R/j009zGOH16SJgGDWp4Udyttw6JVzEPE3z0UVhvvdDbJiIigRIsERFp9j76CK66Co48Eo47bu3XzcKwvFat4De/gfnzw9C7ykoYNgzuvbd2knPWWWHo4F/+kts44xhOP73hfc1g6NCQYLnnNo5cWLkyDG08/PBQWERERAIlWCIiUhSqq0Pi07PnYObPT28NqviYb76BsWPDEECz5Pv27RsSqWOPDWtQbbJJGC549dVhWGGi8nIYPjwkRKtXN/6zAaxaBX/9KxxyCPTqld4x++wDn30GH3+cmxhy6YUXYOHC8H2KiEgNJVgiItJk4oRo9mxqJVGJi+9uuWX7tBb6TTxmt93CvKt58+o/ZvBgOPPM2mtQHXNM8vWuvv/9sNDvU09l/3kTPfUUfPFF6B1LVzGvh/Xoo9CpUxh6KSIiNZRgiYhIk0hMiPr1C/dvvx3mRH38ceYL/WazOHAm610dcgj07h16xXLhrrtCz9VBB6V/zOabh2OKLcFavRoefxwOPRTatSt0NCIixUUJloiINIlkCdGRR8Jbb9X0aiVqaKHfbBYHbts2/fWuWrcOvV3PPhvKvTfGnDlhQd4zzsisnLlZ6MWqqCiueVgvvwxffaXhgSIiySjBEhGRJpEqIdpiC+jZM/OFfletyvyYbt1CYYaG1qCKnXVWSHLuuiv1OdMxZky4P/PMzI/dZ58wtPD99xsXQy498gi0bx/mqYmISG1KsEREpEmk6j3aYAPYbLPMEh93uPHGUDQi3WMgVAocOLBmEeIJE8LzZGXSIRTGOPjgkCCtWpXRx/3OmjWhWMb++4ehkZkqtnlY1dVheODBB0PHjoWORkSk+CjBEhGRJvHllyHRSJYQJSY+b765kptvhk8+SZ34PPBAONeiReknS7GysobXoEr0/e+HIYxPPJHxRwbCYrxz5oS1uLLRvz9svDE8/3x2xyeTqthIOl5/PRQT0eLCIiLJZTASXEREJDvucMEF0KEDvPpqKJLQtm1NcgU1ic/777/GLbcM5a23YK+9YKONap9ryRK49FLYaSc47LCGE6TGOuig8D7rrx8Skrpxp1JdHeadbbhhSM4OPDC794/nYT35ZDhnJp83jmHFipq4IRQbiefDxYlunJwmOyZ+z+rqsI7Xiy/CpptmHo+ISCnQr0UREcm7p5+Gl14KiUrv3vX3HpnBbbfB4sVw+eVrv/6b38DcufCHPzTNxb1ZiOOMM2qqH2ZSQn7XXUMJ+Q8+yKynKNG++4a1vqZNS/+YZFUbJ0+unVxBTfXFOXPCcMa6x8SfNT7fCSfA3nvDHns0/D2IiJQiJVgiIpJSY4aSxdasgcsuC/Os0h0mt802cNFFYRjg66/XbJ8zB266CUaMCL1bTaGyEk48Mf8l5OuTzTysZDEcfzy0aZO82MisWaHSYbK4KypCNcVcfiYRkZZKCZZIgeTiwlXSp+87c8l6QLLpsbjvPnjnHbj+elhnnfSPu/rq0Nt13nlhSCGEoYHuIclqKqmqHy5YACtX1m5Xa9bAa6/BZ59lXkK+Pn37hiF5mSRYy5cnj6FDh+TFRrp0ge7dUx/TtWtuP5OISEulBEukAHJ14Srp0fcdZJpk5qIXZtkyuPJK2GWXzNdM6tQJbr45zAN65x346CM47riwrW6CkE+pqh/Onx/mkyW2q5dfhh//OAxhzLSEfEPOOCOUeU/n51ddXTO/qm4MHTokr9i43XbQp0/yY/r1C0lerj+TiEhLpARLpAByPXxI6pft951Nr1dTHZOpbJLMbBbyreu220KycdNNYS5Tpo4+Ohx75JFhvayLLw6xN2VynGrtrN694fTTa7erUaPgzjthv/0yKzvfkOrqUOb9hz9M7+d32WWht+/BB9eOYcMNU5eqr2+dsEzXEBMRKVWqIihSALm4cJX0ZfN9xwlJqkprTXVMfRXdMpEqyZwwIRSbSCbuuUn87srLYcaMsP5R166pP1NlZei92nLLMJdq6NDMY4ZQ2n3kyNpxH3lk/XHnWmIJ+cSfw5w5ydtVly6h9y3ZMdkW5aisDPPO0vn53XVXKARy/vmh5zBVDMm+v1SfNT4ml59JRKSlUoIlUgBlZckvXFvqUJtcJQnZ+vLLzL/vbBKSXB7z4othuNY772SWsKWybFnmSeZrr4UiE/GwtPJyeOgh+OlPw/N//SuUUG+oBPhjj2VfzrtY/hgRl5BPlCoBjdtVsmOylep7WLq09r+v5cvhnntg+PBQZbFVq8xjqC/uXH4mEZGWSn93EimAhx9ee8HVRx9tmUNtCj3/6brrwvpLf/977e/7gQfq/75TFQhIdWHvDl9/nXkykOrCedasUNo81dDGTIYVvvNOKBGeyfyZWbPgtNNCcpQ4lGyXXcKF+847hzgSf65vvgkff7x2zEcfnf3w11Tzn4rhjxFNOWQu1ffw6acwcWLNz2HYMPjVr2DsWGitP6GKiBSEEiwpSYWcJzNzZpgfMWlSuGCdOTPMU7n99uzOV+wKOd/suuvgqqvC3J0hQ2oShb//Pczl+ctfkh83ezZ8+GHyC9qVK9duC998A8ccE4owZJIMuIfjkx2z3nphjk+y5GvRopDMpEpaE+N7550wVOzWW+GRR2onA3ffHXrK6qquDgUVAP7v/0KPReK6VTvvHM4X92zFcR1zTE1xhboxZ9vjVMzzfhKH09Wdy5Rryb6Hxx4LBSvqlpAfNSosxiwiIoWhBEtKTjY9KrnshbnyyjBsZ+TIcMHarx989RWMGROGXzVXdZOONWvCujmzZye/4P7mmzBsbf586NlzcE6KOyTGMGVKGMJ26qnhu23duiZRGDw4TPQ/91x4/PHa53jlldBLc9NNayckf/0r3HhjWJcpsS289VZIGKuq1r4IvvtueOON5PFedx386Efwj3+snUAMHAi9eiVPvlavDslM3aR1xgz49tvabfXQQ8P73HMP7LRTTTLw+uthzaOTToInn6z9HnfcEcqB//73qav1rVmT/Ofavn1ue5yaMonJRjxkrr6Fk3P1PnW/hx12SF1WXfM5RUQKyN11a8Lbzjvv7BK88MILBXnfuXPdy8vdQ/9BuJWXu0+Z4v6b37j/4Q/ut93mPnq0+5gx7vfd5/7OO8mPmTcvs/d+8013M/fLLqu9fc0a9x13dO/b133p0px8zLxZsyZ87lmzwv2aNeE2dWrNd1Re7l5R4T54sPtTTyX/7p5/3v2552ofM3VqOFe2cdWN4eWX3VetSr5/VZX7kCHue+7p/uGH4fO89Zb7Hnu4Dxjg/sEHa3/Wqir3119P/nk++WTt7+ezz9zPO8+9rMz90Udrv/9vfxuOHTUqxFj3O031maZODe+V+P7xraLC/bHH0m+rVVXugwa5d+gQ2r+7+8cfh+fDh7tXV6f+vufNS/4+lZXJY87k51qo3w3NUaqfQ6a/m4qV2oLE1BYkVkxtAZjiSa73C55wlNpNCVaNpvgHsnix+0svuf/+9+4nneS+xRbhIjTVxWmy7fW9NnNmZvEMH+6+/vruCxas/Vr8Hr/8ZS4+eeMkS6Li7XUvnt9803369OQXeW+95b5sWfIL7o8/Tn7Mp5/WH0Mq2VxofvON+wsv1I7txRfdFy5MfcysWcnbwqxZyfdfvNh9t91C4vb++2G/N98MyeeIEe6rV9f/uZJ9D6k+67vvhu88k/jicx10UNjn9dfdx41r+AI9VfIXJ9yZ/OzqKqb/PItdfT+HlkBtQWJqCxIrpraQKsHSFFhpMZYuDUO1pkypub3/fri8hFCRbdCgUF46WeWvzTeHxYth1arat9Wrw5C+ZMdMmwajR8MPftDwwqcvvBCGZP3mN2F+TV177w1HHQU33BDmthSqUleysuGPPhrm/WywwdrzqY48Ep55JnW56nbtMitxPWNGGJp24ok1ZanTqZ5XVZVdgYlRo2p/npEjQ6xduiQ/pqHKcXV16hS+n6lTQ2W3+PPcdx/sumtoW/VJVrUtno9Tt7rglluGoYqZxNejBzz3XNh/771rn6++ao8NlfNWpbmm0dDPQUREmp4SLGmWli+Ht9+uSaTeeAPefTfMC4FwcTdoULhAHzQoTMqPL/iqq5NfnHbvXv9aRXWPeeSRMGfq978P83UOPTQUE9h//7XP4x4KW/TpEyrapXLTTeEC+ZNPmuZiKVn59Dlz1k6ijjkGbr45xJEsiWnXLvNy1akSlfbtw3eY7po/1dWhqt0mm2Reij2bEuCpkpv6ii4sWxYq8iV+nlNPzX4tp/ouqrOJr2PHUNQik/LycRxKpApPPwcRkeKiBEu+U+i1ilJZuTJUQkvsmZo2LfQsQVjsdJddwgVhnEz16gVmyc+XzV98Ux0zaBBceGHoxbrrLnjiCRgwIBRPGDUq9IJUVsKCBSHBatUqJCOpbLJJSLJOOimzdY/q+9mlei1ZT9W990KbNsmTjm23TZ0UdeqU+UV9qkRg4MDUvVtffhmKVWywQfhMS5aECf9jx8Jee4WCFUcdlX4MmfZGQXbtJx9rOaW6qC6W+EREREqVEqwSk8nFdrYLmqYbQ1w5LvHib9UqeO+92j1Tb70VkiyA9dcPSc0ll4T7QYOgb9/UyVQq2fzFN9UxG28c1p256qowlO5Pf4If/xj++U+4/no4+eTa32l9C65WVtYkV1DTk/Cvf4Whc+3arX3r1Am++CIM1av7s4PkP9fOnUMvYN2eqpEj4b//TZ50dO6cOinacMNwyzZp/fbbZXTp0v67Y1IlPtOnh+T1xhvhlFNqL347aFBoB5nEkE1vTxx7Ju0nm0SuMYo9PhERkZbMPJ6gIg0ys37AUHe/J3reFrgX2Bn4Gjje3WfVd45Bgwb5lClT8htoCsmSqMcfDz0CrVrBwQevfYH12GPw6quhV6Nt23Cf+DjZtmSP11kndSI3diy89FJITqZODRf+AOuuG3qj4kRq0CDo3z/zZKoQpk4NvStxchUrL69/2NXs2aG0dl0VFTB0aPJjHnssrOlU933uuCP8XM85Z+3Xbr459AIlO+dnn4WeolTJdj56OisqKhiaEEyqhL9Dh7CY7wknZPa91qcpem6b8g8YLSG+uu1BSpfagsTUFiRWTG3BzN5w90F1t6sHK01mdi5wEdDBzEYBJwBHAwvcfTMzOwH4NXB8wYJsQLIFX486quZiO9kQocWL4Yc/zM37t24d5i396Ee1YxgxAv74x5CMnXdeTTK16abFcfGZjR12SL3+U33DrlL1JPTtG3r0li9f+7b55snfZ6ONUi/6usUW4ftO9l4NDTFrivke9cWQaghjtsPZCv15ikGxxyciItKcqAcrDWbWGfgEOAzYCqgg9Fg9Alzj7q+bWWtgPrCR1/lSzewc4ByA7t277/zggw82YfQ1evYczJZbtl9r+1tvrcR9JUcc0Wmti+1nnlnERx9NY9UqY/XqMlauDPerVhmrVpWl3Fbz2Fi5smbbRRf1Ztdd187rP/hgGfPmTcznx29yvXrtyIEHdlnrO/3Pf77l88/fTHpMp07rAtty7LFtEopprATeoapqUcbvA6R8bdGiTzJ+r3ypqqqiU6dOae2bzfcqzUsm7UFaNrUFiaktSKyY2sI+++yTtAer4OtCNYcb0BFYCBwAjErY/g7QJ+H5J0DX+s5VyHWw6lsnqKnWUmnpi2ImyvY7zXQNoYbWI6ovhsauV5Qrmaxp0dLX/ZHiWuNECkttQWJqCxIrpraA1sHKnrsvMbORwPVADzPbFrgKSDYbqGi7BOub0N9UQ4SyLSrQHGX7nWY6ZK2h9yn0cL9c03A2ERERKWZKsNLk7k+Y2duEYYKDgJ8Ac4G+wNxoiGAX4JvCRVm/YptbU7dyXEvUVAlMfe/THJOohrTEzyQiIiItQwu9rM0tM+tkZuXR08XA+0Bn4AngtGj7scDzUXdh0YovTMvLw30hEps4hnnzJhYsBhERERGRfFAPVnrWAUYDXYENgU+BkwiFLu4zs+mEnqsTChahiIiIiIgUnBKsNLj7AmB43XWwIscVJCgRERERESk6GpyVmYXA1ALHICIiIiIiRUo9WBlw94UowRIRERERkRTUgyUiIiIiIpIjSrBERERERERyRAmWiIiIiIhIjijBEhERERERyRElWCIiIiIiIjmiBEtERERERCRHlGCJiIiIiIjkiLl7oWMoKWb2JTC70HEUia7AV4UOQoqC2oIkUnuQmNqCxNQWJFZMbaHc3Tequ1EJlhSMmU1x90GFjkMKT21BEqk9SExtQWJqCxJrDm1BQwRFRERERERyRAmWiIiIiIhIjijBkkK6s9ABSNFQW5BEag8SU1uQmNqCxIq+LWgOloiIiIiISI6oB0tERERERCRHlGCJiIiIiIjkiBIsEREREWl2zMwKHYMUh2JrC0qwpOgU2z8SKSy1B4mpLUhMbaG0mVlfM1sfaFXoWKSwirUtqMiFFJyZ7QT0BaYCX7r7UjMrc/fqwkYmhaD2IDG1BYmpLUjMzI4ELgUWAROAye7+VEGDkoIo5ragBEsKyswOB35L+E9zKbAYuN7d5+k/z9Kj9iAxtQWJqS1IzMy6Ai8AZwNLgJ2Ao4EH3f2BQsYmTavY24KGCEqhHQRc4u4jgFuABcAfzKyH/tMsSWoPEjsYtQUJ9HtBYquBD4Gp7j4N+CcwBhhhZsMLGZg0uaJuC0qwpGDMrIwwZnYrAHf/H3AX8AFwiZm1L2B40sTUHiRmZq0I/z+pLZQ4/V6QRO6+EFgG/CN6/i3wEvA0sDNofl6piNrCCuDv0fOiagtKsKTJmVlrM2sb/eXxz8CJZnZc9PJc4BmgG9ClUDFK0zGzPmbWJWoPtwMnqD2UJjPb38x2dPc1wG2oLZQsM+tuZl2j3wt/Qm2hZJnZAWZ2vpldFG26APjKzG4BcPcFwBRgDzPr5Jr70mKZ2VAzOzuhLZwBLDWzP0BxtQUlWNKkzOxg4B7gSTPbL/pr5C+A081shAcTgPWAgYWLVJpCNHH9DeCMaLjPVNQeSlL0u+EvQF8zM3d/m9AWRpnZ8WoLpcPMjgAeAv5lZqe4+1vU/F5QWyghZrYncD+wHDjOzG4FtiP8Ma69mf3TzNYDtgY6AOsUKlbJr+j/iNsJP+Mfmdkd7r4C+BWwnpk9XkxtoXUh31xKi5kdBNwIXAJsDPzdzA4EHgfWAL80s82BKmAzwhAQadnmALOADQjjpu9398fNbA1wnZltQZjQrvbQgplZJ+D/gDPd/Tkza29m1cCzhAurG6K2sAi1hRbNzHYhJFOnAOXA5Wb2ePR7YTU1/0/o90Jp2BW4zd3vNrN/AFcCRwKPAD8iXHDfBmwJnBX1YEgLY2YbA1cAF0b/R/yD8AeYzYCPgHMJPd1F0xaUYEmTiC6gDgKucPdno219gO2iyYnjzGw6MBJYHzjB3ecULGBpKquB+YQx9QOAg8zsA2AacCJwGmEIkNpDCxWNkV8DVEX/cW5AmGOzDvAaYSjYccCZwLqoLbR0GwNvufs7ZjaHcJ3yRzN7Bfg3cDxwOvq9UCqmAT8xs83d/SMzuxa4GjjF3V8n9HC3A1q5+5KCRir5tAL4ZfR/RBtCNdFlQDd3nx49PqOY2oLKtEuTiCYqb0vorahy9+roF2VXdz+voMFJQZnZjwnVf9YDrgKGEP7z/G8Bw5ImZmZ3EKrDbQY8BcwADiD8Z3lFNGxQ/2G1cGa2DfBLQlsYSqgK9g6h1+JNd/+j2kLLZmZ9gUrCH1lWEEr0vw08HZXmb0coZjDa3e8uXKSSb1HP1TxCvrKyzmujgTHuPtHMdgcmFFNVUfVgSV6Z2a5AG2BxNI4eM2sNVBP+MrVTtO1E4FN3f7VQsUr+Re1hHWCFu0+JNncGBhMmru8KTAY2iSa4f1WYSCXfEtrCanefSJh/dRqhcMFYd19uZouA35rZBu7+TQHDlTxKaAtL3H2qmV0J7Ahs6O6/jPZZBFxpZmPcfXEBw5U8MrNDgF8Teq/XJUwpuI9Q2MLM7BV3/8DMngRWFS5SybeEtvA6sK6ZXR397NtEyVYXoEN0/XgdsCdhRExRUIIleRP947ge+Bdh4voydz/H3VdHu3wLLIkqQ11D+AultFB12kMfM1vh7mcT5uBdSUi2vw+sBPYhJOHSAiX53XCqu18Q/eV6V0JP5s8Iw8UMUG9FC1WnLWxsZt+6+/nAO2a2S1QM6TmgE2FYkNpCCxQNFe5DmKd9AfA+4Q8urwF7EObWnAicamZTgRMIPZzSwqRoC6cAz5vZAe7+brTrZ4T/J9oAR7h70SRXoARL8sTMOhD+Yfw4GjO7MTDFzFq7+xnRbu0IY6nfBI509/cLFK7kWT3tYY27/8DMvgUucvcno/1fd/dFhYxZ8iNFW/hfNOzrfDOrBE6K/kLdHTi70JOVJT/q+b3Qwd1PJ/Rqn2VmFxKS7dPdvaqAIUueuLub2eeE3oqPgUp3v8nMVgGvALu7+0/MbC9gC+DWaO6NtDAp2sLvorbwHzPb190/JPRWHQsMc/eiK3ajBEvyxQhVnr4AcPdPzexvwMFm9jt3/wnhrxKvAOcpuWrxUrWHw8zsSnc/C8ICs+6+RslVi5asLfwVONTMbnD3y4HXoiI4VR4Wk5SWKdXvhUPM7BrgWkLPdl9gqrvPLFSgkj9RJbj1CfMuuwAnu/tNAO5+s5m1JVSVPc/dXwZeLly0kk8NtIVbovl3PzOzs4EK4MFiLXSjdbAkp6LyuUQVXN4D/m1mx0WTEdsDhxHG0q5LKNF9rJKrliuN9nAwUB5VjsPDArPSAqXRFg4BuprZhtF+c5VctUxptIVDCT1W7d19irs/ruSqZTKzQ4HHCIUsfgH8AzjPzC5P2O1Bwnyr5U0foTSVNNvCWGClu69098nFmlyBerAkh6J/HGPN7El3P97drzGzBYTu/IWEEu2rzKwb0NndP0O/MFusDNrDRkDbQsYq+ZXh74Y2hYxV8iuDtrAhochBwcstS35Eld9+C5zo7m+a2Z2EOZi7AxPMrBUhudqT0JO5HqG6pLQwGbaFHZtD4SOVaZecMLOOwKOEvz7sDrR19xOT7HcK8APCnCtViGuh1B4kprYgMbUFSRRdVG/u7vdEzzcC7nH3Q8xsE8LCsssJF9qne1gzU1qgltgWlGBJzphZL2ARoXjFnwnduCdFr7UG9ieMqT/H3acWKk5pGmoPElNbkJjagsSiXomO7r4oetwTeBI4OFrvqpxQKa6ju39byFglv1piW9AcLMkZd//c3auivzh+H2hrZn+PXt6SMPTncP2nWRrUHiSmtiAxtQWJ1SloZIQhot9EF9SnEEpwr9NcLqgley2xLagHS/LGzLoCvyEMBSkD9nb3zwsblRSK2oPE1BYkprYgiczsHmAecCAwqjkMBZP8aO5tQUUuJG/c/Sszexs4CDhA/2mWNrUHiaktSExtQeC7xWXXAfaK7vdz948LG5UUQktpC0qwJG/MbH1CGe4Dm9tfHiT31B4kprYgMbUFgbC4LLDSzK4DJjfHC2rJjZbSFjREUPLKzNq5u0qxC6D2IDXUFiSmtiAxMzPXhanQ/NuCEiwREREREZEcURVBERERERGRHFGCJSIiIiIikiNKsERERERERHJECZaIiIiIiEiOKMESERFJgwWvmNlBCdtGmNm/CxmXiIgUF1URFBERSZOZbQs8DOwItAKmAsPd/ZMsztXK3dfkNkIRESk0JVgiIiIZMLObgCVAx+i+HBgItAaucfdxZtYPuC/aB+ACd3/NzIYCVwPzgB3cfeumjV5ERPJNCZaIiEgGzKwj8D9gJfAU8K67/93M1gMmEXq3HKh29+VmNgB4wN0HRQnWv4Bt3X1mIeIXEZH8al3oAERERJoTd19iZg8BVcAI4DAz+2n0cjtgY+Bz4DYz2wFYA2yecIpJSq5ERFouJVgiIiKZq45uBhzj7h8mvmhm1wBfANsTCkotT3h5SRPFKCIiBaAqgiIiItl7FrjQzAzAzHaMtncB5rl7NXAqoSCGiIiUACVYIiIi2bsOWAd428zeiZ4D3A6cZmYTCMMD1WslIlIiVORCREREREQkR9SDJSIiIiIikiNKsERERERERHJECZaIiIiIiEiOKMESERERERHJESVYIiIiIiIiOaIES0REREREJEeUYImIiIiIiOTI/wOdgyVDNDz0twAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import matplotlib.ticker as ticker\n",
+ "\n",
+ "# Load your actual dataset\n",
+ "df = pd.read_csv('tn.movie_budgets.csv')\n",
+ "\n",
+ "# Convert 'release_date' to datetime format\n",
+ "df['release_date'] = pd.to_datetime(df['release_date'])\n",
+ "\n",
+ "# Extract the year from 'release_date'\n",
+ "df['year'] = df['release_date'].dt.year\n",
+ "\n",
+ "# Convert 'production_budget' to numeric after removing the dollar sign and commas\n",
+ "df['production_budget'] = df['production_budget'].replace({'\\$': '', ',': ''}, regex=True).astype(float)\n",
+ "\n",
+ "# Group by year and calculate the average production budget\n",
+ "average_budget_per_year = df.groupby('year')['production_budget'].mean().reset_index()\n",
+ "\n",
+ "# Plotting\n",
+ "plt.figure(figsize=(12, 6))\n",
+ "sns.lineplot(\n",
+ " data=average_budget_per_year,\n",
+ " x='year',\n",
+ " y='production_budget',\n",
+ " marker='o', \n",
+ " color='blue'\n",
+ ")\n",
+ "\n",
+ "# Formatting the y-axis to show currency\n",
+ "plt.gca().yaxis.set_major_formatter(ticker.StrMethodFormatter('${x:,.0f}'))\n",
+ "\n",
+ "\n",
+ "# Adding labels and title\n",
+ "plt.title('Average Production Budgets Over Time')\n",
+ "plt.xlabel('Year')\n",
+ "plt.ylabel('Average Production Budget ($)')\n",
+ "plt.xticks(rotation=45)\n",
+ "plt.grid(True)\n",
+ "\n",
+ "# Show plot\n",
+ "plt.tight_layout() # Adjust layout to prevent clipping\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Merge the two csv files for visualizations\n",
+ "To consolidate our data for analysis, we merge multiple DataFrames on relevant columns, combining information from different sources into a single dataset. After merging, we save the resulting DataFrame as a new CSV file, ensuring that all relevant data is available in a unified format for further exploration and analysis.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
genre_ids
\n",
+ "
id
\n",
+ "
original_language
\n",
+ "
original_title
\n",
+ "
popularity
\n",
+ "
release_date
\n",
+ "
title
\n",
+ "
vote_average
\n",
+ "
vote_count
\n",
+ "
studio
\n",
+ "
domestic_gross
\n",
+ "
foreign_gross
\n",
+ "
year
\n",
+ "
total_gross
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
[14, 12, 16, 10751]
\n",
+ "
10191
\n",
+ "
en
\n",
+ "
How to Train Your Dragon
\n",
+ "
28.73
\n",
+ "
2010-03-26
\n",
+ "
How to Train Your Dragon
\n",
+ "
7.70
\n",
+ "
7610
\n",
+ "
P/DW
\n",
+ "
217600000.00
\n",
+ "
277300000.00
\n",
+ "
2010
\n",
+ "
494900000.00
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
[12, 28, 878]
\n",
+ "
10138
\n",
+ "
en
\n",
+ "
Iron Man 2
\n",
+ "
28.52
\n",
+ "
2010-05-07
\n",
+ "
Iron Man 2
\n",
+ "
6.80
\n",
+ "
12368
\n",
+ "
Par.
\n",
+ "
312400000.00
\n",
+ "
311500000.00
\n",
+ "
2010
\n",
+ "
623900000.00
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
[28, 878, 12]
\n",
+ "
27205
\n",
+ "
en
\n",
+ "
Inception
\n",
+ "
27.92
\n",
+ "
2010-07-16
\n",
+ "
Inception
\n",
+ "
8.30
\n",
+ "
22186
\n",
+ "
WB
\n",
+ "
292600000.00
\n",
+ "
535700000.00
\n",
+ "
2010
\n",
+ "
828300000.00
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
[16, 10751, 35]
\n",
+ "
10193
\n",
+ "
en
\n",
+ "
Toy Story 3
\n",
+ "
24.45
\n",
+ "
2010-06-17
\n",
+ "
Toy Story 3
\n",
+ "
7.70
\n",
+ "
8340
\n",
+ "
BV
\n",
+ "
415000000.00
\n",
+ "
652000000.00
\n",
+ "
2010
\n",
+ "
1067000000.00
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
[16, 10751, 35]
\n",
+ "
20352
\n",
+ "
en
\n",
+ "
Despicable Me
\n",
+ "
23.67
\n",
+ "
2010-07-09
\n",
+ "
Despicable Me
\n",
+ "
7.20
\n",
+ "
10057
\n",
+ "
Uni.
\n",
+ "
251500000.00
\n",
+ "
291600000.00
\n",
+ "
2010
\n",
+ "
543100000.00
\n",
+ "
\n",
+ "
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
\n",
+ "
\n",
+ "
2698
\n",
+ "
[16, 10751, 12]
\n",
+ "
455842
\n",
+ "
en
\n",
+ "
Elliot: The Littlest Reindeer
\n",
+ "
2.90
\n",
+ "
2018-11-30
\n",
+ "
Elliot: The Littlest Reindeer
\n",
+ "
3.40
\n",
+ "
7
\n",
+ "
Scre.
\n",
+ "
24300.00
\n",
+ "
18700000.00
\n",
+ "
2018
\n",
+ "
18724300.00
\n",
+ "
\n",
+ "
\n",
+ "
2699
\n",
+ "
[28, 12, 16]
\n",
+ "
332718
\n",
+ "
en
\n",
+ "
Bilal: A New Breed of Hero
\n",
+ "
2.71
\n",
+ "
2018-02-02
\n",
+ "
Bilal: A New Breed of Hero
\n",
+ "
6.80
\n",
+ "
54
\n",
+ "
VE
\n",
+ "
491000.00
\n",
+ "
1700000.00
\n",
+ "
2018
\n",
+ "
2191000.00
\n",
+ "
\n",
+ "
\n",
+ "
2700
\n",
+ "
[35]
\n",
+ "
498919
\n",
+ "
es
\n",
+ "
La Boda de Valentina
\n",
+ "
2.55
\n",
+ "
2018-02-09
\n",
+ "
La Boda de Valentina
\n",
+ "
6.30
\n",
+ "
7
\n",
+ "
PNT
\n",
+ "
2800000.00
\n",
+ "
18700000.00
\n",
+ "
2018
\n",
+ "
21500000.00
\n",
+ "
\n",
+ "
\n",
+ "
2701
\n",
+ "
[18]
\n",
+ "
470641
\n",
+ "
hi
\n",
+ "
मुक्काबाज़
\n",
+ "
2.28
\n",
+ "
2018-01-12
\n",
+ "
Mukkabaaz
\n",
+ "
7.50
\n",
+ "
18
\n",
+ "
Eros
\n",
+ "
75900.00
\n",
+ "
18700000.00
\n",
+ "
2018
\n",
+ "
18775900.00
\n",
+ "
\n",
+ "
\n",
+ "
2702
\n",
+ "
[10749, 18]
\n",
+ "
551634
\n",
+ "
zh
\n",
+ "
你好,之华
\n",
+ "
0.60
\n",
+ "
2018-11-09
\n",
+ "
Last Letter
\n",
+ "
6.00
\n",
+ "
1
\n",
+ "
CL
\n",
+ "
181000.00
\n",
+ "
18700000.00
\n",
+ "
2018
\n",
+ "
18881000.00
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
2703 rows × 14 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " genre_ids id original_language \\\n",
+ "0 [14, 12, 16, 10751] 10191 en \n",
+ "1 [12, 28, 878] 10138 en \n",
+ "2 [28, 878, 12] 27205 en \n",
+ "3 [16, 10751, 35] 10193 en \n",
+ "4 [16, 10751, 35] 20352 en \n",
+ "... ... ... ... \n",
+ "2698 [16, 10751, 12] 455842 en \n",
+ "2699 [28, 12, 16] 332718 en \n",
+ "2700 [35] 498919 es \n",
+ "2701 [18] 470641 hi \n",
+ "2702 [10749, 18] 551634 zh \n",
+ "\n",
+ " original_title popularity release_date \\\n",
+ "0 How to Train Your Dragon 28.73 2010-03-26 \n",
+ "1 Iron Man 2 28.52 2010-05-07 \n",
+ "2 Inception 27.92 2010-07-16 \n",
+ "3 Toy Story 3 24.45 2010-06-17 \n",
+ "4 Despicable Me 23.67 2010-07-09 \n",
+ "... ... ... ... \n",
+ "2698 Elliot: The Littlest Reindeer 2.90 2018-11-30 \n",
+ "2699 Bilal: A New Breed of Hero 2.71 2018-02-02 \n",
+ "2700 La Boda de Valentina 2.55 2018-02-09 \n",
+ "2701 मुक्काबाज़ 2.28 2018-01-12 \n",
+ "2702 你好,之华 0.60 2018-11-09 \n",
+ "\n",
+ " title vote_average vote_count studio \\\n",
+ "0 How to Train Your Dragon 7.70 7610 P/DW \n",
+ "1 Iron Man 2 6.80 12368 Par. \n",
+ "2 Inception 8.30 22186 WB \n",
+ "3 Toy Story 3 7.70 8340 BV \n",
+ "4 Despicable Me 7.20 10057 Uni. \n",
+ "... ... ... ... ... \n",
+ "2698 Elliot: The Littlest Reindeer 3.40 7 Scre. \n",
+ "2699 Bilal: A New Breed of Hero 6.80 54 VE \n",
+ "2700 La Boda de Valentina 6.30 7 PNT \n",
+ "2701 Mukkabaaz 7.50 18 Eros \n",
+ "2702 Last Letter 6.00 1 CL \n",
+ "\n",
+ " domestic_gross foreign_gross year total_gross \n",
+ "0 217600000.00 277300000.00 2010 494900000.00 \n",
+ "1 312400000.00 311500000.00 2010 623900000.00 \n",
+ "2 292600000.00 535700000.00 2010 828300000.00 \n",
+ "3 415000000.00 652000000.00 2010 1067000000.00 \n",
+ "4 251500000.00 291600000.00 2010 543100000.00 \n",
+ "... ... ... ... ... \n",
+ "2698 24300.00 18700000.00 2018 18724300.00 \n",
+ "2699 491000.00 1700000.00 2018 2191000.00 \n",
+ "2700 2800000.00 18700000.00 2018 21500000.00 \n",
+ "2701 75900.00 18700000.00 2018 18775900.00 \n",
+ "2702 181000.00 18700000.00 2018 18881000.00 \n",
+ "\n",
+ "[2703 rows x 14 columns]"
+ ]
+ },
+ "execution_count": 45,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Merge the dataframes (adjust the `on` parameter as needed)\n",
+ "merged_df = pd.merge(movies, bom_df, on='title') # Use 'outer' or 'inner' for different merge types\n",
+ "\n",
+ "# Save to a new CSV file\n",
+ "merged_df.to_csv('merged_file.csv', index=False)\n",
+ "merged_df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Total Gross vs. Popularity\n",
+ "\n",
+ "In this analysis, we explore the relationship between a movie's total gross revenue and its popularity rating. By visualizing these two variables, we aim to identify any trends or patterns that may indicate how revenue performance correlates with audience popularity. A scatter plot is used to effectively display the distribution of movies across varying levels of total gross and popularity, with optional log scaling to enhance clarity for a wide range of revenue values.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsQAAAGkCAYAAAA2STNEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eXgcZ3bY+3+rqvduNLoBNHaABAiyuEkUSVHUvsyMNNLIM2OPPXbs2Imz35vEdvKz49yb2De2k/iJs/j6Zr1ZPPEyP8f2zNieRdKMZqSRNNRCUhAlkQRZXLAQ+9pAo/el6v5R3U0AxEoCBECcz/PoodDdqH673qZ06tR5z6tYloUQQgghhBA7lbrZAxBCCCGEEGIzSUAshBBCCCF2NAmIhRBCCCHEjiYBsRBCCCGE2NEkIBZCCCGEEDuaBMRCiG1D13Vls8cg7m3yHRNiZ3Js9gCEEPc2Xdd/D/irK7zs1w3D+LUVjvN54DPA31nDe/8a8EuGYQRWeJ0K/GxxnAeBCuAG8A3gXxmGMbHa97zX6LreC+ya85AFJIAu4LcNw/iTTRjTG0DcMIwfWs/j6Lr+fwGTwH+60zEKIbYXyRALITbaPwcemfPPVeDlBY/9j1Uc5x8CTes9OF3XPcArwH8BPgL+GvBp7KDoLwHv6bpevd7vu818lZtz9RjwRSAK/LGu65/dzIHdob8L/OKcn38d8G7SWIQQm0gyxEKIDWUYxnXgeulnXdeTwLhhGO9t3qjm+Q3gWeA5wzC+N+fxN3Vd/ypwAfgV7IB8pxpdOF+6rv8AGAD+HvDNTRnVHTIMo2uzxyCE2BokIBZCbLpi3ebfBH4e6MAOtP6TYRi/U3z+DeCp4r9bQJthGL26rn8a+CfAMcAJXAZ+wzCMP1vl+waAnwP+aEEwDIBhGIO6rv9zwDfnd3qBPwaeBvYDv2YYxu/oun4/8FvAyeJLX8Iu1xgt/p4f+H+AF4EQcAn4F6WxrvT8ImN/A8gYhvHpOY+pwBDw3wzD+L90Xf8MdsB/EIgD3yqOaWo152c5hmEkdF2/wpxyCl3XdwP/GnuufMDrxfe7Wnz+14AfA/4V8C+BKuBN4O8bhtFbfM3vAQ8ahnF4znF/GPhzivO+yLloKB7veSACjAN/CvxjwzAyxXH1AP8A+8LGA3wB+E2KJRPF7xXAv9F1/e9jfy++AZwwDOP9Oe/1T4BfAJoMw8iv9bwJIbYmKZkQQmwFv4ldsvB14PPAV4B/q+v6vyg+/3eBc8Db2Lfth3Vdfwi79OJC8Xd+AkgCf6TremSV7/ssdnD0laVeYBjGbxuG8S8WPPyL2GUWPw28ouv6A8B7gAu7DvkXgCexs8z+4u/8W+AT2EH/i9g1uF/Rdf3AKp9f6I+ATywo53gaqAP+l67ru4A/wz5nnymO+bOsU32srutOYDd2oImu683AGWAv9nz9NaANOKXreuOcX92F/Vl/rfia/cBruq67b3McKvBt7Iuiv4dd7vKH2HPwtxe8/J8D/xj4ZaBzwXOPFP/8D8CPYM/vOPCTC173l7EvoCQYFuIeIhliIcSmKgZ0/z/g3xiG8SvFh18tZo3/ka7rv2MYRpeu6zHsbN57xd87BPyZYRh/b86xbgAfYGdpv7WKt99d/PPagjGpLEgYLAiADMMwfn3O67+GHTy9YBhGtvhYJ3Ae+OvYQdaTwHcNw/hK8flTwCg3/zu80vMLfaV43B8Gfrf42I8DHxmGcUnX9S8CbuxFgcPFY8aZv0ButRRd10vj0IAW7DKSWuC/FR//h9j1t8+WFiEWs9jd2MF4qVY3AHzRMIxvF19zGfgYu177929jbE3Y9cw/bxjGx8XHXtd1/XnsTPV/mPPaP5i7CFDX9fIThmG8V/z5hmEY54rP/xHwE7qu/yPDMMzihc9B4GduY5xCiC1MAmIhxGZ7GDuzujBL+8fA/1F8/pbg1jCM/wn8z2IG9gCwDzvDCnYguBpa8U9rweMvY2cay3Rdj8zpNrGw9vRJ4H+VguHi+Lp0Xf+Ym0HZO8DfKt7e/xbwLcMw5i7oWun5eQzDiOq6/h3sBW6/q+u6hl0G8G+LL+kEMsAZXdf/GLuE4xuGYRSWOuYy/m7xn7mmgf/TMIy/KP78JPD9uR05DMOY0HX9NYrlLkUzpWC4+JoLuq53A09wGwGxYRj9wNO6rqu6ru/F/h4cwc6U31jw8rXWDP8BN7P9b2DfEegyDOODtY5TCLG1ScmEEGKzhYt/ji54vPRzcLFf0nXdr+v6l7EDs3exa4k9xadX20u2r/jnwqzpzwEniv/8OrcaW/BzmFvHT/Gx0vh/HvuW/WHgvwL9uq5/Vdf11T6/mD8CPqnrehXwDFCDfSGBYRjdwCexO2f8HPB9YEDX9R9Z5nhL+VNuno/j2HXe1YZh/Ks5r1nNOQAYXuQ149j1xLdF1/W/gV07fQX478Vxprj1e7Bw3pZVDHwvAD9ZvGvwl7DLMYQQ9xjJEAshNltpgVcdMDjn8frin5NL/N5/AJ7Dro99q7h46iB2jedqfRc7i/rD2DWjAJQWgQHoun741l+7xRT2+Beqx14ch2EYKeCfAf9Mt+/N/xjwq9gL8f73lZ5f4n2/URz/57BrYN8xDKOcFTUM423gh3Rd92EHx7+MXZfcahjG0Co+V8n43IVlS1juHMydw8Va2NViB+5gZ+sXJmuW7COt6/pT2EHwPwf+o2EY48XHz6ww3tX6A+AfYQfCjcD/f52OK4TYQiRDLITYbGeAHPat/7l+AsgXnwdYeKv/EeDbhmF81zCMTPGx54t/ripDbBjGNPAfgb+h6/qzS7zs4CoOdQr4vK7rrtIDxcVw9wFv67qu6bp+Qdf1f1B8X8MwjH+JndluXen5ZcafxF6I+FnsoP6P5rz/39R1vVvXdadhGEnDML6JXfersQH9nLHPwTO6rtfMGUMNdiD+9pzXRYoLIkuvuQ9ox85gA8SAumJGtuSJZd73Yewg+l/MCYYbsc/9WnedMxd57MvY2evfBN4olmgIIe4xkiEWQmyqYp3pv8deQJcH3sKu2fxHwL8zDCNafOk08ICu608Dp4GzwOd0Xf+r2LWinyj+Dsxpk7YK/wQ7IHtF1/Xfx+6pG8XufvCz2AHXN4HZZY7xL7FrgF/Rdf3/BiqBfwH0Ar9vGEZB1/XT2NnfNHZ7uIexA72/s9LzK4z/j7CDYov5ddhvYWfRv6Lr+n/GrtP+FeyuEB8C6Lq+B4isU0/o/xv7fH232KpOKb5fFvidOa+zgD/Rdf3/KP77bxbH87Xi869gl4/8J13X/wR7Xn94mfc9i53c+R1d17+CfQHxT7HryNfyPQD7O/a4rus/MAzjNIBhGMO6rn8Pu6b8r6/xeEKIbUIyxEKIreCXsYOYv4y9oOzHgV/CXlRX8tvYQc63gaPYXQu+ix1s/Rl2JvIL2HWkj7BKhmFkDcP4AnZ7rUbs9m+vFsfTDTxjGMbn5mShFztGJ3bg5sQOSv8f4AfAY4ZhlALpn8e+7f5Pge9gB1e/aBjG767y+aV8BzuAf62UIS2O6Qp25rgWe6e5P8Ku533WMIxc8WW/ip2FvmPFzOkT2LW8f4Dd+aIPeMQwjIE5L01i12X/DnaHineBT5W6eBQX3P1T7FZ6L2PP9ZJbfxuG8Tp2l5Ifwg6mfxX78/4GcHSN7dx+DbsW+5U5XTUoHjfFzaBdCHGPUSxr4eJqIYQQYv0VN+b4JcMwlqwJ3op0XX8ZmDIM46c3eyxCiI0hJRNCCCHEInRd/4fYLdyexy5hEULcoyQgFkIIIRb3SewykH9sGMZ6da0QQmxBUjIhhBBCCCF2NFlUJ4QQQgghdrRtUzLR2dnpxt59aJhb+5EKIYQQQgixFA1oAM4eP378lq5B2yYgxg6Gf7DZgxBCCCGEENvWE9gbCc2znQLiYYB9+/bhcrlWeu096cKFCxw+vJpdZMVWIvO2/cicbU8yb9uPzNn2tB3nLZvNcuXKFSjGkwttp4C4AOByuXC719Jn/d6ykz/7dibztv3InG1PMm/bj8zZ9rSN523RsltZVCeEEEIIIXY0CYiFEEIIIcSOJgGxEEIIIYTY0SQgFkIIIYQQO5oExEIIIYQQYkeTgFgIIYQQQuxoEhALIYQQQogdTQJiIYQQQgixo0lALIQQQgghdjQJiIUQQgghxI62nbZuFkIIIYQQa2RZFmPRFLF4hmDATW3Yi6Iomz2sLUUCYiGEEEKIe5RlWXReHuPMxRFMy0JVFB46VM/x/bUSFM+xoQGxrus/DfyfxR9fMQzjl3Rd/xTw24AX+BPDMH5lI8cghBBCCLFTjUVT5WAYwLQszlwcoaWugroq3yaPbuvYsBpiXdd9wL8HngKOAE/ouv5Z4EvA54EDwAld11/YqDEIIYQQQuxksXimHAyXmJZFLJ7ZpBFtTRu5qE4rHt8POIv/xICrhmH0GIaRB74MfHEDxyCEEEIIsWMFA27UBaURqqIQDLg3aURb04YFxIZhzAK/ClwGBoBeoBEYnvOyYaB5o8YghBBCCLGT1Ya9PHSovhwUl2qIa8PeTR7Z1qJYC9Lo60XX9fuB3wc+DcxgZ4MvAB2GYfxM8TXPAr9oGMbzKx2vs7NzN9CzIYMVQgghhLhHqapKXvGSSBfwezQcVgrTNDd7WJul7fjx470LH9zIRXWfBl4zDGMMQNf13wN+CSjMeU09MLSWgx4+fBi3e2em+Ts7Ozl+/PhmD0Oskczb9iNztj3JvG0/Mmfb03act0wmw4ULF5Z8fiMD4o+Af63ruh9IAp8FTgN/Wdf1Duxs709hL7ITQgghhBBiU2xkDfGrwP8COoGPsRfV/Rrws8DXgC7s+uKvbtQYhBBCCCGEWMmG9iE2DOO3gN9a8PBr2G3YhBBCCHGPk13SxHYgO9UJIYQQYkPILmliu9jIPsRCCCGE2MGW2iVtLJra5JEJMZ8ExEIIIYTYELJLmtguJCAWQgghxIaQXdLEdiEBsRBCCCE2hOySJrYLWVQnhBBCiA2hKArH99fSUlchXSbEliYBsRBCCCE2jKIo1FX5qKvybfZQhFiSlEwIIYQQQogdTQJiIYQQQgixo0lALIQQQgghdjQJiIUQQgghxI4mAbEQQgghhNjRJCAWQgghhBA7mgTEQgghhBBiR5OAWAghhBBC7GgSEAshhBBCiB1NAmIhhBBCCLGjSUAshBBCCCF2NAmIhRBCCCHEjiYBsRBCCCGE2NEkIBZCCCGEEDuaBMRCCCGEEGJHk4BYCCGEEELsaBIQCyGEEEKIHU0CYiGEEEIIsaNJQCyEEEIIIXY0CYiFEEIIIcSOJgGxEEIIIYTY0SQgFkIIIYQQO5oExEIIIYQQYkdzbNSBdV3/m8Dfn/NQG/CHwF8Avw14gT8xDONXNmoMQgghhBBCrGTDMsSGYfwPwzAeMAzjAeAvA2PAbwFfAj4PHABO6Lr+wkaNQQghhBBCiJXcrZKJ/wL8E6AduGoYRo9hGHngy8AX79IYhBBCCCGEuMWGB8S6rn8K8BqG8RWgERie8/Qw0LzRYxBCCCGEEGIpG1ZDPMffwa4ZBjsAt+Y8pwDmWg524cKFdRrW9tTZ2bnZQxC3QeZt+5E5255k3rYfmbPt6V6btw0NiHVddwFPAT9bfGgAaJjzknpgaC3HPHz4MG63e13Gt910dnZy/PjxzR6GWCOZt+1H5mx7knnbfmTOtqftOG+ZTGbZpOpGZ4jvB64YhpEo/nwa0HVd7wB6gJ/CXmQnhBBCCCHEptjoGuJ27KwwAIZhpLGzxV8DuoDLwFc3eAxCCCGEEEIsaUMzxIZh/Cnwpwseew04spHvK4QQQgghxGrJTnVCCCGEEGJHk4BYCCGEEELsaBIQCyGEEEKIHU0CYiGEEEIIsaNJQCyEEEIIIXY0CYiFEEIIIcSOJgGxEEIIIYTY0SQgFkIIIYQQO5oExEIIIYQQYkeTgFgIIYQQQuxoEhALIYQQQogdTQJiIYQQQgixo0lALIQQQgghdjQJiIUQQgghxI4mAbEQQgghhNjRJCAWQgghhBA7mgTEQgghhBBiR5OAWAghhBBC7GgSEAshhBBCiB1NAmIhhBBCCLGjSUAshBBCCCF2NAmIhRBCCCHEjiYBsRBCCCGE2NEkIBZCCCGEEDuaBMRCCCGEEGJHk4BYCCGEEELsaBIQCyGEEEKIHU0CYiGEEEIIsaNJQCyEEEIIIXY0CYiFEEIIIcSOJgGxEEIIIYTY0RwbeXBd1z8L/DPAD7xqGMYv6Lr+KeC3AS/wJ4Zh/MpGjkEIIYQQQojlbFiGWNf1duD/BX4YuB84puv6C8CXgM8DB4ATxceEEEIIIYTYFBtZMvEj2BngAcMwcsBPAEngqmEYPYZh5IEvA1/cwDEIIYQQQgixrI0smegAsrqufwNoBb4FXASG57xmGGhey0EvXLiwbgPcjjo7Ozd7COI2yLxtPzJn25PM2/Yjc7Y93WvztpEBsQN4EngaiAPfAFKANec1CmCu5aCHDx/G7Xav0xC3l87OTo4fP77ZwxBrJPO2/cicbU8yb9uPzNn2tB3nLZPJLJtU3ciAeAT4nmEY4wC6rv85dnlEYc5r6oGhDRyDEEIIIYQQy9rIgPhbwO/ruh4CZoEXgK8C/4eu6x1AD/BT2IvshBBCCCGE2BQbtqjOMIzTwL8GTgFdQB/wX4CfBb5WfOwydpAshBBCCCHEptjQPsSGYXyJWzPArwFHNvJ9hRBCCCGEWC3ZqU4IIYQQQuxoEhALIYQQQogdTQJiIYQQQgixo0lALIQQQgghdjQJiIUQQgghxI4mAbEQQgghhNjRJCAWQgghhBA7mgTEQgghhBBiR5OAWAghhBBC7GgSEAshhBBCiB1NAmIhhBBCCLGjSUAshBBCCCF2NAmIhRBCCCHEjiYBsRBCCCGE2NEkIBZCCCGEEDuaY7MHIIQQQgghti7LshiLpojFMwQDblT13sunSkAshBBCCCEWZVkWnZfHOHNxBNOyUBWF9jonlmWhKMpmD2/d3HshvhBCCCGEWBdj0VQ5GAYwLYuzXaOMRVObPLL1JQGxEEIIIYRYVCyeKQfDJQXTIhbPbNKINoYExEIIIYQQYlHBgBt1QWmEpioEA+5NGtHGkIBYCCGEEEIsqjbs5aFD9eWgWFUUThysozbs3eSRrS9ZVCeEEEIIIRalKArH99fSUldR7jIx1GfcUwvqQAJiIYQQQgixDEVRqKvyUVflA2Cgx9zkEa0/KZkQQgghhBA7mgTEQgghhBBiR5OAWAghhBBC7GgSEAshhBBCiB1NAmIhhBBCCLGjSUAshBBCCCF2NAmIhRBCCCHEjrahfYh1Xf8+UAvkig/9HaAC+G3AC/yJYRi/spFjEEIIIYQQYjkbFhDruq4A+4BdhmHki495AQN4CugHXtJ1/QXDMF7ZqHEIIYQQQgixnI3MEOvFP1/Vdb0a+O/AeeCqYRg9ALqufxn4IiABsRBCCCHEXWRZFmPRVHlL5tqw957bknm1NjIgDgOvAT8HOIE3gN8Chue8ZhhoXstBL1y4sE7D2546Ozs3ewjiNsi8bT8yZ9uTzNv2I3O2OVRVZTTu5GzXKAXTQlMVThysoy6QwzRX3pr5Xpu3DQuIDcN4F3i39LOu678L/AZwas7LFGBNG2IfPnwYt9u9LmPcbjo7Ozl+/PhmD0Oskczb9iNztj3JvG0/MmebZ3QqybuvXyVcVV1+rHu0wNFDOnVVvmV/dzvOWyaTWTapumFdJnRdf1zX9U/OeUgBeoGGOY/VA0MbNQYhhBBCCHGrWDyDaVnzHjMti1g8s0kj2lwbWTIRAn5D1/VHsUsm/irwvwF/qut6B9AD/BTwpQ0cgxBCCCHEujBNk+7BGOPTKSIhL+1NQVR163awXa5GOBhwoyrKvKBYVRSCgZ15F34jSya+pev6SeAcoAH/yTCMd3Vd/1nga4AHeBn46kaNQQghhBBiPZimyaun+3jpVA9508KhKrz4eBvPndy1JYNiy7LovDzGmYsjmJaFqig8dKie4/trURSF2rCXhw7V3/J8bdi72UPfFBvah9gwjF8FfnXBY68BRzbyfYUQQggh1lP3YKwcDAPkTYuXTvXQ0RymoyV0V8eymu4QY9FUOdgFuxzizMURWuoqqKvyoSgKx/fX0lJXIV0m2OCAWAghhBDiXjA+nSoHwyV502J8OnVXA+KVMr8ly9UIlxbNKYpCXZVvxUV0O8HWy/ELIYQQQmwxkZAXhzo/e+pQFSKhu1tisFTmdyyamve6Uo3wXDu5RnglEhALIYQQQqygvSnIi4+3lYPiUg1xe1Pwro5jtd0hSjXCpaB4p9cIr0RKJoQQQgghVqCqKs+d3EVHc3hTu0ystjuE1AivjQTEQgghhBCroKoqHS2hu76Ibq61dIe43RrhnbilswTEQgghhBDbxEZnfle7aO9eIwGxEEIIIcQ2spHdIVZq13avWlXhi67rH+i6/jd1Xb93z4QQQgghxA63U7d0Xm0l+M8BTwDXdV3/j7quH97AMQkhhBBCiE2wU9u1rSogNgzjbcMw/ipwAOgCvq7r+g90Xf/iho5OCCGEEELcNTu1Xduqa4h1XQ8BPwP8DWAG+FPgZ3Rdf84wjL+1McMTQgghhBB3y05t17aqgFjX9S8DLwLfAv53wzDeLT7+X4AxQAJiIYQQQoh7wE7c0nm1GeIu4B8ahjE+90HDMPK6rj+2/sMSQgghhBC3Yyf2Eb5Tqw2InzAM4zfnPqDr+nuGYTxsGMalDRiXEEIIIYRYo63cR3grB+rLBsS6rn8V2Afs0XX94zlPOYF7u/+GEEIIIcQ2sxX7CNuBcJKL1yc5d3Uct1PbUoE6rJwh/iVgN/DfsVuvleSxyyiEEEIIIcQWsVwf4c0IiEsZ656hGd78YADTtIhU+YiEvJseqM+1bEBsGEYv0Kvr+j7DMKzlXiuEEEIIITZXqY/w3KB4M/sIlzLWQb+LgmmPaXwqScDrxOt2bFqgvtBKJROnDMN4HIjpuj43IFYAyzCM4IaOTgghhBBCrFqpj/DCGuLV9hE2TZPuwRjj0ykiIS/tTUFUdbX7uN2qlLF2OVU0VaFgWlhANlfA73FumQ0/ViqZKG288SwwvMFjEUIIIYQQd+BO+gibpsmrp/t46VQPedPCoSq8+Hgbz53cddtBcSljPT2b4cTBes52jWCaFh63Y0tt+LFSyUQpCP49wzD234XxCCGEEEIIbr8rw+32Ee4ejJWDYYC8afHSqR46msN0tIRu5yPMy1iTzfPUsWYiYS8HdlVRW+XbEgvqYPVt1/p0XX8UeM8wDHMjBySEEEIIsdNtRvu08elUORguyZsW49Op2w6It8vOd6sNiA8Ap4CcrusZpIZYCCGEEGLDbEb7tEjIi0NV5gXFDlUhErqzsobtsPPdagtCngDasHsS3wccLv4phBBCCCHW2XLt0zZKe1OQFx9vw6Ha2dtSDXF7072f/1xVhtgwjD5d148CAezssAZ0YPcnFkIIIYQQ62gj26ctVZusqirPndxFR3N43bpMbBerCoh1Xf/vwOcBDzCEHQyfQgJiIYQQQoh1d6ft05ayUm2yqqp0tIRuu2Z4u1ptDfGz2CUT/xn4DaAF+OWNGpQQQgghxE62UYvRtuLWzlvBanPgw4ZhJIDLwH2GYbwBNG/YqIQQQgghdrjSYrS9rWHq1qlF2WbUJm8Hqw2Is7quPwl0Ac/rul6JXU8shBBCCCG2iVJt8lybubXzVrHagPgfA38HeBl4AJgAvrxBYxJCCCGEEBugVJtcCorXqzZ5u1ttl4n3gPeKPz6s63qlYRgzGzcsIYQQQgix3rbLRhl327IBsa7r3wSsJZ7DMIzPrfQGuq7/W6DGMIyf1XX9U8BvA17gTwzD+JXbGLMQQgghtrDb3XJY3B3LbZSxU+dupQzxV+/k4LqufxL4q8BLuq57gS8BTwH9xcdeMAzjlTt5DyGEEEJsHZux5fBWs12Dyp08d8sGxIZh/P7tHljX9SrgXwK/CRwBHgKuGobRU3z+y8AXAQmIhRBCiHvETm/rtZ2Dyp08d6vdmGOWRUonDMNYbi+//wr8U+yexQCNwPCc54eR1m1CCCHEPWW5tl73elAFdy+o3Igs9E6eu9VuzHF4zr+7gZ8EEku9WNf1vwn0G4bxmq7rP1t8WGV+UK0A5uqHartw4cJaf+We0tnZudlDELdB5m37kTnbnmTeNp+p+YlOTVIwb/4vX1MVpqc8dI533/L6e23OZnMexsbHb3n80hUHA870uryHqqqMxp2c7RqlYFpoqsKJg3XUBXKY5ppDq7K1zN3CeVNVlbziJZEu4PdoOKzUHY3lblttl4m+BQ/9uq7rp4F/u8Sv/ATQoOv6h0AVds/iXUBhzmvqsbeBXpPDhw/jdu/MXnmdnZ0cP358s4ch1kjmbfuROdueZN62BsuyUNzhVZUM3ItzNjqVpGsgPy/TqioKB/a1rVuWdXQqybuvXyVcVV1+rHu0wNFD+preY2GWORLyrGruFs5bqUzkbPn38jx0qHFLlYlkMpllk6qrzRDPo+v6fqBuqecNw3h2zmt/Fnga+N+Aq7qudwA9wE9hL7ITQgghxD1ip7f1KvX5XRhUrmef3/UobViq1vmYHlnz3N0Ltce3U0OsAk7gl9fyRoZhpIvB8dcAD/YmH3fUxUIIIYQQW89ybb3udXfjgqC029zCLPRadptbKYhdy9zdC7XHt1NDbAHThmHEVvOLhmH8HvB7xX9/DbvjhBBCCCHEPelOLwhWWjC3Hlno9QxigwE3HqdGMOAimzNxOVVi8ey22g561TXEuq5/Bvg0dh3wN4A3NnBcQgghhBA7zmratq1HFno9sswlkZCH5roAL53qIW9aOFSFFx9vIxLyrPlYm0VdzYt0Xf814N8BM0AS+G+6rv/8Bo5LCCGEEGLHWaqUYSyamve6UhZ6b2uYuirfmksySllmtfh7d1LrPD6dpnswRmtDkObaAK0NQboHY4xPr09XjbthtSUTPw0cNwxjBkDX9X8HvAP8+40amBBCCCHETnO36nHXs9a5NGav24HX7diwMW+k1QbEk8DsnJ+ngfi6j0YIIYQQYgdbz1KGlSxX67yWjT/u5pg3ymoD4lPA13Vd/69AHjtjfEPX9S8AGIbxZxs0PiGEEEKIbW0tweV6tm0zTbNYupAiEvLS3hREVVeull3r9tN3o9XcRlttQHys+OcvLnj857C7TkhALIQQQgixwFqDy/UqZTBNk1dP992y0O25k7tWDIrX2lf4Xug9vdouE88A6LruABTDMHIbOiohhBBCiG1qbkZYURQ+NMbWtGnFevRx7h6MlYNhgLxp8dKpHjqaw3S0hJb93dupY144ZsuyGJ1KbpsAebUbc9QCvw98AnDouv4m8NOGYax562UhhBBCiHvVwozwbDJLY00A07LI5k3g7iw4G59OlYPhkrxpMT6dWjEgvtOa4LVmxbeCVbVdA/4j8B72ds21wA+A/7JRgxJCCCGE2I4Wlhs4NJX3u0YIVdwMJu/GgrNIyItDnR98OlSFSGjlut47bcm22tZxW8lqa4j3GYbx43N+/me6rl/ciAEJIYQQQmxXC8sNvG4HVSEvuWJ2+G4tOGtvCvLi42231BC3NwVX/N07rQnejls5rzYgduq67jEMIw2g67oPezGdEEIIIYQoWqzcoC7s4+ShBizLumv1tKqq8tzJXXQ0h9fcZQLurI55O7ZhW21A/L+A7+m6/j+xA+G/Dnx1w0YlhBBCCLENLdWCbE9z5Zasn11LS7jVmnsOHJpCOOghEvaCZWFZ1pY8DysGxLquHwa6ij8+B2jA7wG/u3HDEkIIIYTYfrZKC7LVtF3bqMVvN89BgIvXJzl3dZzRqSRd3VNbdnHdsgGxrut/Dfh3wFVgD/CXDcP4zt0YmBBCCCHEdrQebdPu1Grarq213/Ba2AGvwuW+KG6ntu7HX28rFZL8PHDYMIyTwGeBf7zxQxJCCCGEEHdiubZrJcstflsP5eNbFrF4ltGpJNOzGaZn0+ty/PW0YmV1qdewYRjvApENH5EQQgghhLgjq2m7Vlr8Ntd6Ln6zjw/9Y3HOX5/g6o0oXb2TDI3HMU1zXd5jvawUEC/sJJHfqIEIIYQQQqyn0m5pV29EGZ1KYlk7p0FWqe1aKShe2HbNPhcW+3eFyeQKwPq3hKsNe9m/u4rB8TiWZaFpCg/ur+Plt3voHoyty3usl9V2mSjZOd8kIYQQQmxb23G3tPW0XNu1uefGoSm01lUQCXs5sKuK2irfup0fRVHwe52cOFBHwbTQVIW+4RipbGFVO+bdTSsFxPfruj43hPcVf1YAyzCMlbs7CyGEEELcZRu5YGy7UFWVjpbQLYHn3HOTzdtZ9PFoigO7q9f9YqE66OVa//S8eubV7ph3N60UEO+5K6MQQgghhFhHd7pb2kb0590spmnSPRgrZ4oVrLu2k9yd7Jh3Ny0bEBuG0Xe3BiKEEEIIsV7uZLe0rVxusdZAfbF+xJ9+ZDcVXiezqVz5dRu1k9yd7ph3t6y1hlgIIYQQW8idZjLvpUzoXEvtGLeaBWNbtdzidgL1xfoRf+fdXn7mMwd4/9LYms/N7ViqdGMrkYBYCCGE2KbuNJO5lTOhd+pOdoy703KLjbJcoF4b9i56YbNUP+KCafGjn9i74rlZWG6x1Uod1osExEIIIcQ2daeZzK2aCV0vt7tj3J2UW2ykpQL1mXia/tHZRS9sSv2Ib13U5lvx3Cy1/XODb+nwcbvecdhaBRxCCCGEWLU73Wlso3cq265K5RalTSs2uqRgtZbaSENV1EUvbMaiqRX7ES9nqe2fM1Qs+vrSHYevvX6V75zu42uvX6Xz8ti26P8sGWIhhBBim7rTTOZWzYRutjspt9hIpUD9Q2OMYMBFLm+yrzW8YteI1SxqWyyzu1S5xXQix2K28x0HCYiFEEKIbepOFo6tx+/fy2633GI5dtCZZGwqRb5QoLEmsKaNMBRF4ZgeIZXJc+qjQRyaykw8y30dNXicGunijnMw/8JmpUVtS9WSRyo9i5ZbhPzORY+zVWuvV0MCYiGEEGKbutNM5lbNhN6LLMvinDHGhe5JO/A0Lepr/Hzm0d0c31+36nM+Pp3m/LUJKnwuwA44z1+b4MTBOs52jZYD2ocP14NlcfVGdMV5XSqz+6Of2LNoD2E3i2+7vJ3vOEhALIQQQmxjd5rJ3IhMqLjVWDTF9cEZzlwcoVDMuI5MJHjz3CAtdcFVn/+lsrCVAdecrhEu+kdn+dr3r62qe8jSmd3couUW586dW3Rs2/mOgwTEQgghhBAbyLIsxqaSKMDelhB9wzFS2QIWkM7k11RSsFQWtjLgKV/YjE4lOXNxdNW1vMtldhcrt1BVldGp5C13FbbzHYcNDYh1Xf8N4McAC/hdwzB+W9f1TwG/DXiBPzEM41c2cgxCCCGEEJulVJ/75rkBBsfijEWTPLi/jhsjMdLZAh63Y00lBavJwq61lnfhMSu8Tg60VdE9OM1sIjtvEZ5lWYzGnbz7+tVFs8/b9Y7DhgXEuq4/BXwCuB9wAl26rr8GfAl4CugHXtJ1/QXDMF7ZqHEIIYQQW83t9mrdrj1ed7JSfa7bqRH0uygUTN6/PMqJA3XMJLI8dbRpTSUFi2VhIyHPvO9FMOBaUy3v3GPGExku9UX5w5cvzasbfu7kLlRVZSya4mzXKOGqamB7dZJYzoYFxIZhvKnr+jOGYeR1XW8qvlcIuGoYRg+ArutfBr4ISEAshBBiR7jd3eG26q5yEqQvb262tibkxe91Uh3yclSPoLdWranLRMncLOzi34s6Hj5cz3sXVq7lXTh/oPCdd3tv6T3c0RymoyVELJ4p10CXbJdOEsvZ0JIJwzByuq7/OvBLwFeARmB4zkuGgeaNHIMQQgixldxur9at2ON1qwbpW8nC+lyv24Hf40TfVU0k5OH6wMyy/YFXMjaV5M1zA6QzeVxODa/bwZmLo/zoMx0rbs282PztbgjidKjkszdbuOVNi/HpFB0tIYIBN5p66+Yg26GTxHKUu7F7iK7rPuCbwFtAh2EYP1N8/FngFw3DeH6lY3R2du4GejZynEIIIcRGm815eOPc8C2PP320gQpnet1/byOZmp9vnx6clzHUVIXnTzahFhKbMqatxuFwMJXxcW0ghqYqTEzFuH9vDU0hi+sTDl56u4d8wcKhKbz4WBttVVny+fyqjq2qKsNxL1/9/nUsCxQFImEfPofJU0frV/xeLDZ/quYh4Hdx/tr4zc+gKfytz+5Hy0ftBXVxJ2e7RimYFpqqcOJgHXWBHKZp3t5Jurvajh8/3rvwwY2sId4PeAzD+NAwjKSu63+GvcCuMOdl9cDQWo57+PBh3O7tfRVyuzo7Ozl+/PhmD0Oskczb9iNztj1tl3kbnUrSNZC/pb7zwL62ZTO9t/t7G+nqjSjhqluDrlBVHXtbwyv+/mbN2WJlHsC6l36UMrCXro6QSFvkCwUeP7aXx+5voHswxmvf/gCH042juM/Fa+8P8wt/6diSG2gsNDqV5Nq5AXxebzmonU2a1LaEVvW9WHT+LIv2pkp6huLzaogfvG8XqtoOwLlz5/jbX3xkW5XJZDIZLly4sOTzG1ky0Q78uq7rj2N3mfg88F+Bf6Pregd2tvensBfZCSGEEDvC7fZqXa8er+tZ83s7GzHMfX9T82NZ1l0NppaquVUVhfcujODQFMJBD5GwlwO7bq/Gt2RumYvXbYdc569NsK81vOS2yKXShMXGvXDeYvEM0ViaEwfrOdtl9zdWVYWjeyOr+l4sOn+qyrH9texrrVqylMM0zW3ZSWI5G7mo7mVd1x8CzmFnhb9mGMYf67o+DnwN8AAvA1/dqDEIIYQQW83t9mpdjx6v613zu9YgfeH7R6cmUdzh8vuvJli/04B+sVrsN88N0lpXgUNTcLscvPnBAKZpsaclxFNHm2/7/CzX/iwS8i66LXIktPjCt8XmraU2QL5gQTbPk0ebyOZM3C6NQ+1V885RJORhfDp9yzlbav7qqvzUVyurzlTfCzZ6Ud2vAb+24LHXgCMb+b5CCCHEVna7vVrvtMfrei/MW2uQvvD9C+bN968Ne1cM1tcjoF8sSE1n8mSyBUIVbt46d7OmNp3J39H5mZeBtSxiiRzZfIFMtkAk7OK5h3fx1rlBkpk8KvDi4220NwVXPG83562jHNCORVP2+dhdx+B4otxhwuPUaK4L0D0YW/ScHdMjhALuedlgYNGNN+5lslOdEEIIsUOsdcOG1VhLkL7c+wMrBuvrEdAvVibgcTtwuzQy2UI5GFYAl1O7o/NzMwM7TN9onMHxOA/ur+O//cXHPHJ/I4VCgQf0WmqCHvY0V9LeVLlol4mlz1v2lgsSsPja69fKrw8GXLx0qofWhiBet6OYER/A7dSorfLSPzpb3tUukytwdF8Ej0vjwysTO6pzyNp6ewghhBBi2yoFg3PdzZZZy73/SsEyrBxQr0YpSC2NQ1UUnjraxJ6mStwuDU1VUIBIlQ+v23Hb56dU2hEKuHjkvgYaqv2cOFBH99A0Y9EUL73dQ1Wlj2gszfXBGSr87iVbri133koXJHtbw9RV+YjFs/POUaFg4XRqxBJZCgUTn8eBCvQOz/DOR0O8/E4vpmkyPp3iev80r7zTS+elMUajSeDmRcdYNFX+XKbm5+qNKKNTSe5Gt7K7QTLEQgghxA6xXgvz1uv9NXX++6+0QO92FvEttFSZB0BTbYDqoIdzV8dxO7U7Wrg4t7SjvsrHR9fG8bgcZHN2s6183iSZygHLZ+mtYrnFwfYqxqMporE0+YK15LjmniOXQ8XndTIWTVJVcFMV9PD9zn4KBYuhiQQnDtYzNpXEoaqMTyWxgGzeJFcwGZ9KEvA6y1nlWDxTLmv59ulBwlXpeyp7LAGxEEIIsUOsx8K89Xz/6SlPOZhaTbC+XgH9UmUedVV+asM+Du2puaPzs7C0w+d1ksubODQTtbiphaMYrMLSQf3CwDqTK3B0b4RDe6qpDS/e/aI27OXhw/VcH5zBoSkMj8X5xIMtxJM53j0/RDZnsqshSDKTZ2QygdftIJXNU7rEcDlUHJpqB8e5wrwseelzlcpKtsLmMOtFAmIhhBBiB7nThXnr+f6d493loG41wfpGBvQLu1d0tIQWPe5qulwsLO0YnUzw4qNtvPHBAKqqUOFz8YkTLYxOJpYN6hcG1m6nxuW+KIf2VC87BtOyuDE6y/RshvFoksePNNHW6OHagI9srmCXPZgWvUMzPHS4gd6hGJOkUFWFI3sjqKrd8cK1IEt+rX8a07KwFAcz8Ux5Z7ztvm0zSEAshBBCiC1iNcH6RgT0q+1esdrXLSztSKTzqIrCz/34A8wmc0QqPVQEnMTiuWWD+sVqph2awsXrk1zuiy46BjuIHsXt1Aj6XUxOp3jvwjCfeawN07TI5kx8Hvu9cnmTvc2VPH2sict90XJJhqoo/JUXD1IZcFEZ8JTHF/S7mIql6R9L4HYXUID6Gj9Bv2vd5mKzSEAshBBiR1nPjSnEvWG13StW+7rFSjsO7anhUHv1vO9aXdXy41qsZjo8p8Z5sTHMDaK9bgeRKh/jU0lmZjM8dKie3uEYXreDfMHk8SNNHNVrUVWVuir/yn8vFNjdEOTG0BQAqqqwuyFot+TY5iQgFkIIsWOs98YUYr6teLGx2hIHh6YQqvCQzZm4nCrTs5lbSgFWals3971aagO01HUQi2dXPBemadI9GLtlZ7jFAutI2MvoVHLJMSwMoiMhL0G/i8N7aqit8oIFscStY1pN5j0Wz5LO5Hn0vnpcbi9etwNFsegejAHKLZ9xK34fliIBsRBCiB1jvTemEDdtxYuN1Zc4uPC4HeVNOUrdL4KB+aUAC4PNVCZPvmCiKAqmafKBMX7LltClemegXCc8N0isqXTz3TM3eOlUD3nTwqEqvPh4G8+d3IWqqrf2GbYsurqnluy0sVgQ/dTRZg7vuZmdrqv2z/tcSwXkCwUDbvIFi6HxKRrraymYFu93jdDaEOScMTbv3G7F78NyJCAWQgixY2zExhSbbatk4bbixcaqx2RB73AMs9Q9wbToHY7Bgha7c4PN0WiSqekUDx6s543OfqKzEc52jc57r5ff6eXA7ipGp5LlAFlVlPIucqqi8OCB2nIwDJA3LV461UNHc7i8sG9u5tayrGU7bax14aFpmrx6um/JgHyxz//KWxOEKtz84NwgVSFvuTXb3HO7Fb8Py5GAWAghxI6xHn1st5KtlIVb7mKjNuy9a0H73AuEdLaAQ1PI5m+Oa+4FUCkz2jcaw6GqtDUGyebNm90TEtl52dRSsBkKuDl9cRhnWxXTsxmyeZMrN6Ik0jm8bju0SmXyjEwkaG+sLL/vm+cGaa2rmBck3hiZJZ0r4NBuBp9502J8OkVHS+iWz7fabhyrXXjYPRhbNiBf7L2tTBN5LUhrw2z58y48t9vt4lMCYiGEEDvGZm9Msd4Wy8J9aIwRCrixLOuuZoyXvNjwu+i8PMaHxhjBgItc3mRfa5jj+2uXPNZas96l188mMgxPJjl/baLctzcS8gJ5snnz5pgC7nmZ0Y6WEF29kzRFArTUBkBRlrxQKpUDRGfn747ndKjkC2b552yugKoquJw3A910Jk8mW5j3ez6v85Zd6ByqUhz34taz08b4dKocDJesFJCrhQTtra2cM8aWvLjcbhefEhALIYTYMTZ7Y4r1tjAL53KoOJ0aX3n9ChU+113NGC91sYECHxpjOJ1auUb3vfPDpLMFAovUqa416z339TUhT/k2fiTkxe3U6B2OLShbsC+Arg/MlDOjfcMxHtxfx/uXR6n0uwlVuJe9UAoG3HicGsGAq7wIL5XO8/iRpnIw7nE7eOhQPdNzAmeP24Hbpc071nQsxYuPt/HSqR7795waLz7eRntT8A5nZHUiIS8OVbklKPY4VUankkv+/Vjp4nK7XXxKQCyEEGJH2eyNKdbTwixcqa6ztcEOpu5m3eZSFxvX+qcJBlzlYBjABN46N8BTR+o4f22C2ipveee1tdaezn19Nmfa2c052w5XBT10NFfywN7IvAuguZnRVLbAjZEYJw7UcbijhsPtNeXAbXQqaX8evwsUil0jnDTXBW6pu330vnr2tYbLrx8cj/PehRGA4uK2JlRFYTyaKge/VZVeRieTfP6pPSRTOVrrKzi+v3bRRW0bob0pWA7I86ZFPm/yiRMtfHh1nHcvjCx5MbLSxeV2u/iUgFgIIYTYphZm4XJ5s7zIqeRu1m0udrER9LtIZvKkMvliCYGGU1O51j+NU4Mbo908dKiew+3VHNVr11x7Ovf1LqeKpioUTGvetsONkVuD6YWZ0VS2wLX+aV58rL3cQm1upnoqlmZ3Q5B0Jk846OFy7xSt9UGy+QIup0b3YIyJmcy8z19b5aOpdn5ACJQfUxSFV0/34dAU4sks2ZxJ38gsuxqC1FXN7wRRslw5yVpKTea+9qgeoaMpxNBknETarn1OpPMAS16MrOa9ttPFpwTEQgghxDa1MAunKAoz8eyWqdu0LIvB8ThVFR4yuQL5vEmkykcskSGbL6AqdvB65uIIXreDptqKNdeezn399GyGEwfreb9rZM62w3XEE1m6B2cW7BDnnJcZLWV52xorGJ1KMjQ+S8/QDA5NYSaRY2QiwdhUkiePNpHJFhieSNDWVEllcVyLBe1LBYSlx67eiOLQFNyu+S3fqoOecsZ84flcqpwEWHWpyVLHaawJ8O33+ua9drHPparqllnMuV4kIBZCCLGtlRdU5TzL1jzeq+YGXaZpcuJgHVduRHE6VGLxLA/otZtWtzkWTfHehRG8bo3PPdHOexdGUBWFlKpw4kA9V/rGQXFQMC0y2QKxeIaOltCaak/nZsmzeRNVKZS3HQ76XZy/NsHvf6trXjlAOpMnlSnw6H31/MJPHGV8Jk0k5KWtsYJzVyY4c3GE6Gya4YkEJw7WoyQyWFDMPNs1w6qqlLPQcHsXHsGAm3DQw5sfDNwsJzEtzl0d59CemlsC6eXKSYBVl5osdZznTu5a1cVIXvFydhu1VFsNCYiFEEJsW3MzXWPj43QN5Ld9pup2WZbFB8Y4Z7tGSaRz5a15j+mRDT0Xy906L5UzJNJ5cnmThw/X43SozCSynL8yTiqTx+NxoKkKbpdGMOBec+3pcq+/1j/NN97qtoPhgslsMstLb/fwU5/eT/fgDO+cH+FHP7GXjtYwYNcLlwJFl1PDNC3Odo3wyH0NdA/Gyl0jpovbII9PpwBue8FYbdhLJOwt9z9WgEiVD7dTW7REZGE5SSqTJ5cr0DM4g4U1r+0bLF1qslRZimmZq7oYSaQL26ql2mpIQCyEEGLb2m7N/zfS3HNRCorOX5tgX2t4w87FSh0h5pYzZPMmY9EUHqeGvjvMjZFZorOJ8q5we5oq520usZba06VeP3fhXCnozOdNkqmc/diCIG5uoOh1O4hU+RifSmJZUF/jZ3dDkOnZDPmCxeH2apoigUW3QV4tRVE4sKuKPS0h0pl8uf/xwqxs6aIjnspSV+UjGkszOJFgcjqF06FytmsEv8/JjeFYucMGLJ21XqospTLgYW9LeMWLEb9HQ1XyW6Y0Zz1IQCyEEGLb2m7N/zfSZpyLlS5IFmu99YBeyzE9wr6WMJeuD1FdFZ7XZWI9zV04p6r2sR0OFZ/XCdwaxC0MFCMhL0Gfi/27wzywL4LX5aBgmVQGPOVAsba4K5vdTWPtgXFtlY+njjYvmpW1LIuxqQQfXh3n7KUx3E6VVKZAS22AeDyD1+2gpS5Az9AMCnBUr+WcMUbA68TvcS6ZtV6uJdpqLkYcVoqHDjVum5ZqqyEBsRBCiG1ruzX/X8x6bb28GedisT7IoQo33YMzgB14LVXOUFftZ6A3xuE9HfMCykjIw/h0el1adc1tKQYqFT4Xzz3cSjabJ1zhZl9rmEjIU359KVCcu4lIY42fi9cnmU3lyoHf3pZweYOOxTLkx/TIqj/DUiUfAJ2XRzl/fZLvnenDNO3xVQU9DE0kePrBFgC+/34/qeJmH1OxFE8cbWJXXRC/z0kineP6wAztTcF5bdzutCWaaZrbqqXaakhALIQQYtuam+mC26/l3CzrufXyZmyEMDcIdzlU3C5HsQ/yLOeMsfJnWSrjuFi3gvamIAOjcUzLIhz0EAl7ObCritqqtWeQVVXluZO76GgOMz6dojbkYWgywamPhnBoKjPxbDk4VBQFRVE4pkdIZfKc+mgQy7QXqh3bX4fLoZLNm/My4EtlyC3L4mzX6KJzutQF0MJzNDqV5M1zg6hAoWAffyyaQtNUaiq9xBJZnMUxgV1/bKGQSucZn0nx5W9fmtc947mTu24Jiu+kJdp2aqm2GhIQCyGE2LbmZrouXXFwYF/btspUrWcN9GZshDA3CC9tClLqg7yaz7KwW0EineOlUz0882Azs8k8b34wgGla7GkJ8dTR5tu6UFBVlY6WEB0tIUankpw/fYMKnwtY/HyPT6c5f22CCp+LmXiGbN7kbNcITx5tYqy4oUapDGWxMpVEOseVG9FF57Q27F31BVAsniGdyRPwOtE0hULBwrIsCqaFosK+1jAfXRkvt5mrCnnxe5wcaKviD1++VK6dzpuWvT11c3jRrZiFTQJiIYQQ21opUzXgTK8qiFyvEoX1sN51v3c7azc3CO8enKG1YXZNm4Is7FaQzRXImxZOh8bZrputyNKZ/Losliyfb8silsiRyubxuhxMz6YXXVjncmoo3Gy3BvPLUBYrU8kXTJyO+bvMlc4DrNwazTRNugdjDE/GObI3wgeXRjhxoJ6zl0YwTbss5fEjTRzfX0trfZDZRIbH7m/ELNY2dw9O37INc960GJ9OSUC8DAmIhRBC7BjrWaKwHu6FGuhSEA5wzhhb9rMsvBgJ+h1kculyhwWXQ7MXwRXMcjCsYAemSwXXa7nAsc839I3GuTEyi2VZOBwqj4zXs7clhKqq8+ak1Gliajpl9x5eUIaysEwlkytwTI+QTOfLJRZzz8NKF0CmafLq6b552yg/dayZ7oEoJw810FDjp60hyLHi1s6LXfzMJrLzduADcKhKufOEWJwExEIIIXaMrdambTPqfu/UUgHoSp9l4cVIJltgT1OAtsYK3ugcJJ83aajx8+LjbaTSeTRVwTQtIlW+RVuRLXbMpS5wypu3JDLsbQ1zpsuu89U0hQf31/Hy2z201AXpaAnd8jnqwj4+daKVhmofFf6bn7d0zFDAxXMnWxkYjzMeTdE3PMvIVJLdDUEgT75gzTsPy10AdQ/M8PW3usnmCqiqgsOh8vbHQ/z1zx7E43Iu242jNB4Fi08/spvvvNs7r4a4vSm43l+Fe4oExEIIIbacjSprWCpDN5vIlJ+/m2UUm1H3e7vsFmBJLvVNMR5NEY2ly8FeaevglroAbmcT+UKBxprAvIVwcy9GxqdTDE8keP/SEE8+0MonT7SSTOVwOFSO6hFAoTLg5tzVcdwOlUyuwNG9EcCuo13smLD4Bc7CoHk2keHTD+9molgP3DccI5UtlEsKVjMnC49ZV+XjUu8U9VU+QhVufB4niqrw2P2N1IR9y1403NdRY3//LJNrgzNMzqQBUBXwehx4XA7yBbivo2bV8+J2avzMZw5QMC0iId8tXSZua+7n/H1UVbVc2jE+nSIS8t7xe2w2CYiFEEJsKRtZ1rBYiYLHqTE8meTV0zc2pYxiO6zWL83Jm+cGuN4/jaoqnDhYD9libW9tgP6x+K3Z4TmfqXQxUjBNqircBLxOslk/Bcvku6f7ePJoE6NTSWLxHHtbw9SGfRxqry4HetcGprncF503N6upwV4YNFuWwktv93DiQB2X+6LArSUFK83JwmNmsgVmYmmaIwHeOjdIwbTQVIWGKh8H26vL36O5wfZMPM1MPMtHV8b56Oo4fq+TgNeBgr2JiUNTSaXzeFyOJcsdlpqXTDbP+5fG+NFP7L3j79Vifx/3N7vnlXYAvPDIbk4erqM27N+SF3Qr2b6hvBBCiHvSUlm/sWjqjo9dytCpxf9hq4rCkX0Rzl+b2JD3u1eU5iSdyWNhLzI722V3ljAti6GJ+IpzFgy48Tg1fG4nZ7pGONs1yodXxwl4nXa9bc6cVz6gKAooCl3dU4xOJcnmzVuOW7rAKbMs4skcEzNprvVPY5rmLUFz0O+kKRKg9NDtlBTc0n/ZqbKrsZL3LgyXa59N0+Lc1fElv0eJVI7e4RimZZHK5JmOpXmzs5/PPNaO06GSL5iomsILj+xecmwrzctsIsPoVJKrN6KMTiUxTXPez9aCi4nl3mPu3M6mVb5e3BI7nc0TjaX509eu8IExTuflsVUdd6uRDLEQQogtZSN3XFvsdvhMPH1P7Xa3EbeyS3NS6rpQCr6yOROPUwMLgn4XLqfK9Kzdqszr1hgam6V7cIZIyEtbYwVH9kX40jcvUijYGdRwhZ/vdw5wfH8dbpfGQ7vn10/P/S6kMnmyuQIup8ZMPH3rTnimydBEgvpqH1/5nkEub/Li4208sC8y/66AorCrvoInjzZz8nDDbZ2jhXcapmczNNT4udA9ab8FEKny4XZq875Hc7Ot0dk0wxMJThysR0lkUFWVaDxL9+A0X3i6g0yuQLjCw+G2aq4PzCxaurHSvCy881Hq8ZzOFVZ9J2Sxv4/JdKFc55xK5wF7S+xEMkfP4PbcOl0CYiGEEFvKRndeWOx2+Hq831Zo51bqUvDamRs011VgWXBkbw1PHm1C07TbPm5pTkpdF8ankqiqgt/roCbk4fUP5t+y93ksNE3jv339AmBnYT/3ZDt1VT5OHqonlzfpGZphbHIWt8uJ3hrmAT1yy4Kx0vuORpOMTyWxiseaiWfLtcSlC5yewRnOdo3QMzRT3rntpVM97G0OL7rY79CcUoa1WlgLnC9YtDUE0VvDpLN2x4yFCwEty+L6wAxG3xQ1IQ+5QgGzmNF95L4GPrg0yslD9fSPxnnz3CAuh8qzJ3fxemf/kgHsUvPidmnou8LlzUFcDhW/x0lXzxR7mivpHY6Rypp890wfoYCbPc2V5WPe0gkk4KLC6yRS5SOZyuHzOtHI4XJqZHOF8jkpbYltTiW35cXkhgbEuq7/M+DHiz++ZBjGL+u6/ingtwEv8CeGYfzKRo5BCCHE9nK3Oy+sx/vdzXZuy2WAuwdjvHbmBk21FZzpGqFQsHj/8igW8MzxlnUJACMhL0G/i6N7I7TWV/Dq6T7Mgr2rXCqTp/PyKD/81B7+13cMHMV+vE6HyqXeKc50jTI4FkdVFY7ptXicJn6/nwf2Rair8s97T6vYL3hva4hCwWS2uEnGgwfr+ejKOK31QeqKi/bqqnx0D87Q1Ts17xh502JsOsXDh+tpqQ0wNBHHoWnUVnlvea+1XMwsdqchEvLg0BSGp5Ikkjn8PicNxSx26fvxvTN95RKKhw/Xk88XuD4Qw7KgMughEvLSFKkgnc2ztyXEx1cnSBeDzsUWDC41L4f2VDNTyh4XdxB87f1+orN2Kcn+3VX0Ds9gWnD64jDT8Ux5YeTC7/Gj99VRWeHij75zmXzexOFQ+cJT7XzxEx185fVrJIqLIV98tI3RycS2axtYsmEBcTHwfQ44ip3F/7au6z8J/BbwFNAPvKTr+guGYbyyUeMQQgixvdztzgvr8X53q53bwj61C7flHZ9O0Vx3MxgG+1b2W+cGOdRec0fb9C52jq72RxmNpsrZ24JpUVPpwTLNcjAMsKshyOmLI+xpDpUzmR8YYzy4L8ThfU3zFt/B/AuM6dk00dkMJw414HYqTEynyebNW7KQkZB32f67iy36WyoIXM3FzMI7DaZpMjKV5BvFtmkup8bnn2znfstifDrNmYsjxFM5xqNJ/F4nb3QO8CPPdBDwuTiyN8KzD7WCArF4tlzKk56TgYVbS3mW/+4qqIpCqMLN6+/3kylmmQF+8OEgx/Ra+kZiOB1q+bsKt24cMjyV4jvv3bB3H3RaqKrCK+9088t/5SS/+JPH6B6eoWBajEwkSGUKW75t4FI2MkM8DPyiYRhZAF3XLwH7gKuGYfQUH/sy8EVAAmIhhBBlm7Hj2p2830bWPc/VPRibt7J/4ba8kZAXy6IcDIP92VyOW2tZ11resXipicrUdIrSu2mqwmwiS1Xl/OC0YFqYJnicDoIBl91hIldgd0PFooHnWDRJz9A0bqdKJOwjkytw+sIwj97fQDZvLpqFbG8K8uLjbbx0qqdcYvDpx9poa6xY9oIFVt49biWmafLR1XHGplI8dbSJj6+OE41ny3NjWRaJdI7pWft8D08ksCyL9y+N8sDeCIfaq8pZ/rmZ8qVKeRa7S7BwrLVhL4/eV89kLM3DhxtQVYWewWm6h2LkC/aGIcf31zE9m5m3k94tW1Enc+UAn2LVTTpnMjGT4ZH7GtjTErK/S01bu23gSjYsIDYM42Lp33Vd34tdOvEfsAPlkmGgeS3HvXDhwrqMb7vq7Ozc7CGI2yDztv3InG1PmzVvpuYnOjVZ7jAAdnA4PeWhc7x73d5nMhMgnry1a0F3/ygzY9dxOBwc3F3J6YtD5PMmiqLQWl9BIRdnemqUzvFuVFVlNO6060tNUDQHR/U6GsMKasHuRLBayYKXo3oV07NZ8gULh6YQqnCRnI3yyQcbeOntHvIFC6wCrXV+cplZJtJW+fz4XZV88MEH846pqiqDMR/feruHmdkMDk3hwQP1pDN5UqkU0alJThysY6jPYKBn/libAi5+/JPtDIwl8Lo1rvUM8l0ric+tMjY+fsv4L12xw6Clnhtwplc8Bw6Hg54pF9841cdULIPTofCZR9u5cG2EVCbP4GgU0zRpawgQ9Dp498IwmgKaQ8Wpwrsf9VHjy6AWErech/Y6e55KbdxOHKxjbPA6737kKJ9bh6bw4mNttFVlyefz88bVO+Xmpbf7iMazaKrdsUJVYWg8SXtTBZlMlnQmR8ClEpsewzStW77HLZFmVEzS6dzNY2sKmpmis7MTVVXJK14S6QLTHo2hvtSavkNbxYYvqtN1/RDwEvCPgDx2lrhEAdZ01g4fPozbvf1qU9ZDZ2cnx48f3+xhiDWSedt+ZM62p82cN8uyUNzhDa8hvt4/zbH9SXIFE01V6BuOkcubtLfU0dGiA1AoFHA4nbx1bhCXQyNU4eKhQw3lsYxOJXn39auEq6oZn7bLHb77/jAvPLobr9vHgd1V8zbUWM7oVIIbkzcYnoyRzZu4HCoNNUHq6+qpiZh0tEZIpHPUBL1E42nOXBydd3609BBHF8zZ6FSSl79+nkQqh9tlhykfX5+wM6l76nn+sX23ZCFLGdOh8VliyRzjM2kyOQuvp4KBSYuH76vF7Yvj0FS8bvuYqqJwYF8bAF0D+VsysQf2ta0qQ3ytf5rXXv0AUFEUhVweXnm3ly9+Yi+D4wne/NBuE5dM5znYXsWRfbV0dU9wqD1C/0iM+kiAUFUde1vDtxzbsiyOHmqfl8m/PjDDa9/+AIfTDaqJaVp858wQv/iTx+iYc4zSuBxOBxV+iCdzvPxuLz/2TAf7WqtJZnJ0XprENC3qa/wc3tfIcb32lu/xroYwP/pJ97zM+wsPt3D88C5UtY3Oy2OcLb8+z0OHGjdtK/TlZDKZZZOqG72o7jHga8A/MAzjj3VdfwpomPOSemBoI8cghBBCbLS7UfdsWRbReJrhyQQ9QzFUFU4equfA7qp5fWo1TeOZ4y0caq9ZdCyl8o5UJs/4VBJFtR83eqNcuRFlT0uIp442ry6oseD60AyJVM6uIS6YnL8+gcOhMjqVLAe+7c2VQCUtdcF5Y/rgg4FbDhmLZ8jm7J3ubozMlgOz3Q0VWMUc2rX+6fIxLMsq11XHkjlSmRyfeXQ3V/ui5PwuKiIVvHq6l8aaAO93jVAV8lIX9s2rdS0tTEukc+QLJo8faSIS8qxqXsank8TTOTLZAj6Pk3gqSyZXwOlQuTE6y+R0isoKN163xuWeKe7rqOGTJ3Zx9uIIgYAbv8e55CK0xcpUxqdT5f6/pZZniVSO7uEZ9hR32pv7OgCPy4FDs3sbV1V6aWuo4CuvXyMc9OB1OQj6nZy5OEpLXXDR7/F9pklV0MONkVl8XidXrg9w7kqIlrrAltoK/U5s5KK6FuAvgJ8wDOP14sOn7af0DqAH+CngSxs1BiGEEOJu2ci6Z9M06eqZ4luneqjwuji8p5pMrsBsMkddtZ/x6fS8oHe5sZRadWVzBSzsnfrGokn2NFViAelMftVBTSyRpSrowet2kMsVKJgWfSOzJFL27fWFAdJSY5pb06woCi6nxshkgpqQHfA6NJWBsTi7Gyr52utXcWgKkbCXSNgHFvQNxdB3hZlN2gHtG50DPP/Ibkankrx3YZj2pkoy2TxPHG0ilzc5eahhXquxY3oEy7K4ciOK06Fi9E7hdTtWvCiwLAuPSyOdLZDLmTg0e8tpAK/HSTSWJpbMksrmaa6twLTA6dCIJbI0RgK0NlQUP8P8LamXU1okmMkWcDo1LNPC5VRRsBd3ls7vwkWGDk3F49TYXR+kfzzOjZFZLG72TI6EvOU684XzNDGT4f1LYzf7LscznLk4gtvZdM/08N7IDPEvAR7gt3VdLz32/wI/i5019gAvA1/dwDEIIYQQd81G9CIudZa43Bvlcu8USjFb6nI5GByL8/HVCWKJoRVLNEpjm01kuK+jhjMXRyi98sH9dfQNx1AAl1NbdVAztw9uPJVjZjZDKpNjJp5hajZDJORd8VgLW9Z5nBpHOmq4OjDN5Ewaj0vlkydasUyLiZk0XreG26XRPzrLV1+/yq76IKEKNz1DMSamUygKHN1Xi2mZWBbUV/vYVV9BNmdnlxOp3C3B5/h0utyzt7QByJvnBmip9YOiLjqfpmnyoTHGaDTBp0608vLb3STTFg6HyjPHWxgcm6Vg2SFnLm+SL5jk8gVM02RXc5jobIZLPVFGJ5N0dduZ44ZqHxX+5b837U1BXnh0N1/7/lWmZzM4NZXnH2nHsqB3cAawF9TNXWRY6kjy6Ud2k80XGBxPoKoKBdPCAsankgT9riUz1UstGs0XChvaM/xu2shFdb8A/MISTx/ZqPcVQgghNsNG9SIudZboaAmhaQqFgsX0bJZcIY3HpeFyqiveql4s6HzqaBPHD9SSyuR57cwN0tkCkSrfLRtKLKfUB/fNcwOMT9ntxE4eqqd3KEY6WyDgdS5bEgA3W9bZC/I8ZHMmLpfGC4/sIpUuEPC6+MGHAyTSecL905w4WMd0LM37l8ewLIWWugre+XiQfa1V7GmqJJXJc7V/ikfvb6Am5GNwLM5b5wbLC9MeOlRPMOCaN4ZSwFeqqbYAn0vjA2OMeCpPJlvA7dLY01TJUd1u1fb2x0Nc7plibDpF38g0n3+qg0y2QG2Vl7c+6MftcnJ8fy3vXxolky3gdTs4pkeIhH2k0jlOfTiIaVp4PQ7iqTSXvmvwxNEmJqbTi35v5l5stdUHeP7h3cSTOXwelbGpNN881cPh9hqqK73l33/u5C46msOMTyfRVIVr/VGuD1pMTad4+ngL750fIpHOo6oKR/dGlmyXttRmOY01gbvaM3wjyU51Qggh1s1W2K3tTq32Myx8HVi3VU+50vtNxlLlYPjZh1p5vXMAs3iL/cTBeqZnb7bLWioTu7DtWDpX4EzXKD/6iQ4A3A6Nc1fHcTu1NQU1pdppt1Pjo7AdTGdyebp6psjlTdKZPM8cb172WDPxNIpiURPy0Ts0g6apfHxtnMePNOHSNF57v99e+FXtY3rWvlX/4IE6ZhM5wCKdzXFfRy3vXRjCoWk4NPjhpzuIp7JEQj4udk9gFssGTNOidzgG85OdBANuLCyqKtxU+l1oqkLA46R7KMb5axMoioKmKqQyeZpqA2DBq+/1Eapwc6l3iqP7Irzybi8K4HFpfPqR3bz90RC50TifeLCFcIWHqekU1/qn+cCwP5uFPYxSLbcFZHPmot+bhRc0Y1NJfB4H569PsH9XmHNXxjFNSGcLt/x+R0uICr+Lb751HadT461zgwyMxXE5VV54tA3FslA1lUN7lt65b+HmNaULi9oqH7VVvrvWM3wjSUAshBBiXdzN3do2ymo/g2VZnDNGudQ3TSqdw+tx0lTjw6EpZPP27mChCjfZnMnYVHLZoPqcMcb1QXthmqoqdDRXFvvGqnb/2lSOs5dGyedNKnwOXnhkN5Zp2QurMnmyebsUYLms7tJ9krPsbQ1TG/ZxaM/ii/CWO1elQN7rdhBLZJmOZ4glMhzYXYVlgb47XN4MYrHfTVs+zNkM1ZVeLvVO0dVjdz04eaiBvtEYJ/bX01Djt7dCdmlomko6kyeZyeHQAFSqK3188wfX0VSVyoALn8fJV1+7yslDDXzjRg9PH2vG43IwFcuUt1SOJbLUVd/s9xsJedhVF+R7Z3t58EAD+XyBvS1hfu9bXaDYZSQF0w40j+6rJV8oMBpNUV/jw+9xcvbSGPt3hXE6VCp8LhqrfTx5tAkFhWQ6x1dev0Ihb9FQ48eyYGQygc/tsMs3imULlmVRME1Smbw9xjkXNwsvaDRV4Zwxxv17a7Esu8ezpiq4ipuhmKZJz+AM3YMzRCo9ZPMF6qp9vHVu0L4TEPYyHk3x+tkbPHtyF22NldSGfbfMz9zvw9zFdtNTnnl/J+5mz/CNIgGxEELsUOudzb1bu7VtpNV+hrGpBO9fHuPNDwYoFCw0TeGpo83lQMPtcvDWOfuW+Gg0SSZXWHIDigvdk7x1boB4MoemKUwfqsft1Di2v46xaIrLvVM0ReyOC7PJPC+93cPf/vxhfF67MwCwYlZ3qVvepQB6rQsCFyvBaG8KcrFnioFRe2vmEwfr6R+ZpWcwRlPtrdnOD40xCmaei9cvEY1nSKZzPHigngvdk3x8bYLnH9mF3+skXOEpjzsS8hKdTVMd9PLph3bhcjvwuFTaG0NMxVJUBT1c659GVRUUxZ6/l97p4ac+vZ+COXPL5y4Zn04zPBnn+P4GXnq7m1ze4sTBFAGfk3Q2T75g4tBUTNOum3VoGi6H/fOe5krePT9M5+UxKgNOnjzSjAWEgx4+MsbtMpe8Pf7B8QRtjUF6h2Z46HADV25E8bo08nmTQ+3VfHRlnHS2QH2Nn6D/ZlnHwgsan9dBYySAqgKWgtup0hgJ4PM6wLIYmkhwtmuErt4p8nmTp483k0xlGRiLEwnbm7c01Pip9LvoaK7kgX03v5vLXRSWviOd493b5iJ3tSQgFkKIHWgjsrnruVvbZpVerPYz9I/Fy8Ew2DvDvfXhIH/r84fJFyze/GAA07SIVPlwO7UlLwzGplK88/EQ8WSufJzTF0dob6osf37TgpbaAJV+N6lsHq/LQV21n32t4VvamK32lreqKDx8uB4si6s3okv+/lLzsFgJxsBonE8ca6Yu7MPlVJmezZSz14tlO2tCHr797gBOh5NccRORc1fGOLa/lqs3psnlTWqrbh3308daGBmPURl08/I7vezfFebGaIzmugo0VUHTVJwOBcuCXN7EqalksnlSmfyiLdWsYglCc22Aj69OoigqBdPuVjEaTdBUU8HQRAKv28HuxiCNNQFQ7FZtUzNpegdn+JGn7dKTkN/F8FSSP371Ch63g/7RGD/8VAcul0Y2W0BV7G4PoQo3J/bX8cyxZoYm4ui7qnjr3ACpbAFNVdjdEIQ5U7HwgsbrdlIV9HDyUD2xeIYDbWHOX5vE63YST+aor/bRMzRDvmAym8zyyru9/JUXDqCqg4xHUzTU+Knwu4iEfTRGKubN+71wYXs7JCAWQogdYmFrqw+NsXX9n95KWci1jHOzSi9W+xnSmQKlzbg0TaXC58SyQFGgo7mSKzei5dvzsPSFQb5QsHdym8M07UCuFISqioIJBAMugrhQFXvx2XJZ3ZVueQcDLvpHZ/na96/d7OywL0JlwEVlwEMk5GE8muTDq+OcvTSG26nh9zjL87DYhYOmKeRNE49Lw+d1kkjlFt1mufS72ZyJZdrnLFcw8bgcJNN5CgULl1NjX7GUozZs16jGExlS2QKxRIZdjSG6B6I8c7yF81dHefBAHe9fHmVfSxiXU+XI3ggXr0+QyuRxOlSqg2487VXkCxYT00k+vDJeXhzXeXmMN88NMDgWp3d4hhMH6+nqnuRi9xRH99UxMW0HkE5Nseuhi+f7cHs1EzMpHJrKq2f68Do1njreTCKZ5WB7FWNTSQomvHq6l2eOtfDqmRuYpoXP4+DZh1ppL7Z9iyWyxBJpXnisjdl4loqAi+HxWWLxLLVhH2PRFDPxNCcO1tkZ5NLmGI/uLs5nlmDAxSOHG4klskzMpPnK9wxS2UK5djqfN5lN5vjkg628d2GYymIwvNhdhbu1DflWIwGxEELsAAuDzNlklsaagB2YFLN4d/o/vcWykLez4nwzM1Sr/Qz11T4aqn2MTafwe5yMR1P4vA76xxLsa5l/mx8WD6pN08SpadSGvVT4nEzNpMnmTeqr7d66pUB2red0Nbe8R6eS5V3jXA4Vp1PjS9+8SEONH7/HyaE9VUxMp3jlnV5M0z4v4aCnPA8LLxz8Hgcet4MvfbOrXGLw2cfbqfQ7aamvLGdkS+3OGqu91IT9VIe8qKqKptqBYYXfSX2VXX879wIoEvJwzhjlpVM9TCeypLM5Pn1yN+9fGuahg418eGWUg7urOLynhkfva+Sr3zeYjKVxOBSeO7mLS71R9rWGGZ1KcrU/iqaqKApU+NzFfroafo8Dy4T3u0a4f2+Ei91TdPVM8MVP7uNa/wz7doVpqPaXx3RUr+X6wDQ/ODdIddDD7oYgpz4cYiyawu91cKQjQkdzJVf7p5meTfPA3ho6msM4NGVeXXUw4ETTNP7nNy+Sz5s4HCovPtZGMOAol5YEAy5yeZMDbdXUV3kJzGnNVgqaYwn74kfBvqACUIubrjgcKl6Pg8mZFM+e3MW+lkr8XjemZTIWTc27O7Cai0JVtTde2e4L6eaSgFgIIXaAhUGmQ1N5v2uEJ442MRZNAXfeP3S9dmvbjAzV3IxqS22AlrqOYuZt8c/Q3lTJc4/s4vSFEdwujX2tIQ611zCbyDAwNst9HdWcvza5ZHlCTaWb7565wWtnbtBUW8HprhHqq/24HQr37YmwpynIbDxTXhT1o5/YQyyeW9U5XeyC4kNjjFDAjWVZBANuZhM3z3Gows2rp/uIJ3O4nBoDY3H6R2d55L76cknIWDSFpqn4vU5i8QwdLSEePlzP9cEZMtkCjRE/f/HGNfIFOyOsKgp/8dZ1fuo5nbNdoyiKwjE9wodXxukfjWFaCqcvDNNcV8G754dprQvSGAnw4IFaHtgbobbKP6+mtat7iq+9bh8/nsxiWfDKOz380OPtfOtUN599op2X3+llb0sYn9vBEw+0kM0VcGgqb388yMR0mtoqH1//wXU++3g73zvbS03Iz56mSkajSSIhL8GAi7amSm6MxnBoKpZl8uTRXbx1boDZZJ5I2EuF/+bfD0WxyzLqqv3s313Fmx8MlO8IZHMmpy8Oc+JAPQ5V5VB7NR63g8mZNE6nxvlrE+W66tl4jtfP9pMvBrH5vMm5y6PsbQ5xY3SWXY1B3uzsZzKW4b3zw/zkp3UCPpe9W5/fxeB4nPcu2G3rwkEPTREvn35kF995tw+wF/l94kQLo5MJ8gWLPU2V5Ar27n6L3YFZ6SLMsixG407eff3qtl08uxgJiIUQYgdYGGR63Q6qQt6bmaRV1pSuZD12a1tr6UV5w4mch9FlOjos5XZKNFRV5dkTrWDBd97rAxQ+vDrOcb2OgbFZPvt4Oz/6TAexRPaW8gRVUdi/O8xrZ24QT+e5MRLj4UP1FEyLJx9ooqXezzljgpdOXSxvqPDi4208d3IXqqqu+HkWznUpA/yV168Q8DqJJbIc6aghncnhLpYpxJO5cmuxQsFkeCKB06GV+x7bHRAs8gWzPA+mZXFjdJZ0Js+VG3YGtrrSQyqbx6FpnLkwRCpzsw1YOODmQvckF69PcKV/GlWBh+9r5LH7G1EVhceONFLhc4Fy8zPaczPK1f5pJmZSeN0OTNPOMueL48nmLfIFi888upuPr47z4MF6vnWqG6dDZf/uKpoiFTRHKrAsExWVP3/jGp99Yg89gzM4HSpT0ykCXidet5NKv4sDu6o4vKeajuZKzlwYJpk1cahKsYRjfma+9F21LLt0Jl8waaj2M5PIkMuDhcXD99UxMZOmb2QW07RwaArtjZWMTc4Si2cYnUricmlUKC5M06K60s3Btmr+89c+JpMrkM8XeOHR3Zh9UdLZAl09U7x7wc5qZ3IFIiEvXreGqqrl2vUj+2r4mc8coGBaRCq9VASc5QsqLKv8XSzN49w7MCtd2I5FU5ztGiVcVb3o729XEhALIcQOsFiQWRf2cfJQQzFreGvQtllZn7WUCcwNZsfGx+kayK953LdbojExk+Fij71z3PBEAsuyOHtphIcO1vO+Mcb+tmr2Fm/Tl8oTSsd/69wgzXUVXO6LksoWuNwXBeCR+xqZTRTKu4sB5E3L3pijOUxHS+iWz7+wVnjhXIcq3Hy/c4DGGj/9o7NEYxkGRmd57uFdnLk4woHdVTgcKlVBD5lcAVVV0BwK+UKBEwfqOXtpBNOEoM/Jkw80MxNPM5vI8qFh9y12OzWis2muDcwwHc9w+uIoTofCZx5tIxxwc7U/StDvZmzaXkDodmrluul3Ph7iiSONKKrC19/qpibkLc53HS11FYxNpfjemX7aGitwOtRyVhYsXC4Nn8dJOOimrbGS1870EY1nmZpJcWBXGI/HyftdI2TzFqEKFy31Ffg8GvFoloJpURv2Uul38fSDLcwms2SL7cjamyqJp3KcM8ZwOh1Ue1WeOtpMZcB1S3lB6bvaMzSDpiok03kq/E5CxYuGBw/W43EqXOodpvPSKIViQKwoCg01Pq4OzODzuHj0vgZm4lmu9Uc5ptfx529cw+91gQXZvMnL7/Tyhac7GJ1K8v6lUVrqKnA7tfI22595rI2X3+6hUPzOTEynef/SGD/6ib3l73Bdlf2duXojuuIdmOUubGPxTPl9lvr97UgCYiGE2AGWCjL3FBf2LBa0bVbWZy2lF+tRb3y7JRqxeAZ3ceGcaVmYxX6yHrejvCiursrHTDxNIp0jmyuUF9q5HBoL3hKHqhAJeRmfTpWD4ZK8ae+iNjcgXiqzfUyPzJvrmXgWl0MlkcoRjWUYn05hFe8EHN5Tw+6GAD8R3MepDwdBUchoKicO1pHNm/SPxDh5qIGWugBel4NTHw4ST+fAsmhrrMTlUMnmTcyCxcD4LKEKOxDM5S3ePDdA8PE2/B4nmVyhXNvqdmqoqr14sFCwCAXdfPf0DQ62VVMw7Qx05+VRxqdTxGYzXBuYJpPL8+JjbXz7vV4CPie5fIHPPLKbyz2TfO6Jdj64NMz9eyNkcgXaGis50FbN//jGBbweJx4Lgj4XF65N8JnH2phN5mio8jAxo/GH374MFtRV+3j6WDMHd4f5+PokZsHk2ZO7mJxO4XE7udYf5eylEUIBz7wLrpvf1QBBv5PvneknmcmTyeZ5YG8tr525wSdPtPKBMVYOIvMFu/f00X0RBsbinOkaxTQtqoIe9u8KY1kWLpcDt0vDsiySGXvr50yugKe4i6DLqQHFbbZNi2QqVz7+Sttv3+ni16Dfhao5mYnf7Ou8XbdrnksCYiGE2AFWCjK32sry1ZZerMe4bzdACPpdZIqttDwuO+upaQpOh0qhYNfqmqbJ9GyGkYkEFqAqcLC9mnCFm9a6CgbHZomn8+WyiLbGCtLZPKZpYVoWDs0uH3CoChU+57xyluUuBkpzPTIxy2Qsg9E3haYp+L0OXK4ALoeKqqm80XmDTz/cxmudfbTWVYIF93VUUxt201pfyaG2ahyahsel8gcvX2J8OsVYtNjvd2CaZ0/uIpsrkMrmUVBwuzQCXieqqhBP5ognclgWHN0bYXdjRbkdWGtdkIGxWZwOFU1Rqa3yMzmTpDLg5rXOfmLxHC11AR4/0ojbqfLx1QnSmRwvPNKGU1PYVR9EUU1OHKhHVQo4NIVvvNVDrmBimn38yFMd1Ff5icZSVFa4SaYLXB+aIRhw0zs8ww893s67FwbJ5038xQ4hb34wQDjo4e2PhrCAdCbPvtYwF7onaG8M0RypwOVS+dAYm3fBZX9X/expCjFzMEs2Z5LNF/jo6jjxZI5cvoBlKTgddoBrAQGfi+l4ltMXRygU7BKQZDrPxEyah+9rIPTxMHnTwuN2ELQgVyjY5SgZu0dxqVbZ63ZQX+PH73OiqUq51d9yQeqdLH61LIvB8Tj1NRV8fH3a3kGwxs9nHt29LbdrnksCYiGE2CGWCzLXq2Xa3bYe477dTg6D43Gqgm4+vjaO1+0gmclzfH8tl7on+dxTHURCHt67MMz5qxMc3lPNheuT7GoI8v3OfnbVB5mOZ3jhsTb8XifVQS9tjRWcuzLBxesTPH2smZfe6cHpUAl4nHzyoRY6L40ym8qVxxf0O5e9GKgNe7l4fYKX3+mhtT7IB8YoDk1jJp7h2P5aaiq9tD3cSvfwDA3VFTg1FaN3CuPGFD/17H5UNckxPcL4dJqL3RPEUzmmYmksy2ImniFU4SYaS5Mp1tg+fLies5fGSKTsnsp+r0Yw4KahNsChPdXUhn08/8hu/vz710CBQ23VHGirIlThJp3Jsbuhkh98OIjHpeF1q3hdDs52jfKFZ/by59+/wlQsy3fe6+XkoXr27wpTsDT+7M1r7GsJ8RdvXcOylOLGGRbGjSiKYtf1gsLIZAK3U6Om0s3ell3Ekzk+/2QH3zvTRzxVYHAsjkNT+eDyKMcP1JFK53A6NBQFPvfEHr535gYfGGM0RQIc1WuJJ+ztsmfiaVRFxd6EWSEWzzA8mWR6NoPH5UBBQdMUWusquDESI1+w+y2HAm5y+QIUnzfNmxdTFT4XLz7eVi6bCfqcfPqRvRzYFSbgd9HWGCzfzVEVhc88upuWusDN7bcdKplcgaN7I4BV7uxRUr44rg0wNBHHoWnUVq0umB2LpnjvwggzMzM8ebSJbM7E7dJoqau466VV600CYiGEEOvWMu1umztuWHnHtqU2mlhrd4yxaJLrgzOoqsILj+xmKpamutKDz+OgodpPQ7WP8ekUXT1TvPXRIG6HxtMPtvChMUZTTQCf24FlweXeaLnO0y5bsc+/37L4mRcOYFl239poLEMmVwBuZoKfO9lKJlcgncnfcuvasiyuD8xwY2yWlroKZuJp9jSHwLJoqm3g1dM3uNg9wRc/oXPm4giZrInXbe+OZ/ROkc3nicZSfPu9PruHbcIutaj0u5mOZ8rdHtqbKgkF3LicGkMTCS50T5LLFXA4FJ5/eDcBn4PakJeZeAZQePS+BtxOjdMXRmhrCnKpZ5KJmRT3ddSQSNmbYbicToJ+L1f6o5gWhCqGeexIMxU+B9HZLIpikcwU+MGHg2SzeapDHj754C4cmsLZrhFGplJ09UzyQ4+303lpjHQmj2VZPHZ/E5UVbv7izWvk8nbd/CePt3Dq40Gy+QIVfgcBr4vvnenjyN4IZ7r6qavyY5kWDx2q53LvJFOxDO9+PERHcyXvvdXNVCxNNlfgyN4IqXSOcNDDuxeGic5mcToUvvD0Xqamkzx6fz0uh0rBstAUhZOH6+kdmiGXL5DLW4QCLip89qI6TVV59qFWOprDjE+niITsi6WJmYzdBaWugpbaCmYSmTnBuMrTx5s51F7Npb4pxqMprg1Mc7kvumRNff9YfM29vkt3ZDLZQrk7jf14lroq/5K/tx1IQCyEEHdos3ZVu13rFRRuBXPHfemKgwP72pYc90rdJEpZ1bFoym5ptczubRevT/LmBwNkcgWS6RwnDtTz0ZVxHrm/sdi5Q2EimuL9S6MUChbJQp7+0Vl6R2bpaK7EWawBnZvRnVv+kcubjEwmOds1QjjoIRpLc+JgPZAnmzdxaAqDY3EiIa/9eebcuo6EPHReHuWVd3rpHY5hWRYP7Kvloytj7G4MYpoWh9qqcLtU3rswZC9wU+w65fcvjfD0sSbSOYuvvWGQzRU42FbNgV0hXnhkN986dZ3KgJuZeJqjei29QzPcv7eWP3/jGmDx/MO78LgdODSF0ckEw5NJTn00jM/tRFXh6eONuBwOWusrSGcL9AzOMJPMcfJQPR3NYfqGZ6kKerh8Y4qCafdINi2Lb5+2d1obmUgyOZvGQiGezLK3NcyXv32ZaCyDQ1N48bF23rswVKybVnj2oRZQFK7eiNLRUsnZS6Mcaq+xM8govPJuD595rJ2XTnXz/MNtvP7+DQ6113DuyjimCdcHpgkHPfzZG1f56ecPcKlnktlkjo+vTXCpd4p4Mmt3vCiYHN0X4WtvXOX5h9voG4nhdKi8c36Azz25l1Qqy+MPNHG1P4rTofHKez08fqSRx480cvbSKG6XRiye4cjeCG909jMdr+X4/lo6WkKLfm8fPlxfvDAaJZHOlXfg29daSVf31Lw7B4tuPX6btfelOzJzbYc7SashAbEQQtyBzdxV7XasJijcbivFS+MecKaXHfvYVJI3zw3My6jODQIKhQJvnhvkrXODuBwaoQoXDx1quGUux6Ipzl0dL7bQUnE5NS52j/P4kWbeOjeIz+tkJp5lT3MQv9tBJlcglc6jFtuaOR03d7CbG0wE/a5yxnd3Q5B3zw9jmhZel4NJ0+Js1whPFvtG+30ufvDxEBU+5y23rsejKV5+p5fp2QzJdB7TsjD6pjh5XwOvvtdL30icWCLDcyd3EYtnaamrYHgiQcG0MC042FbDH7zSBZbCofYa3r80wtmuUQ61VfHDT3WQz5uMTadJJDM8eKSR753uY3giSTyVLWdwP/ngLlxOB0PjceLJDLOJLLVhD1f6YrzeeYNoLIPLoRazuCO8f9nuk/z0g810do1SKECFz8knHmxlejZNR3OI8WgSVVMx+qJYwL5dYb51qgfLgoDXSTyV45V3uvnckx1Ypr3IsX80zkMHa0mkcnz73T6uD8ZwaAqP3NfA+WsTOB0aHpfGp060kskWGJlKUV/tZzaRs7ttqCrhgBufx17Id7Ctinc+HmE6niFZDERVVWVoIsGDB+pIZwoMjM1y/toELqfGA3sjfOedXvbvruL1zn6qgh40VWE6luW7p/v5yef2cbCtmst9UYI+J+msfcEz93u5WPB6fXCGG6OzxBJZxqeSWMCfjhl88VP7cGgK2fzNgLh00VW62IvFM6SzhSVft9zfodIdmVfemih/f7fDnaTVkIBYCCHuwGbuqnY7ttt414tlWVzqm+J6/3Sx2hMiVT4iIS+xeIZIyMNb5wb5UnG3MEVRaK2vALjl3JS6S0SqfIxPJfG4HOxrDXPlRpTa4oIm07K4cH2Kw3sjnL04gkNTGZqI86kTrcRTdteHcNBDJOwFy8I0TQbH7Yzvx1fHaW+spLU+SE3IQz5XIJMvMD6VJJszmYrZgf/wRIIh02IqliES8hbHliWeyjIykUBRFSJhL6NTSRpq/Hx8dYJwhZepWBoU6Bmcob2pkqHJhL1BRDKLqijEUzmyWYvjB2rIFwr80OPt5PNmuV3cDz+9B5fTgddTiUNVGZ9JYVoWPq8Tr1ujoaaCtz8eIpc3mU1lOdxew9UbUY4fqONbp7pxaHb7tEze5JunrvOTzx3g+539VPhdjEWT/PBTHZy5NEJNpY9XT/cQS+Ts7Zg7Ipy+eAOnQ+X8tQnaGoKkswWcmkomW7A3HsEO2qor3VRXeLBQiSUzfHxtnAq/C5dTxbLgvfPDxd3oJqiu9HJ9YAZiaUrt3DQVMrkCfq+TmUSGqVgG40aUfS1VPHJfPSPFftexYuCczORwOlV7sWLxwufovgi5gsne1jDhoBu3SyMaS9NcV0FlscwkGrNbwHV1T9LWVLnoVt+LLRzNZAskUrlyMAx2hr97aIZw0O7HXWJfdLn46MoYw1NJEskcHreDcIWL6Gy2vFPlajK9pTsyVqaJUFXdtrmTtBoSEAshxB3Yat0ZVrLUeIfGZzesVMI0TboHY+V6yPamIKqq3nGpycLfX2rTilI9bTSWYf/uKnqHZgCoqnAT8DlRFIWewRgfXZ0o7xZmWRY3Rmap9LtvmcvSbePd9RWc2F9LIp2jMuDmg3SWxmo/FuByqkzPZmhrDDIVS5PO5PG4HZw4WEtTJMCF7kneuzDC+esTvHd+hMeONGD0RtE0O+P2gTHG4Fgcv9fJI/c10lTjJ+h3sX93GLdLQ1UUFMDt0qgLe6kN+/C47cedDg1VVcptuJoiAQJeFwFvDo9LI+h3AXBjNMa+XWEmp9P4vU4iITv7F/A6iYQ9VFd6GZpI8M0fdGOaFntbQjxzvIV0Os/wZILeoRks4HB7DR9dGSeVLbC3Jcypjwapq/Lj8zgYnUpwtmuEEwfryeYKpLMFKv0OFOwALFewSKTtRXi5vImCwsBYjD1NlfzhK5cIeJx8/sk9qKpCKpOjtTbA9aFZMtk0mZxJwOtE01QUoGBaZLI5RiaT/NGrBl94eg+qCgOjScanU7gdGk2RADdGZimYFpoKLzzSRv9IjMaIH6MvyuefbMfj0mipreDDK+N20Dmd4sED9VzonqBnMMYLj+7CshTu76hhbDpFV/cknzrRSiKR5QvP7OV7Z/vwuR2EKtyc+miQa6rKfXtqqPS5KHgsRiYTmCYk0jl8XidmwZzXOQIW3DlYZOGo26WhAHP/Jmuqgs/tIBL2Mh5NzbsDhGVyqS/KS2/3lLeHfv7h3TTU+Ogbia8p06soCmohwd7W8Iqv3U4kIBZCiDuwnbozlFabhyvcOB12wJbN2xnHawMzjE4l173kwzRNXj3dV14xX2ov9uxDrZy7MnHbpSaLlX601zmxrJtbDduBsr3hyHfP3GBgLI7LobKnOYQKvHNhmNa6CpIpu0TB7VTLO7OV3iObL9wyl7VhL4/eV8+lvih/9F2DQsHioYO1BP1uXnq3B7dTw+9x8tCheg7sCnNgdxVjUynyhQKNNX5iiSxG3zSqojAwMksqW2B6Ns3Dh+vJ5k3eOjeIBYSDHpLpPGe7RnjqWDPH9tcRCrjsnc0cKo/e38BULMOF65NMxgapCrrtneR8bj71UCtvdNo1ztlcgd0NFYxPJylYCuNTSWaTOTRVIRrLUF/jo7EmQCTsxe9xcn9HDZ9/cg8fX5vg7MUR8gWLyoCL6pCXr//gOrUhHyNTCR46VM/IRILBsThPP9jCG+/3k87maYxUoGCyuyFIUyRg71yn2r1xAz4n+UIBj8dBOlPAqdlB3MOHG3Bodka7fzROTaVdk9tQU8HL73STzhRwuTQ+/8Qervbb7dNOfTTAcydb+cG5IbL5AplsnhcebefMxWEy2QLfeKuHZ0+2Uul3MTaZpLLCQzyZZU9TJfmCyZG9tbz5wQ0aIxV2gFyMML/+gx6cmsp9HTW01ga4MRan8/IYANHZDKDy1rkBTAuaIn6eOtbC4NgsnzrRSs/QDD/y9F5Uxc5CFwoWuXyBi9cnuH9vBKMvikNTcXs0jum1XB+I8vknOmipr5jXOWJucLrYgtc9TZXUV/v40+9eIW9aaKrCiYP1xOJZnjrazIHd1fMuND80xsrBMNjbQ3/7vV5+4SceYP+u6nsq03u7JCAWQmx5W3nR2nbpzjA3gByNJpmaTvHgwXoy+Qy7G4JEY2lg/Usougdji+661lxbcUelG4uVfpztGuXowbZ5q+frqnxc6p3C63JgmRbZvMnQeJzm2gpqwz7CQQ+mZfHxtQlCfld5Z7ZCwcLhUHnyaNO8uSx9Fy3gvfNDPNARIZMvUBf28875IdRiP1mnQ7MXtAEDo/Z4HJqCx+3A6Jvicm8UVYUHD9Rj9E7ROxzjyaNNxFN5FEXB73GQL5i01AZwOlQ6mit5YF8tY9EUHqdGMODC73HS1TPFbDJLVYUbv8fJWx8M8sTRJvI5k888uovp2QyKqrK7oQKvx8GbnYP4PE48LgcHdldx/to4iXQel8POLvcMxmiqrSBUYd/S93qcKJk8e5tDnLk4Qk3QQ1tTJdUhL5lMnkjIy/nuSWKJDM8/upuakIf3u0aoDvl5+6MhYoksbpddK1wwC7zw8G6+e/YGmWyBCr+Tzz3eTn2Vl3g6x+XeaRwOlfPXxvjcE3voaA7z1e9fIZWxu2vk8yavvX+DLzzVwQ8+GiSdyaOqCn/9c4eYmEkxE89y5uIQk7EMlgXxVA5VgZff6+EBvY6Pro4RqnAzNBnniSNNvP7+DXY1VNI9GOWBfbUcbKvi9751kXzBzjZ/dGWC0xeG+ewTe3BqKrFEFq/HQSabJ50toCiQzhZ468MBjut1eNwOPvnQbmLxDJMzaabjGWpCXm6MzJJM57jSH+XJY03lDVqmZzO4nHZ5zfH9dbTUBRf9b9xSC14ty8LjcnDlRhSnQyUWz/KAXkttcfvluX+PZlPZcjBcks+bpDJ5Thy8tzK9t0sCYiHElrbVF60t151hKwXycwPISMhLwOtkaCLO8yd3cfbSaLmOENa35GOpXddGo8k7KjVZrPSjYFoMTcTnBcqZbIGRiQRtTZXlmt9E2t5JrMLvKt+mDngdtDZU8P33+3noYD2WBUf21vDk0abynJW+ix8aY+xqqODk4XoUVCZmkoSCbg60VeF0aOUOFVVBD8MTifJ4QhV2nbKiKLicKulsgfcvjXBMr+NC9wQ+jwNNVfC4NK4N2BlkVVVobwxS4XNyrX+aCr+T9qYgF7unCAZcJFI5HJpKqMJNPJXnxmiMYMDNxe4JXnysjeP7ItTWVBAJefjwyhgdLSFGp5KYpomFhaKAqim4nSpVQTcVPifX+6fRHPb3N5cv4HCoOBwqPo+DfbuqONM1QjyZAyxefKyd6qAHt8vBd0/f4NEjDextreLlt3txuzQqLCeVFS6u9E3x+APNKAr8/BePMBpNoQDnLg8yMRPk/LUJsrkCe1vDPHG0xb6boClkshY+j5NDbVWoqoJpmsymMhzdV0sylStmgq/y7Mk2vvLaVXu3QMveKEXTFGpCPj55opXOSyMc2VuLpkF7QxC3S+Pwnmo+vjbB7oZKjL4omqqgqhpeh901IpnO4XE5yOYKmJaF06HwQ4+18f6lYVRVweVQ8bjsneLqq30Efa7y3/VMroDToTE8mSBS/Htf4XUxPp1iZjZLMGCXrZTuJq20oHWx5xVF4cEDdbTWLx5Iz9VYHaDC52I2mS0/VuFz0VgdWPHv2k4hAbEQYkvbDovAFvuf1VYL5BcGkOV6RcXeSnau9Sz5iIS8OFRlXlDsUBXqwj6M3ujtbx+7SKmKpio4NG3eYy6niqoqZHOF8oVAJlegttpHKpNndCqJ1+UgVOHi2P5a9rVW3VLrXDIWTfGhMYbTqXG2awRNs/+sr/ZzumuEQ2019I9OcaithuqQxy69sMChKYC96YKmqagK1IZ99I/Fy+f+wf32VskWFrVhLzdGYnZ7NRTCQQ83RuNc659mKpahpS7AtYFp9u8K49DsxXkOTWUsmii3xMrlLV5+pxd9VxW1WHx8dZzvnu7D73MR8DlJpHMYfZM8/kAzTodKpd/F99/vZ3AiAQo8c6yZuiovJw7W2T2eLTiyL8KF6xPFOmWVbM6k89Ion3qole+d7WNiJs3QeIKJaAq3SyMS8uLzOJhNZvG4nXzltStMxTLsbqigvamSK31RGmt8nLsyxr7mMNUhD2cujnL+2gQ+j5NPPdRCS52PlrpKTl8YJpszqQw4Ob6/nv7RGG2Nlbx/aYS9rdW8dOoaLzyymz974ypYCigaTxxp4utvXmVwIsFnHm2nu3+KI/tqSWdNImEfl3sn6R6YKddag13iAyrZvJ2VdjgU2horiYS8OB0qY9Ek4zMZAl6nnW2eSKAqMDOb4UzXKLPJLPmCxQP7ajhxsI6vv3WdVDpPVaWHxogfh6LQNxKjvsZPXdh3x3eTVtsZpr25kh/9RAdff6u7nKH+/JPttDdX3vZ732skIBZCbGnbbdFayVYL5JeqdW6sCWxoyUd7U3DerlulGuIDu8Oks4Vl33e5DPtipSonDtZRW+Wd9zmnZzM8dKie8ekkmUye6koPTZEADg3e6OxnNpHD4VD5sU90EAl5qa/W6GgJLfpZSjXJZy6O8PDhBi71TXH8gJ3dDXicnL8+wUMHasnkCnReGsPndTIylaQ+7ENRYWI6hVNTyOVNKgMufJ4Q+YK96UMimWZwLE6Fz8WVG1EO76kpBrcKH12bYG9ziObaQDmzf7g9jNfjpCbk4czFEVRVpbHGT2t9Be9fHkNRwOnQyGTznCru/uZyOXj9bD+WAlUVHp482sz1gSiZnMnwRJwHD9TRUOMnmzeJxtK4HBr376mhvbGSoN/FbCrHuctjZHNmeQOSbK5A38gMubyFx2V3WMgXLCZn7O2dk+k8XreT9y+NUBnwkM0VuD4wg0NVOXGoHtMsgKqSyuR5+Z1ecnmT2rD99+N7Z27wxU/u479//TzZvEmF38mJgw38/ssXCfrdXB+Y4Yhey8VrY9y/t47hyTg/8/wBNE0hOpvh9PlhpuNZfG4n5y6P8MSxFv70e4adBfZoPH9yF4faq3jpnd7i7nEufuTpDr7xg+uAnUH95IlWEqkMuVye6soAbmcFP/bMXj64PMqNkTgup8pDxTIbv9fF40eaGJ5M8OGVCR46WMsT9zcRqfZxuXeKs5dG7R397m/E53Zw8lADe5or78oFsqqqPHdy17zNPhZe8O10EhALIba0zV60drtlD1stkF+y1rnKR22Vb8M25Fjuf8TLbQSyVIb96L4aeoZmGZ9OURvy8oVn9jCbyBEMuBnqM6gN+3j4cD3XB2fIZAu4XRoHWiuZmq2ge2iGs12jXOyeZHQqUWyBlqNQsHj7wyEOt0eWDIbB/i5iWTTXVvDmBwNMxtIcbKvimWMtJNI5ProyTnNdkFfe6aUpEiBS6QFF4frgDI01PrwejZqwl4+vjWNaMD6d4Pj+ev7s+1d5+HADU7EUDTUB8qbFxe5JHA6VQsEkGHCRzhX4yvevks0VqA56ef7hXXz9revkChYP6LW4HRq5fIG6Ki+JVI6A18kxPcIbnQN23bFbo67Kh8vlIJnOgaLw8jvdPHpfI8OTCdwujUQqz/XBaUanUnjdGp95dDeKYpcsfOmbFzm6z1446HbZgbbP42BiJkW+ADPxDC8+1kY8mUPF4ouf3Mdb5wbt7LOmEKrw2PXMit0ZIZbM0jsUo6nWz4dXxti/q5p8wV70aZpWcfOPDKOTCXbVB0ll8hzYXc2bH/STyZkoATs7eu7yKCcO1v1/7P3Hd1xZluYL/q40LQET0JoQ1KRTuA7loSMyUr6seq909+ru9Sb9B/So1+ppj3rWr8WqrK6qzMpIEZkhPdwjXFI6hZMECRBamgBM66t6cA3mAAmQoHB3eiT2JMJBwOzec8/d5zv7fPv7+O3lZVLZCovreX7y5iE2cjVemohz4fYamXyDt8718asLCzgUGc2w0HWLf3h/lj/7xggnRiKYFjgdEj6XxP/8nXFk2XaAq9U0CuUGgiDy//jbm0iihCoJ/Plbo7gcKbxulZnlLIWyRrGiI0sC0ZCLhmaiqjLHRyN8/OkaN+9v2JQM1XbpG+8LUa1rjzSAed4hiiLDPcFHzvF/yXEAiA/iIA5i37GXfNaTxpOAzC+zae1ZaA9fNpB/MB7nRPdlGHI86rj3wQq77cxWJLFZYn61wPxaHk03+cFrA3z7XB+iKLIyb/OgTctiKVmkXNUQgKDXwdxKjvdvrmIYFtGwm0JZ49cXlzh/JM69xSxg850fBRaiIRf9nQH+8YM54iE3R4bauTqZQDctuiIexgfaMHRbWqyuGSSzNh3DoYoMdAa4eCeBJAn867dGuT6dpj3gZHopQ6Vm8M8fzvFn3xwhV6jwjdM9/PLiAuWqRsCr8kevD/PRzVVUSaReN0hlK1y8vU5/Z6DJaU7jcSkYpkVn1IvfrXJiNEJqiy+tGTR0k/XNDQ4PhrlyJwlYyJLUMp8Y6AxyeTJB0GfPz3rD4PpUmsGuEX7+4Tylqs616TRHh9q5MZUk4HOi6QY/bILgr5/qQRTgwu01BjsDBP0OvvtyH5Ikki1WuTO3ab9Doq3i4VQlBBHWN8p4nCpOh4TbKeFyKGSLNco1jbqm4/M4SGYqLYBcbRiIgoDHqSDLIoIJi+sF/B4Vl0Pk+KEY/9s/3kI3LAzT5PuvDHDx1hq6YaDpJpW63lR+EHAoErW6waeztt20Q5XRdJPVZInXT3by2yvLDHcHOTka5b/++h6CIFKr61QsixvTKTZzNT6d2WzNX0kSUBSJty8vYTZ58qfHosTbPAS9KnXNbmLzuRVcTpm/ffc+XpeKx6W8UH0R/1LjABAfxEEcxL5iL/msLTCy33hSkPllWgo/C+3hRVSf+DKc6J523myvsKuyiCyJXLi1ztxaAUUWODMeZylhK1gMd4cY6g5gSh5uz27y3rVVipUGqaZpwduXFjk20t6SU5NEoamBa7b4o7IoEAm6HquZbJgWPTEf7UEX16ZSGE23Ot2wmG9Wgn0uhcVEgY42D70xHw5FZnY1z92FDJIocGIkQle7F1mRaA86KJR1JBEUSeTtS0u8dryTf/O9MRqaCZbF9NImt+c36e8IoOkmFnaVVZIERIFmNdO+r6GuIL43bYC5li6hG2arwbNa03E5ZDojXnxuhYLYwONUqNY0Qn67scvlkDg9FsXrUvC6FapNpztFFqlUNW7NbnB4qJ2+uJdY2MOHN9fIFuuM9AYwyhavH+8iFnbz9+/NUGvY7nl/9MYgrxzr4MMba+imxUCnn8GuALmibYiyJAkYhsn3Xh7gnz6cwzAAGV491sVHN1f4/iu2pbLfq+JzK7QFXAiCXZWOBF34PQ7uzGf47sv9/O0705gWuJ0KxYrBLz6e549eH6Kvw8ev9UUMw0KS7NxhmCadEQ9/+a1DFCp1ZEmiXtdxO2SSmxWUpgthpaqh6yaSKCKKIiIWU4s5vnu+j3/+aA4L8LoVTo5GWVovYJoWkbAbhyKRzlbJFGucP9LBO1eXkCSRI8PtTM5nyBXruF0KHe2eF64v4l9iHADigziIg9hX7CWfNdwdeqIjuKcBmV+WpfCz0B6+TCC/PZ5XVf/B2G+V/2nnzfYKuyyLvHNlifaAC90wsSyBK3cTnJ2wq7vpXIVcqc6vLq0y0GsxtZTFpUoIooBlWgiiQEM3Wv+dydfojfvYyFftRrwmSO/v8D5WM7k96KRU0Rjo8ONSJY4Pt2OaEAm5mFvJ0RZw8d1X+rkxlSLoc3J7dpN0roplWbx8tANBEPj//PMdPC6VWkPnmy/1cGM6Ta7UYHygjfH+ILIs8dvLyy2liT/+2jCqLLGSLNLf6WdhrYAqC7xytAOPUyYe9mBhEQm6qdYaiKItqeVUZUpVzXZPE6G/048iiSiyiN+j8s0zPUzOb9rjoxmMdAfoivq4cjeBppu4HTLhgJNMvkpnu4e1jTLlqsat2TTnjsT5ZDKBZVnU6xodYS/vXF3k5GiMW3ObfOtMHxdurbGRr/Pf357i//THx+iN+3E5ZPKlGtlCA69bJZ0tce5IB+lcFVkUOD0WQ5VFSlWNT+4laWgmPXE/54900NnuoaPNw8Xb65RrOgJw/mic315awrKgWtMwTHtjYFoWPrfaol/Mr+X53sv9/POHc5iWrarx/VcGqDV0/u69GeoNA69b4dvn+pha3ERVZH78xiBLiRJBn4MfvzFo6werEsuJAjdnNvC5Zc4f7qA75kU3LEI+lRvT6R2Oc9lCjcP9bdy4n+LsRJxQ07r5SimJbpgYhkk6U8HrUl74vog/9DgAxAdxEAexr9hLPutxx8wPxovGrX1UPCvt4csC8luxvTpb0+yj5h+9Psj3Xu5DkqSn/twnqfJvnzchr8qxkQh1zSCdqz4SnG9V2N+7voKmGZimXfUTBFpVT6MJWn1ulfevr2KYFqoiQhOsd7R7qNZ16g2DjjYv5ybs5qeGbhLwqPzkjUE8bpUfvDrIYJd/V/D+j+/P0R5w8d6NVRxN7dgzE3Ek0eLYSIRCqY4oimzmq8QjHu4ubHL1bop/9e1RPri+itMhI0kCug6zK3naQ06qdYOwX2IjV+XnH83zo9cG+XRmgw9urPDGyR7eu7aCrptYJuhYvH1pgW+d7eXtS4s0NIPx/hCHB9v4zcUFNANu3N/g6GA7v7++wsmRKCGfAxOL7qiXumYgirar3Xh/mK6ol66Il452Dz1hN9GQi5nlHAGfg2pN57/86h4NzSTkt3WIf3tpke+/Osg7VxYZ6vIDcHo8BpaB1+0gHHDx6vFOLt1OMNgV4sKtdfKlBjen03znfD/vXF2mXDWZXS1weXKdt871kdqsUa41mFnOcnTY3gQcFdvIVxpUGwYzy1l0wzabUBURy4S+Dj9zK3lMy+Lc4Q5EERyKRJvfyVh/mFR+FVmWkCWbKysA5aqGJEKhXMfndnJ9KsGffO0QogR+j4P51SyZQs2mtcgSumHyzuUl/v0PJ3A5ZE4eirBZqHHpTpLfXFokW6gjywLff2WAH746QKFs6/52tLnxeRyAxfRS/qF80Rv34XYqbOQrWJbF3FqxZSAjigIW9px+Ec18/iXFASA+iIM4iH3FXvJZkeCTUQBeNG7to+JFpD08SWwBPMMyGewMYFoWd+Y2iIddnB6PP3W1+kmq/FvzxudWONQX4u9+P4OmW0RD6+RLtT2pE1sVdocisbCeZ22jTKWu0RvzsZQotigGP3htAJf6mdRarljn/JEO3ru+giQJuBwy54/EqdXqfP10F6fGooiiwFCXn3ibd8cYbAfvumHS0Ex0w2Q1XWJ2OUck7G7Kb5mM9YYxl3OUyhqT85tU6zpvnOjGqcoYJqQ2K8yvFwj7XZSrOrJk6w5j2SBPFECWRCwLJEkkkSkTD3sQBaHJM1XtSicW+ZJGudLg7ESMYyNRCqUaVyZT1DSbF1uqaFy4vcaZiTj5sl15dSgine1ORvvDVGsa+VINn9vBlTtJNMPk5x/O8aM3hsgVanwylSZTqPLGyW5GeoJIkkhdM9B1E003mV/PEw17EEU4OtSOpmn83e9m2Sw0GOkJ0tBMwn4nl+8m2RrNhm5yZTLBWF+I27NpPC5bVeGn795HQMDplHlpNMZmoUIyU+WD5oamUtPp7/Rza3aDeNjDucMxBjoDnDgUwe9xcGMqRamqce1eErdTBgT64l5eGouh6wZ/8a1R/uH9WbDA65b50WtDbBYqLKwXGOwKMbOaI+xzsJouM9IT5LeXF1EVe3NYqemUqjqJzQobuRqCIBLwKPz8w3kqNVuqzAJ+e2WZf/XWKGcPd+5QibAsa0e+cCoS3TEvv7m0hGlZZAo1xvpDpDNlzjStoGVJRBYFXjve9ZXJK3+ocQCID+IgDmJfsZd81mCzarTf+CqBzOdNe/iijTrSOZtDO9ARbB6DW8gSDHYF6In7iYU9T/W5T1Ll35o3+VKdn/7OBsNet4IoCo+lTgiCQDTs5tLtdY4MtXNlMoEpwGhfiFeOdjDe38ZAl590roYoCFiCTDpXJex38OM3hljfKGMYtlbuy8c6WiBSFGy7YFGw3ce2nsUWeC/VNCo13dZrlUW8HhW3UyadqRAPu/C4FP7po3nuzG0iiQKvnehE0yyKlTpD3VGOD7exulFCEgUKZdutLJ2toMi2JnI05CZXsp3DFNk2m6jVDSzLojfupTvqo9bQGO4JspgoIGAD9MHuIMuJHF6Pk9UNW8NY0w3aAi4KTT7try4sML+Wx+OUefVYF//1l3cZ7Q/TFfHyV7+4S00zUSSB0+NxfntlkfNHOskUqoz1hRjqDLCwVqBab5DMVKhrJr1RL05F5OZKDrCb7U6PRpEkkZOHIjgUie6ol+VUkVpdx6lK+D0qlZqGQ5Xo7/Az1hfCMC0+nUmj6xYet4ymmVy5l+D4UDufzmySyFRQFYlSuYFTFfmLbx4iU6gx0hskHvYws5LHqUiM9geZXS3QF/Myu14kna2QLdYY7PKhGya3Z9P86LVBqjWNeMTLvbk0mgH9nQEUSeAHr/RTrGqks1UcikSmUEeRRXxuhbG+EAjQFnSRK9a5MZWiO+ajVNHQtnSJJdF2PNSMlhX69vm6PV8IgsBvLi223pWw38lyssS3z/dzcybNt8/1oekmh3pDBw11L0AcAOKDOIiD2Fc8Lx3LF4Vbu994XrSHp1GseBYAbVn2kXNXzMuF22voht38ZVpwfSrNWF/bUwPi/VT5t3OXh7oCJDNl3E4FSRRRFRGXKtHX4WcxWcDnUfd094sEnZwYjXJjKsUbJ7t2AIituRcJOhns8nP93iqyYuB3q3xyL0nI67DpEV4n71xe5vWTXdSyVWRJ4PbcJr+7toJDkZrPIkZPzMO3zvbx1+9MtegXP359gIXVPN8800O5akuN/eKjBdwuGcO0cKgytbrBzIotV5Yp1BnrD3P59jpnJuJcvZekUtWIhty8eaoLl0Nifi3fdJdTefNkNx/dXCPkU/nRa4OkshUmBsK8f32FakNnrC/MxGAb7X4H95Yy+NwOGk05OY8o0NvRhmVatI1GyOQrGBZIoojbqfLX70xzeKCNzjYPN++n8XpUfIJArljnk3u2lrIAjPaG6I75+Onv79MbD3B9KktHu5dssUa83dN0wdPoaPOwmirh96h8/XQP//TRPLpuspIq8v1XB7hxP02tZqAbBmN9YXrjPmZWctxfzhLwOJgYaKNS1SjX7U1JuaKhKrYUnSjCzfsbdEU9HBuJMrWUpV43mFvNM9QdZHYlx+xqnrMTcW7eT3F6LEajYdtcZ4t1hnv6+OVH84T9Lj68scbaZpmAV2W8L4RDkVlYzXFqPEY6V+WTeykCHpVSpcEPXhng3U+W6IsHuHxnnc6Il396f46To1F8btulTlEEqAu4nVLTDEUiHHDi9ygkM5WH3s+tfHF/KfvQxtGhSMTb3Iz2jX4l8t+/pPhcAfHo6Kgf+Bj44dTU1MLo6Oi3gP874AL+empq6v/yeX7/QRzEQTzfeF46ll82t/bLiN1oBu9dtwFZtMnl3L4oPqvTXSpb5e58hpGuIJduJezPNC0GuwNYlkUiU8K1LD+golAhlamiGwad7V6iYTemaXJ3IUsyWyEWcjPeH3pslX83ZYm3zvfRE/GwUajjUiV64j4u3kmQKdS5MZ3mzZNdnBqNcm0q/dDnnhqNPLSBAlpgRBAEkpsVXj4Sx+Vy4/eqtiybU23JdemmZas2AEGfg/evr9Lf4SMa8tLQTG7NbrKeLiEI8N3z/eiGic8lIwgi65sFfG6Fq3eTtAVdpHIV+pw+YiEXrxzrZDlVZLw/jGVuUqlpXJ1McGQ4wmqqyMtHOhAEi2jQjd/jYC2d519/Z4x8qU4s5KZSq+J396Kosq1tnK+hKCKvHe8iV6w1Oa4Ct+Y3qVR1KjUTSbD49tleVlIlLk8mMEy76t8b8zLY4SPsdzDSG6K/w0887KZQaZDcrFCp2wCyo93DZq6KbpgEfQ4Gu4P884dzSKLIrdkNjgxFkCWBt8728T/enSbW5qEt4CKZreBxKfjcDuZWC+iabTByqC/E7EqO/+mbo3z86SrFikZPzMvcap5aQ6cr4kORRG7cT3HyUJQrd5MYhonbpdAd9TK9nGVqPsPp0SiRkJN//nAOWRKRJFuR48qddTojPuoNg0t31hnvD/PetRXOH+3k/esruJwy+WKdVK6K161iWhbjfSHqmkFHu5eF1RwD3SH++9vTjPeHm3bNfnqitm3xX357jHevLDHYHUTXDSp1gyuTCb77ch/LySLfOT/A768t0R8P8Mm9JN1RHx/dXKOhG6wkSpiWRcjvJN7moiPsxcQi4HXi96q7bhwDXiex5jufyla/UC3ig9g7PjdAPDo6eg74fwKHmv/tAv7fwJvAMvDz0dHR701NTf3y87qGgziIg3jy+LxUCV7keLAq+Xnc74M0g3SuSjpT4WbITaHceAjsPqvTXaFUp9jUsR3tDVJt2Mf/FrCQKDI5l+Fn7821VBRu3t/g9tym/Z2mRbzdw/de7iOZKfPf376PrpstR7cfvjpAT8yLQ+naAZ63rn235rS3Ly7yF986xN/8dprOqJePb63T0eZhYT1P0Ovgl1WNoMex6z2HvA4qdR1dNxAEKJRr5Ip241ZNMyhWGnS2e8kVSkiKk9mVPMlshUJFo6vp7iY3G7QAGpqJQxYJ+128f33VpkcYBn/y5jDZfI13ry3jkCVeO9HFLz6eJ+RzcmUywSvHOtGaoDpXrHP8UJRLtxOsZ8r43CovH+0glSmjGzDcHaBYrpPOVvC6Vd6/sUa2UCXe5iWZqXPj/gaarvPvvj9BOOji1swm8XYv65sl1jbqrG1M88dfG+a9G6tMDIRpNAw+uZdEliQsy+KPv+YlmakQ9rswTQvLsrhwa53vv9JPwOvk1twGmmZy9V6C753vx6FKaIYt2La+UaI/7ufoUBvX7yU5OhLBsmz5tkK5zrWm011nuwdJFAg3K8SiABP9YVKZMj6PSiTkYqAzwI3pNB6nwlKiyMvHOogEnNR0k3uLWVZSJQC8LgWfR6Whm8RCbiRJYKQnyG8uLVKoaBwbbkcQ7CoxCJRrGrIo8slUihPDEWoNHcO0qDcMnKpMw7DQDROnQ+b4cIRqXSfkcxDwOuh0KbhUiVJVB+DUeIz//vY0um4iCgKiKLCUKBLwOEAQWE4U6Yr4KFUbGIaFUKxRqel4XSqWJVCra/zlt0b59cVFRnpD+F0qsiLy8w/m+drpHuqazmauSqnS4B/em8PnVomG3Jw9HOP8kTgXbz+8cXzRrN0fjC+a3vUixOdZIf7fA/8r8FfN/z4L3J+ampoHGB0d/S/AnwMHgPggDuIFieelNfwixH4T+m4L02BMeYgf+KyxnWZQreukMxXEJkjbDewWSnXkpsNXQzNRFZFcsb5vNY6t70tlq0wMtnPh1hoORSKVKfOdc7ZD23BPkHcuLxELu0lslplfyzMx0IaFDUjfvbps81d1GwTquslPfzdDLOTh+nS61TikH7LIl+sEvE4iQSdrG0UqdR1RtMfPNC10UUCSBP4Pf3KMudU8qUyVak1DN+znJEkia5ulHZuGal2nUtO4NJng40/XqNR0gl6Vo0PtzKzkOH4oglTVqNZ1rk4m+OZLnXz4aZKhrgDfOtPL7dlNNnNV/G6VH7w2wErSBmcOVeLISIRP7ibJlxtUqhqGafLOlSXeONnFy0c6KNW0ZvXVln2zLIFP7iY5NtTOmYk4TkXi8mQCt0O2gZNpcWUywctHO7i3kAXL4tRYFJdD5lcXFhAEaA+6WdssE/I7+MbpbjbzNRYTBZKbVe6v5DAMk1eOdTI5t8Fmoc7CWoHR3hCKLHP5TgK/28HYQAjLtBvATAtS2QptARfLySLtARdul8pf/XKSumbiVCVOj8X4zaUF3jzVzd++ex/DtAh4VU6NxciX6oz0hnEoEqoiUm/YILBYadjaz7LI68e7uDGd4hsvddNo6GiGyXB3O3NrOXqiXm7Npgn6XCwlCgDMref5jz86QrFcJ1+qEw25SeeqlKo6iizy0liUdLaMhcByskg07CFbzHJ9Os2PXh0glaliWiZKE/iXKxoORaKu6RiGiaRKVBs6kYCTI0NtNDSD5GaZWsPBT94cYi1dxrTsSuy3zvYgCgJzq/nWHF5OFVpqI9WGjg8Fv0fl99eWaWgWsiRwatTeIIz1h/C6bavu1XSZQrlBJOzG51Vbpw6yJLCarlKp63xyNYkoiMTb3HhcCpfvJPnTrw/zp98YeSgPJTOVF8rafXs8T7D+VQLWnxsgnpqa+t8BjI6Obv2oE1jf9ivrQPeTfu7t27ef+dq+yvHJJ5982ZdwEE8RX8ZzE0URXXBRrhl4nBKyVcU0zUf+jSGH+Ok799CNz0DJT9+5S9htIenZz/uSn1uIokiypPDp/Q3aw34M02K420/YUUHX9R2/a0oefnVptWXQALC5KRL2u6lUq/seu/1c02BM4cpkkpou0mjUOXM4zuziGvWG3bBzd1pmzdFAF1zolgKWyW8uzGKYNh/47OE4hVyKT9JzT/R9sixyfjxMtD1Atljn3ct2VU6WRU6NxZlZypLKVXAoEh/fXqNYaqAqIm+c6Kah65im2ZKJEgSYX8uRSqdxqBJKKMD/6x9u2Hxky+DkWAeSKIBl0hcP2rJSpsXcag7T0FhYKTK9UmBuNYthWkRCbgqlOrquIQsG2cwmpgkVXaTWMOmK+Pjo5iqlqkalplGo1KnUdXqiHv7+9/f5068Pk0yVcDsFNN2ko93N+zeW8blVxvpCxNu89EUdeKUCbf0OyjURn9simZepVBsUy3UkUSQSdJMt1rm/nMXvVoiHXaQzFdwOCVkEyzIpVgwQBe7ObvIXb40yubBJ2O+iLeAk4FGxgLDfxddOeUhsFilWDIa6gwx2Bplby+FyyETDHj65myDgcyCJdpXUME3qDQNFkfjo01VeO97Nx5+u4lBFjo/Eqda1ZjU2yMXb6xiGxbnDcRRZoL/DT7lqbyxEUSC1WcE0QZFts5DrUynG+sM0NIMTIxEsQJYg7FcpVDR++u59YiEX3zjdw++urdDQDKJBF2+d68PjkvjkbopMsUG9UeC1Ex3884cLTC/lME149Xgn2WKdyYUMW6+HIovcmklzqDfEseE2rk2laA84kSWBb5/vQxTAsAR+8fE8+WIDWRZ4aTzO5PwmerPS3dnuIRpyoxu2Ichgt5+Pbq6jKiJnx+N8OpPijZM9/PMHs8TCHg4PtnFkKIRqVQm6PMiSgEsxEGs25OiNtOFxSpimRbVaZ3oxzenRdk6OtOF0yPyPd+dwKBL5UgXLgk+mkvz7742xvnQfCTgz7KJuyMyFZCy9wsZGGUuQ0bU6DlXgwqerHB5qR9NNFAnWN0r43BLlYoO792V8Sg2AQhpW5u1xKmpOUun0Q+/t3WmZlebvf1mxW0785fsbWPUuRKPc+tmD69qDa44q1FkvSFyZTLZy2JmJGDGv9sz59POIL7KpzjYG/ywE4IlH5MiRIzgcL5480xcRn3zyCadPn/6yL+MgnjC+jOe2tcO/0trh65w93PnYHf6FW+vIigNZ2flzQ3Rx9vTgc72+z7NqkMxU+OT9WWKxKFeaVb5PZ/P8xVujvHqyg3Su1vrufKlGKLxzAVpOZLm/Xidb1PY9dvsJy7I4eXiQtXSRmZU82UINnz+ED7uiNT7Sz3KqxJU7CWJhiXuLOUxknE4JAUhkG3R3jRJr218z3Nb3bd1rOlPhv/7mil0tE0QamsXVyQTHh49Q1Uw+vrVAqaIhSSINzeTadIqvn+pGUWQMw07XqiLh9zrojEfpjvm4v5TlyHCMqaUsiizxt7+f4ydv9PPW+QH+9p1pGrqJ2ynxx2+OUKwa3F4osr5Z5sxEB1fvJtjI1eho8/DayS6GettQVCd35jcplBqksxUiYTdX7qZsYG2BYdrVNAS7aruSqjDY18FGrkZf3M9vr67hdTuxgDvzOe6vFDn7r04x3Du0gw7U16nQ15FBUcoIgoBpGhwZbKMr6kOWBGxrY5HumJ9Gk4taa7qYhQNOXKqI361iGCa9MS+lmo6um+RLdbrb3UTCXlbSaa7eSzK/lufkoSg+t8Kvt6kOgMCl2wm+ebaXYkUjla2gKjKiAN8514fbKfFXv5zk+EiEsb42Pr61hmnawHdhPc/R4XbWNypouslob4jxgRB35zKIokC9YesPa7qJQ5EQBPjkXgpFFjg1FidXqpPM1IgGXZw90okqwb/7wQS5Yo2Ax8GvLsyDILKUKNDQTAI+FQT7PcgWa5iWhdshY5q0wLDPrXB4IEw05MGpKgS9Dv74zWEqTRm5j2+uMdwT4tOZDbDA7ZSpNnQ+uZvg1FgMl0Pi2Egb6VyNK3eT6LpFR5ubeiPIqdEIXzvd09wE+Pj1xQUqdYPOiI/2kItsSWNupbKjonni6KHmszXJlI3WyZckCkwMRnjzpT4u30mSztVAEOho82KY9t973S5OHh3c8S453b4dVdOXj9sqEQgSkijhcshsPVpFVoiEAowfGti14pvMVJhc0R/iF+/1+496x593Lr2/lH0oJwIEwzFGekPAw+vabmvO0eF2VjYzhMJtrd+bSxqcPDz6pVTB6/X6I4uqXyQgXgE6tv13HFj7Ar//IA7iX0w8Lf/0eWkNPyq2EueNqRR+r7qrasCzhr04fGbWADaP9aObqzhVu2KxtaidmYjtaHyp1nUy+SpK0w73eR5lbjUTRkMuDBPS2SoAPpfC+ECYqaUM5ZqOyyHZhhK63fQU8Ki4XQouh0yh3Ng3IH6weTFXrNEV8TK/mqeuGUiiQDTsJVesUao0CPqcFCsaZtOO2OdW8bpVZEnANAUcqsiPXx9CEm2TjN9eXiKZqaDrBq8d7yKxWcbrUjBMgfevLdMT82GYFh6n0uS39jE+EKI37kWVJdp8DtKFGicORehqc7OcLHNlMslGvkq50rBVATJlwEJAwLRAksAhS7idMm0BJ9GwG7fT1houFTLE2z1sZCt0R31YQLvfQSJTJp2vYpoWM8tZBNFWuTh3OMZ/e3saSRAYH2xjcb3A9FKWoZ4gp0ejHB5s49pUmkzBBoDnD8fpaHMT8NiNW6+f7GJmJUO+otkudgEniiTgcSls5CrMr+cJ+5wEvE4u3UnwkzeGcKoKHpdMrlgn4HHgcirUGzprG2WCXhWHKjHeH6ah6fzt72YoV3VmlrK8caobRZZwNDVzZVliNVViYqiNhbUCLlWiN+ZjejFLd9TLUrKIYVjIssB4f4iVVJEzEzFM0+L+UobzR2KsJoucHo/zTx/MUtdMZEngT742QtaoYSGwsJZHFAX8XpVThyJMLWSQJAlVkTFMg/evL/Pq8W7m1/MossiRwXYW1gtcn04z0BmgJ+alVNWQRJHfXlkmEnTR0A2yxTo+t0K+3ECVbZWPwa4Ak3ObvHaikyuTKVyqjOCwHQbfvbpMV9THZj6J360Q8DpoD7qIt3lZTBSYW80zu5KnLeBCVWy75e3v7F4KOYIgoJu21nStYVCqaLgc9txyu+SH3qUH1XEiQSdzq3mGuwMkMmXOHe7gyt0EDkXG61YfKSf5POQnPy8e8tNoxe+25nx4c5WhrgC1Zp7b+vmLaMIEXywgvgSMjo6ODgPzwL/GbrI7iIM4iOccT+sG97y0hh8VqWyVG1MpFEVqAdaLt9apNQxeO975XCrFfq8DTTd3HPkJ2JWs6W1SSKZlcXM6zdHhNi5PJqnVdSzg3JEOcsV662+fdxLfvriWynXuLmb5q1/cpVLXqWsGP3hlAI/LrgpX6zrtAScAxUqjJU223QxgvxWioM9JNGw3YdU1A1kSSWXLLKZKRAIuTMMkEnQhSQKmCVoTNP+f//Ik6xt29S2VKZMvidyZ27QtgQX7qPT9G6u8NB5ldi2Hqkg0dJNMwa6+yu0iIZ+KYcGduQyGYTCzkudrp7qRBIuR7gA+t4Of/m4G0zQRsCvBVyeTvHasg7NHOrgxlUJFpC3g5NRYFE0zeP1EF5/cS9IWcBNv8+B2CLQHnUQCLi5NJnAqIrIU4u9+N4OqSNQaBod6g8wuZzk2EgVB4P/4J0cplhtMzmcZ6Q2SaWoa/+z9Ob51tod4u5u+uI9SzTbg0AyTO3ObRENullNF/uj1IX55YZ52v5NDfWEu31nn+nSatoCLl8bi3JxO4fOohP1OnA6Z/rgPURTwuVScDpl6Q6eyrbr89Zd6ee/aMq+f7KGumQQ9Cv1dth6xyyGhSBJul4xpmsys5PB6VGZX84z3h/nPv5jkzEQHn9xNMtZrqyy8cqwTyzR4/8YakiAQ9Kv8xVujaLrJ4aEI/+OdaTTdfh803eI3lxf53vk+XhqPtXjBx4bCCILIpckEsiiAAKdHY4z3tTGznOF//s4YhXKDD26ssZmv0hnxspIqsr5Z4vihKN1hF5pmspws2prEhoEoqHRHbCe9ekMnsVki5HdSquh4XAq1hoGFXc2tNWwqTEebB003SGUrfO+Vfu7OZzl3OI7YNGm5PpVClEQUSSQSdpMv1Vrv7G4KOclMhXS2wstHO7hwO9E8OYFXj3US3eVd300dZ6g7yB+9OcR711fRDYPvvzpIV8TDeF94R6Ppo3LA01Z3n7Xxdq94GrC+25ojS6JdQd8WL6oJE3yBgHhqaqo2Ojr674GfAk7gF8DfflHffxAH8S8p9rPD3w1I7Udr+HEA7HH/vlf19sObqxzqDT0X0BkNuTjUG+LirXV000IAImE3gkir8rsVpmVhGha9MVvWSRAFGvUapvHZ72wfu+d1RLm1uBbLDX59YQG9eRRuGBa/vrTAv/neBG+c7OLCrXUqdZ38RpmXJuL8/pNlcqU6p8eirQrR9FIWRRYplGwr2b0qRJGgk2NDEVaS8zQ0g3y5ztmJDm7NppH6woz0BllOllhOFlFkkW+e6aUn5qMzYhsj1BsGCALVmkZis0xnxENHu5fZ1Vzr2Pz84U5mlnM4FAlNNQl6HQgCjA208Z9/MUm9YQIWZybifHxrjX/17TFAIF+uY5omy6kSi+sFdMPCME3OTMQZ7w3Q2WYrHvg8Kh/dWCWdq6EoAl8/3UO50mAtXabNq3DqkI//78/voGkG431h7sxt4nbaRiClqsbHt9b482+M8Fe/vItDlTk1GiWZqbCZr1Gp65ybiHN/OYsFVOsGN6bSKIqEU5UY7g5w+U7CPhoHVElkI1fla6e78Xuc3FvY5NhwhJmVHJpucOVugpePdLKSKlJoKk4cH41wYypNvlwnU6zx3fP9ZPJV/vhrg7idCrW6TmQkQr2hc3ggjCIJXJlMoMgSR4fauDO/yWahSn+Hn9PjcWaWs3zjdA/LyQIDXUFK5RpvnetlYb2A3+3g/evLnByN8p9+dJhqXUcURX718TyrG2UGOwOM9Ia5t5ChXNVQVYliuUG1puNxypw9HMeyYLQvzF+/M02lqfxg0eTZ/uAwd+Y2WFzPM9gVxOdRcDkkkpkKDd1EsUTKFY1aQ2diMISI7cr2nZf7+eXHC2zka7YV8ssD1Bs6k3ObHBtqp9awQfFmvopTlckVy2xkaywli7ZttiQyv1akXNN5/+YqfTE/c2s5To3GWE4WMEzI5KqIwsMnTtvf31rDIFe0jVNePtKBbpjIkshgZ4BoaH95yAa2MXpi/ifOCc8qP/m0hY/9XNeTgvXd1hyPU+FQb2jHidyLasIEXwAgnpqa6t/2/98Bjn/e33kQB/EvPR63w3/UUdujtIYfd0S3nyO8vaq3siTuK5HvB5BuJfRaw+DDm6vIkojHqXB0uJ25lRzRkKul3KDIIlenUq2jaIDNXJGzR7rJFeoE/Q68LhksC9M0d9XJPT0WBXgqoLzdLliW7M7+fEljJVXk9swGf/K1YZaaADVXtF210rkK719foVLTee/6CsWKhgCcmYhzYyq1a4XIsiyuTaW5t5Shv8OPppt0Rb3cnt0gEnTT3xlA1wy6Il5ePdaJ0yEx3mc7wf3+kxXeu7aCbphIosgbJ7uIBJ2t6k9Hk8LRG/dz5U4Ct1Pm66d7uHo3icel0BX1cnM6jaFbWE0FgBtTKY4Mt7OaLnH5ToJvnumlWNWYXys0XcEEZFlkdiXH2cMxZleLdEV9/P7qMpphUtcMxvrb+dkHc7QFXKQyy7x2vJNSZZMzY3F008LnUVjPlFlOFHE7Zco1jYGOAHcXs5iWwGhviEt3ElgWdEe9lKsaV+4mODka5erdBG1BF6pqN2PlS3V8bhWHIhMJufE4JI4finBzNs1oT5hfXljE7VDIl+qcmYhRqmjcvJ8mla0wv5bnx68PMbW4idclE/SqnBqNspQoML2UYbAryK8vLSIJAsdHIkzdSeBQRIa7Q7QFXUiyhGmaBDwOvv/KAMnNMkeHI/z1b+8y1B3io5trpLIVZFngj98c4dcXFsiWNEI+FVkSuXg7wVhfmFpDZ3Ihg0ORCPudCAJ8OpPi+EiUqcUs9YaOJAo4HDLFikY87OaXFxcZ7g5iGBZO1YYMtYZOuaqzma8yvZQjW6rRE/ejaQYN3cLjUvAKAjXNNjJxqjLpbI3kZhlVjbGeLvHGyS7ypQamYfLO5UXOHe0gEvbQE/NyZiLOry4uEPY7yRRrnDvS2QS6FhdurXF4oI32oJO3Ly9iGvazCftdfHIvydnDcWaWc7w00cH2tqUtne07s5tcv59uKlcYRIIu6g2DeJvbluNTJcYGwk+0yf2ydNWfhtqw33jSe9przTk1GqE3/uSbhS8jDpzqDuJfRHyVpF+eRzxuh/+0R22P+7utf98uFza/lqcn5m25ou1VvfU4lcdWYR8E3HXN4ORIhMNDbURDO48nRVHkteOdHOoNtT6nPeCgXG20KCFep8x3Xu63q4+S0AKcoe4Ql26tU9dMcqU65490MLVgy3xtVTu233/Qq7KUKLYW2ifh8m3nbeuGiaYZuJwSQZ+DaJuHpWSRtY0yLoeMpwku/vMvJjk+HOHaVIp4mweHIlLXTK5MJnjjZNeOjcXWWKYyFdsIRBbJFOukMzZQ+875flxOmZBX5cb0Rsva+OzhOIPdAVLZKtfv293wsiSyvlnm7353nx+/PsiVu0mqdZ1cqc7rJ7t5++Iiogh9nQF8HpXvnO9jKVnE71ExTFvMranERqVuADZALlU1bk6nOTzYxvWpFIIgoEgCL03Eub+U4dRoO4IgUK42CAdcFMoNDg96uD6dwud2sJGzOYoX7yT41pkeNrI1ppaynD8SZz1dQlUkJFFEFEQyxRonDrVjWRamZWsSbx3NCwIYhn1N5w93spLI88aJLm5Mp227aQRcTolcscZYX5x3P1nhUE+QT6aSGIbFZr5Ke8DFnflNxvrCREIueuM+nA6JX12c5999/zCVmoaiyNQ1g86Im5mVAjem09QbBkeG2rh8N4EkCoz2xvjw5houp0zQ66A76uXaVJKNfI2XxuJML2X40WvD/NUv7xLwOPC4FI6PtJPMlHnjVA9vX1q0u/5Ni1ypTqHSIORzousm9bqB36OSL9eJh72IAlgWOB0yf/r1AdoDTv7pwzkCXpX/+MPDSJJAR5ubxUQR3bDwOGWCPgeaZrCRq9Id9XL9XpKXj3XyywsL5Et1nKrED18dpDvq4eNPE6157lJl0rka5doGpgmZYg2HIlOt6xwbbgcElhIFTh2KEvQ5SGyWSWyWqTVMJFFANyxibR6KZdvlrmrYjWnlqkZbwEUk6EaRRBKbJXxutfUOfHIvxfxanveurWCaFpGwm0jAycJ6gfH+MMlMxZ73/fFHVodfpLXkefCQn1c8as35qpgwHQDig/jKxKNA0uOO8P+QBdD3+vvtDVwPuiE97VHb4/5uSzvXocotSoQkCrT5nS3Aulf1dj+C9dsBtyxLaJrB7blN8uU6PTH/Q8/0wWSczFSYWy3Q2+FHwCLsd/HT383gctgWreePdBD0qfz/fnWXWNg2PnA6pBbQnF7KUq5puByfpc5ktsKt2U3eubL02UIbdO2by7edt20Y0BZw8eapLrAg4FGb8ll2JTbW5uG//OoutbqJ1QRzS4kiA51+HIrdiKfp5o6NxVYDY1vQyXKi2GxIcuJ1KWQLNTLFGqWkhigIHB1up6PNjc/z2TzKl2qYpkXA62BmJYdgDyy5UoOBjgDRsIu2gIubM2mOjbSjyhKfzm5wZ26DQrnO1071IAiQzJaJt3tYS5ewLFAVgSOD7Xx4Y4Vq3SQSctHmd3DyUKTZ8e9hI1dhrD9MqapzbTqFU5HJFKq8fLSD/g4/hgmqInJrZoNCqUHAqxLwOEhslJkYCFOsNHhpPMa1qRQN3cDpkHhpLMZGvmpbM8sSkgSmKWCYFl0RL7pu0hP1cn06yanROJdvrzPcHWw28Tl4xd3Jz96fpaGZVGs6QZ/TBpOqjCQKSKJAqaChyCKHekP89vISsiTidsqkc1V+8fE8pmmhyBI/fG2AeMhBOlulo91jV2AtONQT5PLdBNW6js+jkspUWEkVOTYSoVwzWEoWUZUAc2t5BrsCCFiciEX4/SfLgEDI5+Cl8Rg37qdRZQlZFpFFEU03kGWRSq2BqkgsJYt4nDLfeKmbwwNtRMNu7s5n0HQTVZEI+pz87IM5GprOSG8IURDIVzTkpnxWMlNBkkSKFY1wwMXk7AbfON1DQzOQRYGGZvCbS0vMrRUwTZPzRzqp1DU03UCVHWimPdaqLNET9SFJAten01Rq9qYMILFZpr8ziNshoyoimXwNRRIAAY9TQZZEDMMi1uYmmamQK9a4v5zj7OG4ffTEZxv5rY0ZQDpTwetSCPudDHcHODESeWz+fZHWkq287/cofPtcH2DteG+/jPgqgd/d4gAQH8RXIvZKRKdGI3seYT8vx6/PM541wT4thaEn6n2qo7bHHdH5vQ5CfifvXVtpLTymaXH9fprDQ+07GlwerN7uR7B+C3DLksg7V5YwDAtJEoiEhvakCmyP7YA+EnJz4dY6giDgcsjU6jo376c5NtyOLNk8ScuyqNZ0fG5b4UGRTWJhN7W6TkM3bUWKXBVZEh5aaF0OmUKp3tqQFEp1/B4VBItUprbD4c3mbQeZXs6ytF7k0p0E9YbBmYk41ZrOa8e7uDWzQanSQNNMnA6b3qHIAppuYZgWgmArghzqDbUqRKlsmUyuSiTkalramqQyFUzLxO9WyRbrrcY9l0Pm1swGh3pHdlSX86UGS+sFZNmml9hudza/V5ZFFEXivWsr5Ep1/B4HPVEvRwbb0A0LC4s7sxsM94Y43N/OzZkUw11BTMvizOEY16eSVOo22A/5nNyZSXGoL8TcWoFffDyPppuM94cxLRAs2zimN+ZD000u3FpneilLwOdgYqCNqcUMiiyxnCxy8U4Sn1vhuy/38961ZU4eiqIoIoZhspGt8NqJLgzDYnY1x0vjcZIbZTZyVQJeB2MDYS7cXuMbL/Xym4uLlKo6iWySznYPn9xrcKg3wLFDEcb6QyQ2bYe6Q71BTBNW00X8XhVJEmgPOFnfKDelzwxeOdbLry8ukCvVW3zrf3hvlv/04wnm14qsZ2sEvTbfVpYkdN1CksSWzJoo2jJvHqdNueiJ+XCqMhdvrXN6PMb711dQZAnDtPB7VD76dI1jw+2sbZQ5Mx7n9kyaWJuHkyNRbtxPNfnAAkeHIvzj+7PEQh7+/JsjfPeVPlaSJQQRfnd1BcuyaGi2ysfEYBshn5OFtTyqLHJ3MdPk+8oIQK6ikc5WKNd02gJOPrixSk/Mx+GBMJIoohkGDlng9Hic5WSBUlFDcNtNrD63wjtXluiK2Jz0/g4/7UEXZyc6+PnH87gcMk5F4gevDRAPu7l6N8WZiThXJxP4PCqVms6PXhvEMi062j1NE5sGsbCn9d6riogkCq3TioZm4HEqdEb2txa8KGvJXnl9qDv4QhR5vqpxAIgP4isReyWioHd3q9cHHb8+j8aD5xHPmmC3+Il+j9pyMtuNwvDw5w8/1VHb447ooiEXkZCtYgC06BAORXpovPeqJjzqeW0B7rcvLWIYW4Abrt1LcmYi9thn6veoZAo1EhtlJNGmSLidCkGvStDnoFBu4PeoOGSaR+gCLlVioDPA+9dXW/awfR1+jKZc00sTcTTdaC20mmFSKDdwOiQELN67vsJqusx6ukilZjDaF+LKZIJKTSfe7uGHr/bTFfFRrRvcnc9SrNhNTRZwdTLBv/3BBKdGIzhViUK5KVdVanBvMcNL43Gu3UviVGX8XpU3T3a3NkOmaXLpdpK/+/19qnUDhyLynfP9/OriPHJBQMDm0N6cTlNrGK3K9nYQv5YuspIqcu5IBzfvp231B8vi1GgUwzAp13Qu301gGhZhvxNZglJN4/5Slo18DVGE1493YximfcT/ygABv5NyRcPbvA/dMHEqEl3tHpZTJkuJAqvJEtGQG69bwWwu/i+NRZlfK9AT9XH5rj3HBzqDLCTy3JhOc2Yiim5YLK4XcCgilZrOry4s8MbJLn51YYH+jgDVuk5fp79JJxB482QPbX6VTMxLrW4Qa7PnzkCHrT1sWwXrtlKGbIPThmZiNUHqSG+Ij2+uMtIbplzTeOtcHyuJPIPdnVSqDVxOmUpNs5sB3QqVus72qZ0t1skWGnzrXD//7e1pUtky5w7HW1J3TlUh6HOwmCjgdSlUGzrlmo5h2hXud64s8urxLlt1BHv+RUNuVlIlwgEX3REvhwfa2CzUcKgyi4kiyc0yf/HNUaaXNqnUTeZXc5SrOlWPzmKySDJX4fbMBp3tXrqiHuIhN/lKg8uTCTTdNs2YGAgTDbkZ6g7i26xQ1XSOj0RQFZGw30l2OUexouFQJXqiXi5NJilXNVyqxFvn+nA7JEa6A9Q1g+VUkemlLDMrOU6PxkhulnlpLMbdhQzj/WEu3l5nqCvYklObWy1w8lCUH73ho1iu8+qxToqVekvXu9HktT+4URcF+30/MxHnyqRtT+50yE9EMXhR1pIXBZj/ocUBID6Ir0TslYjSuepjE9Tn2XjwrPEsCdayLO7MbraqsbYLUBwaeuvvi+U67cGd1r8N3aRQajyV5M/juMmCIDDeF2aoJ0itrqMqtlj9k4z3o57XFuBm2/dFQi4qD1AF9r4B6O/wk8pUkEQb5PjcCjSrxKIoNKuXce7M54mEXHRFPCyuF9ENE4/L1k6dWszy5qkuoiE3n97fYCOnc2Yizgc3VihXdQhbtAdc/Le3p5lfK1DXdM6Mx8mXyly6vc7Lxzq48Ok6+UKNm/c3+N21VWIhN7MrOSJhNwNdARqagapIBLwqG/k6VyaTuBwSb53r55cX5imUNe4vZ/i3P5jA51YY7d0p8zS3WuCXFxYwDItaXadah19fnOfPvzHK9HKWsxMxfvb+HNWmS146U8HvUfF7FK7eTTK9lEU3TG7NbHBqLMqrxzoQBIHbc5uIwJV7KU4dipIt1FEkEd2scnS4nV9dmCfe5qUt4MICLt5e43/53jgCsJ6p8vfvz6GqIucPd/D6iW4sy6Kj3Y0kSvzm0hITA23MruYBkEQ4MtROQzMo13QSmQoDnX5MC6o1nVpDp81vf89QV5APbqww2t9GR8RLrWFwbzFDsVznT74+gtelcHt2k2v3UqiSSCTk4v3rq3RHPVy9myLW5mG0N0g06CJTrGNa4FAkHKpENORG0wy6Y17agy5++fECPTEvi2sF3jrbhwVohoVuGBwZilAs1/F5VNoCTnqjXlRVQZXtCrWjKf8GdoXf7ZRZThbpjniQRJEjg21kClW+dbaXpfUC2WKd/rifvrifi3fWaWgmrx7vZHE9z1B3kFjz/Qt4HZiWhaYbeN0KAjDaH2YtVaRcazAxEKahmwgCXJ9K4HU7WE7mqdR1vG6VVLZCvaFz+fY6fZ0BPry5hmaY+NwO1tNlBMHWgLYsi6mlLD63wka2ykvjUQwT/vbdaVRFwjAsjg63I4kWP3h1gNnVPKdHo0giNHQTUQCfW0UzTHKFerPib2tV35lLc2QowtJ6gTdOdhFv99Ad8+2gKJmWRaHcYGSbIo1lWTt0vXfbqG9t5GnovHmqm0jI9VhptCfJTV9kvCjA/A8tDgDxQXwlYq9EFAm6HpugXqTGgwfjWRLsVrPTVjXWMC2uTCZ481Q3fq8Dy7JY36zwwfXVljvTmYk4omDg9zqemu/1uL+Lht28ebL7qcd7r+fVHnAwu5JHlmy6xcJ6nlyxQV0zEGEHVWArHuRXF8sNanWdN052oem23u+HN1dbR6dvnuxCFgXKpTJfP92NQ7FF+j/6dB3TtMgWasiSSKWukys2SGxUGO0Pc2tmg2qpxvHhCLE2D36Pyi8+nkeVJco1m5979V6S0b4QVyeT9MR99Mb9OBSRC7fW6evwoyoioijYlIuuAIHm3Ah4nS2qiMelIAnwH38wQbGi0R5yM9jlIxryPLSop5uNZmJTJgsgV9LYLFRZXC9wYqSds4c7SGyWWVjL09BNXhqNMr2c42/enm7Z6I71hbl2L8XZw3FcDlt+bLAryNRSDk03bV1aoFY3bFc0VaFa19nIVREEW3lCkSQcqsyHN9fwOGVG+8O8d20FhyrTG/MiCFFM07T1eA2z1SQoiiKVqkYk4MLRVASxgN6Yj3JVwzTtvVE2X6VYaRBr8/Lxp2uUqzpOVeT0WIxYyMXblxd5+WgnMyt5DMPE7XWgKhK5Yomh7gDhgJN0tkquWON/+e44papO0KcSC7v5dCbNcqIEgsVrxzu5eDuBx6Xg96iM9YeZXy/y/nV7Uxpv8/DqsQ4Mw+Ti5WW+dbaXlVSRq5MpImEnP3lzmF98bHv3yrLAD14ZpFyt4fOobOZrCALcuL9BNOwi4FF5/WQXd+czFKsa4YCD02MxLMtiZjFLPOKlLeDm7mIWpyJycjTSVAKxiIXdfO1UF+lsCVmRqdVNZtN5QMChSqxvlPj2uX6qdY2Q32krY4zHSWWq+DwOrt1LIooihXKDfKnO3FqBwa4AkihQqWk0NPtZN3RbJm8pUaRat/NK0OtgM1flyHAbF28lWEoWCfmdDHT6mVnKcn85x59/cwSXoLCUKPH7393HMAXCASdj/W3IkoDX6yBfanDucAdTC9mH86NHJZmp7NiUP26j/qyav4/KTU9qpvGsTXkvCjD/Q4sDQHwQX4nYKxENdvkfm6CeVzL8POJZEmyhVMehSETCbtKZChY2XzcScrWOvG/NbBAOukhnKhim1TqCf9bNwINJPRJ07rBDPjUaeWi8gc8WMY8KAhRKjccvXh4VMPnFxwu8f32VWsNAkQTGBsIEvA4qTY7tg7zr3Xh2R4fbEQWBO/MZ0pkKTlVirC/M0eF2xvttVYBrUynm1vJISh2nQ+aNE52YpsViokipaYwRb3PjcsjkSnU62twc6h1hbjXPcrJArlhrAQaHKoEFoiRQrmpggSQJqLJEsdqgJxZifMBEFNlxnLsF0D+bC/bx7vZGxbOH45w9Em+pdzwYW139qiLamsC6iaKI+FwKRwbbefvSEqWabUV85nAHTlWkK+rlZx/MMtwTbH3PzEqW4e4QDc3EpUq4nQqFSoNUtkK+3ODckQ6u3UuiGRZOVSLodVCsNHA7FSzLIp2t4HSI5Jq6r0eH2rl611ZlkE2Lhm7yzx/N8ZdvjaLIAtNLWU6NxbgxnbJtdEWBsf4QDkVivD+EAIz1hbh0O0GmWKM35uPEoQhgsZQoIIkiHpdMpapzdyGDaQUZ6QlRretU6hpdES+b+ZotuaeK1Bs6Gzmb3jHYFUaWBMIBB+sbFVwOkUjQRUe7F4CVVIlktkJnxIvf62BpvUhD0/jh64Pouslmvsa1qRRvnetD0y0+/nSdr53u5spkivWNKrdnU/zHHx1hOVkg6HWQylYI+33MLmdoCzrxuVUu30nQtuFCkUR64158bgfFikZys4KkiCyuFsmXGwT9Ol1RD9mibbErCgI/fHWQUrXBQGeAdK7M768lcagSm/kqrxztJJOvcnUqhSKJOFSJ777cT6mi4XMrXLqdoK/DNuBRFZmVVBHLsnW7FVmkXNUIB5xU6joep4LTIWOaFm6ngkOViYRE6g0Dj1OmLeji8p0kAGG/k1S2QrZQ5dhIhFszm1y9m+L4SIQrdxPohs2V3szXEIU833+1H0EQOX8kjs8tM9YXekC9JcZqusTF2w/3Tey2UX8wVw33PD3P9lnXkufVlPciF3m+ynEAiA/iKxGPSkT7SVAvavfrsyTYrSpBJOjC61JoaAZOh8x4n62huXWstv3ft47gn2UzsFtSH+zys5Is7ZDs2lqgdvubTKFGf4efWl1HN6yHFgVBEOzkblncXcxQqmj8/KM5+uIB3E6b2rCcKPJHbw7RE/PvOma78exuzWxwfCTCzftpu6mmSbOYWc4xPtBGOlfj8p2kDQaxNxgXbycY7Q+xmi4BIIow0OlHEOx793kcrfu8PpVClgTagy78bgVRFOmOednIVXE5ZfwelW++1INpWlydTJLcrFAsN3j9ZBf1hu3Y9eapboa7A3S2e0GAmWVb2WF9o9Q6DTBNi4X1wnaZ1R3PJ5WtohsGP/naMG9fWmCkJ4RhmBwZasMwTZLZCi6nQrGiUanrXLuX5CdvDpHOVnA7FS42m/pEAc4ejtMX99MecBHyOZicz9AWcPKj1wdZTReZWclyeiJGT9THaE+gyW1dotawedVvnuymVNHoifpYTZUQRfC4FMQtmoogkC9p3J3b5PuvDPDzj+a5NbPB6bEoo71h1jaK3F/OsZQsNZ2vDF491klP3MfZIzEadZO2oBPdtAh4FDraPC1KQjpXJRry8PalRTTD4thwO8uJImDbZffF/KRzFQa7AoT99nP88MYaM6s5LMviO+f7ubeQQjcsBrsCDHYF8DgV3A4ZSbDpDqmswD99MGdXiMMejgyFwbI4PGhLeTU0k6NDbVy8naA3FuTjT1cJ+V28d30V04RqfYm3zvYTFEUu30liWeBzK2i6STJTxaFKXJ5MIkt289krxztYSZYZ7Q/hdSqtSmFDN2mU6oiCQNDnaF1TvWEQC3u4NbPB0eF2Am6VH74+aDs2mnBvcZM3TvYAsLRe4JUTtgW3/R7C3EqOMxMx5tfyiIKA16nw0kTcljkL2g509YZOpmBzz8s1nU5FIuRzUK3bFX9bItECC0I+B7W6bjf1SRKWbGEhIInYCigBN2cm4iwni/z0d7PIkkBvzNeiOCDAT9+d2Rd/9vNQhXiWteR5cX9f5CLPVzkOAPFBfGVir0T0vMGuaZrMrRb2dGp7HrHbsdmTXv/2KoGtUdusKO7CnXY55Bb4CHidz3TtDyb1ck3j5x/O8/rJLmrZ6q5JfvvfVOs6iY0yqUyFN052tf5t++9vLWTvXV9hdjnH2ECIsb42Pr61hqbbhgunDkUxTGvPcduLZyeJAq+f7NqFV13HwiKZrbCcKuNwGAhAyO8kGnTxjZd6yBbr1Oo6C2sF2gKuh3iK54/EuTuf4b1ry7QFXVyfThH22892rC9Mvlyjsz3Azz+ex9GU6XI5ZT68scZb53rZyNUY6AxwfMRWT7kxlcLvVSlVGoz1tzWbAustbnax0oDm5merUn9tKsV711bJFGpNLd8Ork4mcKgSd+Y2OTkaIR5yYZgWJ0baKddsM4a5tRxBj5OPb63TaNi2zjbfNMV4f5jJ+U27+bCpIiJJIrpu8vKRThyqyGhvkK6Ij49u21XRhmZTH1ZTJUwsUpkKwz0B4m1eLk8mME1bqsyhSjgUgVJdZ/rOOn/8tWEM02KoK4DfJZIt1jBNkES7UnliJMKd2U02C7Yjm2FYXL2b4vBgmLWNMj63jm5auFSJekNnM1/D73XY0mXJAm+d66OuGViWiWXC+mYZRRLoi/uZXs5SaWhNwxGBG9NphnuCTC1kGej0EfY7+NrpHmaWszhU+4RANwyOj0QAmFrMMrWYY7ArwI37ac6Mx1hNF+nrCLCaLmNhN729fXkJVZHQDQtZkvjkXpLXjndSbxj0xHzMruYxDAvdNDk5GqE74mIlXeHirXX6435CfltCL7VZYazfNhfZLl/ocyv0NhsDVUXCpUpUGwZDPbY+9F+/PUWlbp+0nDvSwcxyluOHIhQqDfrjXjyvDPDpTJr7S1mqDQOvU+H4UIQTo1EkSeDmdNreTHpU+jt9dEW9XL2bpFLX2cxVeetsn90waVbRdBO3Q0YQBXxutdlk6MaybM61ZpitKnN70MVAVwCAy3eSTaBvNS2Wq4z3tz0Rf3Y/uuj7ieelPfw8ub8vapHnqxwHgPggDmJbmKbJby4ttowbZFHgB68N8O1zfc8NFD+vqsXjqgSf17Hag0m9oRk239S0djjAFcufJfntf9PQDCxsznNDszvCH1wUthayWt1WW2gPuPm7391HkkTARNctrt5L8q2zvXte5148u/agTYvYjX9XLDfI5KotJYAtaSbdgmy2SrVmV7bCQRfnHpA5EgSBroiX31xaahoPaJwZj1NvGPR3+qnXde7MZWloJgICXpfC+mYFAWgPuYi3uXnzVE+L7nJjKoWiSLx/fZW6ZlCt6/z49UEkUaSh28oM65sVfnNpqfV8z0xE+dWFRZZTJQqlOsdHIvzsg1kiQRelvEZnu4fr91IcHmyj2tC5M5/h1uwmlmXyJ18fYTGZxyFLVGoaFs2mMkVmejGLz2MrfLx/fQ1JEltH6XfmNvkPPzrM4cE2LMuiLxbgb96ZxrKgo81NR7uHK5NJvG6FroiXq3cSfP1ULxfvrFGtGSQzZX7y5gi/vDBHoazzj+/P8uPXh/C6ZA4PR9BMkXi7h6mFLKoicWsmTU0z8LgVgl4H//ThHNGQh1S2Yht7TG8QDblp6CbfPtfP+kaJeNhNZ7uXk6PtVGo6hVKDhm5imCZHh9s51BPCoYiksxUEbA3kck0jV6rz8pEOnA7bae2XFxYJeh281JTDczsUPp1ZptYwkSX7/SpVGsyu5rEsuL+UozvmpaEZttOc10EmX8PlkFEVqfXc/B5b5eRQb5CZlTyabtrKFqLA/eUcZw53Ikyu8/rJHpyqhNetspErY5gCN6ZTDHUF0HSTQ70hTo1GSOdqeJzKjmY0j1OhN+rj7YtLVOt2BV03LCbnN3nrTC/DvTYt5tKdFIZpUiw3ePV4J9Waztxqnm+e7eXs4RiCILScx2oNgwu31gA4MxFrvfvxsAvH4bhtBKParnj9HX5uzaSJt3kY6gkiCnDucJwLn67S0Ez6O9zNRlUXM8u5RyrN7Jc/ux9d9MfF86wyH3B/X+w4AMQHcRDbYm610ALDALpp8fMP5xnuDu1qZfw08Twlcx5VJXgcYH7aqseDSV1VJLxOuwK0tejIokBHu7cFGLf/japICIDY5LfCw4vCZ7qh9u9u5qqEA04KpQY0j1c7I14Uee9NytPwzovlOi9NxPng2gJgS68dH4nQHfEwu5Ij0dSVPXs4TqHceOg7C+UGhmmiyCKabnFnbpNyVWspFfTGffjcDnxuhWS2itE03KhUNUK+z04J8qUaLqfMe9dWWqwISRS4cGudl492sJGr7eqad28xS6mqocoiQZ89nsWyRizkRpZEFhMFhrtDfHxrnbsLWUQBXhqPM7Oc5Wfvz/Ln3xjhvWtrhP0uBCzaAi5W0iUM0+LWTJqAp5NsqY6m265h0ZCLkN+JqogIgkAqW2UxWeDMeIz2ZsPrby4t2vPNhM18jbn1AiYWhwfaEQRwOWRS2TJjfW32aYYq4XHJxNt9iKLIydEoqWwFhyxx/X6akN9Jsapx4lCE9c0yQa+TbKGGxyWjNer88NUBnKqMqkpk8hW+dbYPpyo1Nzx1fnVxsfW8pGbjWHvQSbZYZylRpKYZVJra05W6jkO1GwmvTCZxOxVMC67cSXD4h+P87IOkbQ7SbPa7OZ3iW2d7qdUNHIqtCRz0OQh4VF451sn1ewleP9nD5MIm6xtlDJOmtbGtZnHiUIS51YJt4S2JnDgUYXI+w+H+EGcPd/K3704jSxKCAD9+fZBb99P4fU5STXWFK5NJeuP+Pee+INjNa+1BF5phIos2lxhBoM3v4jeXFjEtq5VXEptV3jzVzVvn+neclG3lnGSmgm5YmM1csvUuez0OBruD9ES93FvMUG8YGKbJcI/d+HpnbpNqzbbL/su3RnA5nbhdCj1R3645ZnuOeJKN/n510R8VzzNf/yFzf18kB7+njQNAfBAHsS3SuWoLDG+Fbtrybs8LEH+Rkjl7AeZnqXo8mNQ9ToXvvzrAP7w3axtEAOGgq2nyEGq55W2nd8TbPfR3+FnfLLea4iLBz6gcWwuiyyETCbubHESD3rgfUbD1hB2qREMzSWYqe/LGn5R37vPYdrSvHI2jOlyoikih1KA74mO8P8xgZ6BFs7h4O0FXdOei6Pc6cDpskwILG/RLTSMRt1NiqCtAuapx7mgHP//IdqaTJIGXj3YQDbtazyZfapDOVilWNAQBuyFOFpvuYQ7ePNlNvrxzHqmyfWS+vlmmVjfQDZPRvjBO1f67clVjtDfMpcn1FvBAELg+neTYSIRP72+QLdY5ORrl1ky6aa7g4tShKIvrBfo6/KxtVBCasllgUW0Y9LrVFg2nUKojIFCuNQjoDpYSBXKlOj63ykhvkGgTmKeyFT6d2SAadqNKAqP9YT6d2USWBF451klfE9R9Noc9RENuDg+1s5Yuspous7iepy3g4tbsJoZp2Q2mwSD//NG8XSHWjCaFyLXjeHw3oAU2DeClZlOjbpjUGjo/eWMIRRYREFBk6bP3ByhXNZuyE3KTyla2Zh3tQRfrqTKFcgNBgK6Il0KpzqXba0TbPFRrDcb7w+TLDUzDwrAs23XPMBno8PPK0Q40w95wTC1lMEyTtpCHn/7DLVRFRtdNLMvi5x/N88dvDrGSLreua3se2W2Op7JVvC6V7piv1Yi7ZeZiWubOvCQIeN0K7QHnnrnvUQBPEARibR6iTT30revAsrh5fwPTstjI1bAsnduza/R2+Pn0/kbLcOlRn2vfm5dUptoyuNnr+vari75XPG+awx8i9/dFcvB7ljgAxAdxENtiqzN/OyiWRbtx7XnFi3Bs9ixVj92Seq5Yozvm+4yz6JB3LBoP/o3Po7CaKnFvMYvSJjK1kMHlkFsJdPtCGwm6sLD406+NcH8lh0MWyRTrdIfcXLi1tmtT3vZrfRLeeTTk4sRolHcv3KW/14Ommxw/FMHEBt4PxoOLYjTk4s2TXZSrGomNMg5F4sxEjJBXpVIzuHR7HbdbQREFfvBKP6lMlaDPwcRAiHypDk0oPTm3yaG+EDfup6jWDSzLrtZW6zr5ks0bDnidO+ZR0OfgwxurnB2Pc+H2GpYlcHs2zU/eHObtS4tkS3U6Im5iYQ9mU1LNNO1jc5pqAgBr6RITg20ossj5w3E+uZek1jCwLFhJFXn9hO2at3X8fPJQpAVet+Z2X9zParrE3Gqe1090oukmH3+6htsh0xXxMtwdxOWQKVc1vnmujxMj7ZweiyJLEtGwa9fj7O1W5NnCMncXsqhyvmXYYVNhkrT5nTZHeJfGw0jQyZmJGNNLWRTZ3uycGI1iWiY1zcC0LN5o8ssFAbqiXtr8rlaDoLENWImiQLzNxWhfmLpm4lRl5lezeF0KHo/KQIePw0Pt5Eo1FtaKvHGih5nVPA0Dbk6nOTLY3nJdnF/L8/qJbk6ORtnI17ZRtkT+8q1RDMPE5ZCRJdvG2wZ4gv3stsX2PLLbHN/+XnldCrph8ubJLnpiXtLZKqWKhmmaKPvUD98PwHvwOizLal1D0Ofg7YsrdMZCrZyxlYce97nLydJjAdjnrYv+NPFV4P4+abX3D8Uo5AAQH8RBbIvBLj8/eG3gIQ7xYJf/uX3Hi3Bs9qxVj92S+oOcxQcXje1/k8xUuHQnueMatifQ3RbaLWm3tXSRRKZCoVjHqToecud7lhAEweZgbua4MWtrHudLDY4Ot+NUJGqasef9bf396TFbcWFto2QDvJCTYkXjf7x7n94Of6vB6f5Knu+/3Ee5pvP762vU6jpOh8xLY1EkSeTjm6t8/XSvDSSdcrPi2UG2YMvbDfcEd8wjTTfxeR0UK3XOTsQxmha2C2u5VvNie9DF5HyGsN9Jb8zHykYZGXA6Jf74a0M2t1bTmVnJcf5wnEpN58RoDK9bZby/jSt3kwjQAo0OVeLwUNtDvPVP76e4N59hYrDNVipYLRD229W6zjYPxYrGj14f2tG0Gm/z7fsZHR6y3dfqDQO3U6Ir4sOyLHqjHrwe145msrWNku1A6FVZTha5MpmkXNPQDZPXjne1OLeiINDQzR1H//0dAaIhF4VynWpdt8fatIi3ewh5ZEZ62/jrt6do6BYOReTPvnmIqcVNVtNVzhzu4O3L8zhVlfWNMkNdQaJhmyseDbtZWC/YbohAvN3DQKcfSZJ462wv3VEfyWyFWMjNeH+I+bUiTkWyc5IkomMiNjnrqWYj637yyMPvlcJSosg7V5YxTJOgV2npS0fDbr7/Sv9j89L2jUoqW2VmOfdIELX9GuZW83S2u3cUHLbnob2A45MAsEfpou8H+L0I+fpp42kaxJ+m2vuHYhRyAIgP4iC2hSiKfPtcH8Pdoc9NZWIvsPdF8q/8Xtt0oN4wWhQA3bCeuurxpIvGfhLoXhWuO7Mb/PzD+T3d+Z410rkaV++sEAq3ta7r1swGZyZiLc7uo+5v66g41vbZMX2hnMXnVu0Kb7lhUx+8DgQEfvfJComNMnbND0JelanFLIWKhrmYob+pDXt0uI21dLn1nB6cR4IgkC81bCWPZvOf36NimDa3uVjVmFnJcmIkyuxqDrdTZqI/xOmxGIZpcm8hw0qqzLkjHZimRbmm8Te/vY8sC/zkzWFeORrH7VS4fCdBKlu1x6A/TjS004779FgUpypxZy5DrlhnrD8M5FAkEZ9LRRAffxT/uIiG3Ax0Brh8J0GutNVQGOPuzAoux2fOZplCjZmVPMlMhVjYzd0FezOw9e9btJ7HHf2fHI3SFfVy8lC0dUQ/u5rjp+9OI4oiLoeAZVn89J1p/tMfHWEhsczfvzfD6dEYH326Rsjn4O5Chj/52hAdEQ9hv5P3rq+2NkFvnuwCAaaXMuRLDdtOWzOYWshSaxicPNTe2qiXarYKxg9eGWB+zZZEC3ht2sp+3Sa3AOyHN9f4m7enmrxpjZePdDDaG7ItrC0IeZ2PBbjwZCBqOwiNBF3Igrnj3/dTfX0SALZXFRvY1zV/UTSH583BfdoG8aep9r4Ip57PIw4A8UEcxAMhiiLDPcHnxhneLbaDvS+af2VZFsvJIncXMjuaxI4Mtj111eNJF42nTaCPc+d7HlEo1VtH40CrQU03TL59rg+w8HmebMGy5dJqO4BvvN2DYVmtn4F9up8vNZBlCQGNfLlBuapRrGj0xHwteshOfq09j8ymYsKHN1ep1Q1yxRonRqPcmtmgrptEAk68ThlNN/izr4+wtlGmo83N7EqeXLlBNOwmU6gztZjl8GAbH91cp9bQ8Skqv76wwFhfeN+a3xMDYd4638s7l5ep1XWGewK4nQqRgJNcqfFMm6+t79htU7m5ucFc0mhxzvs7/GQLtnFFvWGQ2Ci3JAjh0Zzbhzep7h1c5GtTKWoNG8xtp1OUKxqyKGIaFpWahmGYhHwO3KqMx6USC3uJhjz0xPwt45nVdImfvjtDuaaxtF7gpYl4S1t4C4x8+1wf3VEf9xYyuF0Kyc0y5ZrOlckkf/qNkSfeDKayVT68abtYmqaFYVhcuL3O2Yk4jYZBTTP5m3en8bnVx+ak/YKoB3OdU5E4eqiDtc3GE1VfnzR/7La5TmYq+wZ+nzfN4fNYA562Qfxpqr1f5Sr69jgAxAdxEF9yfBH8q+3VB0EQuHwn2aqUNTSDdK5KV8S7I/k+acXiSRaNp02gD7rzOVWJvg4/Aa8Kls2LfdZNhN/rQGraEauyiEOV+eD6Kr0d/pbO63a5tX2NkwD9HX5STcdAURTo7/CjiALiNjAFIEkiLqdM0BdoHf2Lgq12EW1W9narul2bSjO1kKE35iOdrXJqLEqxXOPUWIyrkzZn1ONSOXs4higILCWKZIoNPrq11qwYWZwZj7OaKrKcLFFr6LicTd7qtsbS/TxjQRCIBl2cmYhhGBbTSzkyhSxup/zMm6/t3/HgtcS8GicPj+6QBGvoNmjdssZuaEYLEO/Fud0PQAn6HLQHHPR1BBAFMC2YX8vhbL5TsizgUOzNlNMh4/epu35XMlNpua5tSRhemUy0aC7bwYhDkUg8wGV/2qNpW5JMbPGhAQzDso1BvA4+/Gie3ubpxONy0n5B1IO5rqYZTM9v8idvncCyrH1XRp8HAHuRjvk/jzXgaRvEn6ZY8YfSLHgAiA/iIL7keB6J+VGg7MHFPeRzkMxWiARdO6plhXKjdcz/eVetnzaBbnfnC/sduB0K16ZSNDSTmeX8c7nGaMgGcnNJg6DPwQfXVwk3x+rBhWq/41QoNajV9Rb3doumQtMJ7vKdRIsCEgk6OTlqW9xuNQCdPRznyDau7oOxfUFNZiuspErMrOT4xkvdAHz7fB8hn5ORnuBnxi0eB//9t1N4XCqSKKAbJrdnN3jlWCfZYh2fR0WW7KPVJ2kstSyL2ZU8dxeyhPxOfnVhYYf82G6br+cVpmk+JAm2FblinbOH46Rzn3GE9wJR+wIopsH3Xh3g738303qmf/r1EaaX0qRyFX78xhAfXl+hK+Klo93D2cMdu37X9vd/S2Zwu0b3djDyPI+m/V4HHqfS2ly6nDKabjLQFaBQqhPw2YorwENNsrt91n6ua7dcV6nrWJbFSG9o39f+PADYi3TM/3mA86dtEH/azcZXoVnwcXEAiA/iIL7keNbEvDsoizUXi0azIvzZ4q7IIplcFa9L2bVSBl9M1fppEuj2ZB1t8/DB9VWiYTcu52dgNeh1PFG1adfralYa51bz9HYUdzQLbl+o9jtOfq8D3fhMqxXsMY+3eTFMG3DUGwYO1ZZmO3EowqHe8L4X+91AlSqL1DWLj26uYpoWQz1BnA6ZaLNp0bIsgl4HWrtJOlNpVQv7O/10aQZzK7knbiw1TZNP7qW4NZOmWNHIF+utf6vWddoCTlvyatvm6/OKBxd23bA4Mthmy6CVG48c1/0AFJdD4vq9FLGwG82w8Dhl0tkK4wNR+jvCiKLFv/rOOE5FojPibY37g+H3qNQ1w1ZBkEWiYTfFcoNwwEmtrnNiNLrDDfF5HU3vpjhx7nCc3piXTKHOhVvrbOZrLamyWMi9Z07a73Xtlusk8elA6LMCsBfpmP/zAOdP2yD+h1LtfZo4AMQHcRBfcjxrYt4NlP3i4wXG+8MkM5UdFWGwK2UvTcRZ2ygBu1fKnqRi8UULsvdEvUhinHJVt1UbtoHVZLbCpTvrZIv1Z6pqb1UaAe7MbuD3qq0qYKHUaC1U+x2nPZ9x2FYc6Io+vPg8uNg/apwftOmOhN20+51cu5fENK2W9up2sL692u51KTQ0A6dDZrwvTCTkYqAzSDpXJRp04XHLzK7kH/l8Lcvio0/XdzRpvXW2l2pdw+d2tGSvvqgq3KMW9seB8f0AlGxJZ22jzEBnAEWR6I54+c2lBWZW8ggCHB+JsJJKYgLnD3eQL9cfanyzLIvVdIlI0MXlOwkqNZ2gV+XYSDv3FjY5M9HBqdFI6/efZ0PuXuOTylb5/SernBqLcWXSPrnI5Kp860zvnjlpvyBqt/fgzETsSwGhTwP8Pq9c93mA86dpEH/w/oZ7gv8igPBWHADig/gXH1+2w87T7si3rntuNU+5prWAYbWuk9goM9gZAB6uCDd0E1Ew+PNvHNqzkrrfisXjKAPPc2wf/K5Y2E21ru+470yuijIQBp5PVTsSdNId8z5UZWkPOEhmKpSqDWJhN9lCrcVVFQUBQRC4v5TdlxkI8NhK11bl9UH93NNj0a3BYWIwTDpbJVuoEQu5GekNUqzYzXK7NZE9aJbicSocHW6nWLF1joe6Awx1B/jkXopfNx3MHrXJ2N6kJUu2GcjvPlnhuy/3c3UySSTsbnGwH7fQ72fe7PY7D8bTVhG3xubGVAq/V23ZIm83j5FEu3nw4m1bT/eTuwlOj8Wp1hpU6gZX7yZ5/UQnmUKd/+0fb9MX9+NQJU4einB4KAyWwNpGidnVPIZh8vLRDlKZCpIk4veolKr6DnOb3e7paahNu43b9s8vlOoPaTKrikhH26Otjvcz1ru9B2uLU18a6HqS+fF50sg+r6rskzSI/6GYazxLHADig/gXHS9KEnjShXv7dbcHnSytFwgHXUSCtgbrdlvk3SrCJ0ajDHUH9rzHBysWTkXi+KEIhXKNYrmBaZlNdzJrT8pANOR6rmP7YCU8W6jR3+EnnaviUCR0w+SlibjNzW3GdgD4IBDY0jXebQESRZFkpkIqU+HOfIbeuJ+Gbje4rSRLfHwrwa0Z220r07wO0NENi8EuP7//ZJmaZjx0z3u5Bj4K/G2vvOrbpOZuTKXoiXpZTn1mUFDXDE6ORDg81AYW3F/K7bmp2b4I50u1ltzXzfvp1nX3RL37ps5sb9KyAKcqoxsmDc3gP/zoMKoi7ksabD/v5F6/Iz0neURBsPWoq3WdD2+utvSot8ZMEARURWI5WcTtUFBlCRC4t7jJq0c6SWTLRENuLAty5TqmaZLOVcmX6iwmCpSqGjfup5FFgbWNMmcm4qxvlJhdLQAQ9jtb410o1VuV2wfnyJNSm/Yztlub4Qc1mX2e51PVf/A9WJk3H/MXL0bsNdbPStHaii+bg/uHYq7xLHEAiL+C8WVXNP+Q4quYBEzTZHI+w8Janv5OP5l8hZcm4i0lAUkUeeNkFwGvA8OwkCSBak1/ZEX4wdgOlorlOuubFW5Op1EUiauTCcJBF7GQm7G+ELIkkC9rO1zqCiUblO5Ximk/8/lBeoJdkdX59tk+nKqEIAj8/pPlVqUWPgOAW0Bge8Wvs93DUqJIsartAAYAyZLChXfv4/eozC7niIQ/Mw/we1U+vLmKz62iyiJjfSEqdZ0z4zH8Hge/a4LhR93z9nt/HEDZXnmFz6Tm3jjZxdpGaccYOxSJe4tZDg+1Ew0//hh2axEG+O3l5YeelSTG902debBJywKcisRwdwinKu1bqm4/7+Rev3Nm+PkdvadzNW7NbDRtqh++jmq9QcDrYKAzgCSK9NV15ley1HQdj1Phyt0k0aCbRKbMmfE4t+c2aOgGboeLck3D51JoC7jYzFW5Mpng5aMdzK0WdmxmRUHA71H3nCNP2oy1n7F9kbi1X1bstnleSxfJFmutHAfPj6L1ecST4ATLskhlKvg9aqvht6GbX5rqxpcVB4D4KxYvSkXzeceXBfI/b+kdy7IwJc9Dx+dPG1ti63//+1nypTqyLPKDVwYAg6+d7sHrUqjUNLKlOj/7YI6w34kAfO+V/ifmj20/Sv3NpSXag07ev76KYVqkMxW8LoXr02nCASfzq/kd+rp+j7qvsX2S+bxVuZIlgaDP0XJKi4ZdxMIeLMsiV6rvupCnshWWEwX8XgeJzTIzK1kyhTo/fn2Qumbs0HsFuDKZJBRua0l1bd2vy2F34suS2JJk2xqT9Y0y5yb2DyBhfwDlwcor2KDYvg7pkd+332PYHU15Td3lhmaCRcuhb+vnmm626DDbP2u3Jq0TIxFmlrNcn07t+zh/I1uhJ+ZtWhTDZr5KQzd3jOFec6vWsC22nzaPbH8Hag0DWRJo6J99z/ax9btVgj4HV++lME0LRRY5MthGb9zHf/3VFNGQG1kWkSWRyflN+jr8TC9m6Yx4+PDGKpv5Gn6PyunxGNMLGSzLfnf6O/zktgEshL03lk/ajLVfQ5wXoanqSV3WntcasltOGuzyU63prG+UW5x8r1MhV6gR8juxLFvW78ZU6rHFlC9irdutAHCoN8TpsehDY7j1u+9dX2F2OYe4ZXbUPPF6Xnz/r0Ih7wAQf8Xiq1jRfFx8mSD/85Te2bqvX11aJRSu7du96VHJYktsfet6dd3k5x/P86+/M0a5qnF7fpOeqJdr91K4HDKVms5gZ6C5sNT2nCPbn4EsCYT8ToI+Bx1tHgSwgYFmosoifR1+DNOiLeAkV6rjdSktLd0tfV2E/Y3tE1mwhlycPxLn9twm719fbVnoDnT6iYZ2t3veqmrdmd3k41vrrKRKiCKcGo1RKm9w8XaC80fiO/ReAUzT5iQvJQqcGo02pd0MPE6FQ70h8qUGQZ+jBYbtMRK5fj9Nb8xHcptW7LMClN0qr7Io2A5rYdcjx3i/x7DbNxtbIN80bQm3wwNhkpsVEISWBF2+1OBsaedcfnD8tyr2T1Itvzmd4t5SjvevrWBa4HHJnDwURazrO8Zwt7nlVCRKDYmfvnv/qfLIg3morhnNUwF9Bz986zpqmslqqkylpmGaoMgCmUKNgMdBV8RLsdIgmalQrGhkjDovjUeRRIv5tQK55jyzsN3yXj7WybGhdt462wsCrcbNaMjFzHJuzznyoH3346q5+813X/bx/ZO6rD3PNeTBnFSuafz8w3m+/lI3ZybiXJlM2KosEQ/nj3Tw7pUlyjW9RWUqlvcupnxRa10qW+XGVApFkVo56uKtdWoNg9eOd+74rq373a7vvmV2NNAZeC4nA1+VQt4BIP6KxYskJv68dnxfJsh/0uPBJ7nnrfvaMl3Y675M0+SjT9f58OYqbqdMZ7uXSMjFeF/4IammLbF1uWneUK3p6LpJpaoRCblIZio0NBOj+TsAFtZj58jWtW4Bol9fXKBc1emOepkYCONzK7idCv2dfi7dSWAYtq7s6bEYfrfC918dIF+sI0kCuWKdQqmxr8X6SS1YuyJefndthY52T+vo8vKdJD0xP7HmWO3mSHX9fhpNN7EsC8OAq/eSHBtqJ52rPqz3alnUTYlks+q9ni5zejzGieF2OqM+IkEngiAwtZhpgeHItsa1SMhFugmwnwdA2a3y+trxrtZisn2MtzjEYJLcLD9WXuzB75hfy/PetZUdyhRzqwXeONnFP30411L12Gsubx//+0vZFhiGzyrPc6v51nfuXJgrLCVL/POHc9QbBoZpEcXFrZk0f/bNQzvGcLf39vihCL/6YJJQ+OmaKh/MQw5FYmG9wHh/mGyzEhgJubAsk2SmTEOz/7cv7seyLJyqzGKiQDJTIZkt4/c4UGQRoQJel0ytYXKoJ8y9hTmCPielcgPTBNO06Ip4duhMb3fEe9QcedJq7udNh3iaNWGLr7/9b57UZe15riEP5qRaXcflVFBVibhT4UevDZAp1BnpCfLXb09RrumAfWpzdTLBq8c69/zsVKbCe9dXWoordv56/mudPZZqCwyDPYYf3lx9qElz+/1uV5wZ7g5w4tDzAaxflULeASD+isWLIib+PHd8jwNFn+dRy5MsKE96z09CGfibt6dQZJHeuJ9fX1xAlSWGeoK8ebJ7x+dvF1t3qraLmCgIjPWHiQRdTM5lUBWxZSUrwL6krrauNehz8u7VZUoVDbB5up/cS3F6PEZbQGZ+rYBpgssp09BM7sxtoukGk/MZzkzEqVc+O2bbz9g+8ZFvuYFDkXAo0p5jutu9ORSJgNdWhrAsC8u08HtVEptlmxbxAL2iv8PPp7M5DNOirptIokBn1Nv6jtNjUYJeB0vJor05aYLhumbQ5nfu2+J5PwDlceN4eixKT9TL3cUM6WyVxUSBlXSJhfUCYb9zX+/m1ndIIkwvZXfwJO3Gwaptl/3ZsD/2Hd3+bHc6/hW5PpV6mCudsRVT9OZ4C4JAtlAn1uYh4FV3qJYUy3WCHpWXj8aRJZs2ky/VMcydDVpPUizY7X0N+50MdwfIFpxcv58muVnm/eur9Hf4Gery0RZwsbheQFUkGrpBR5uHak3j9Ficm/fTOFUZwzCZGIkwu5ylJ+ohEnRRrGh4XErrpGW0d295q8fNEcuyKJYbbORrCILQ2rA96jl/HnSIp1W82OLrb/8bTTeeyGXteRaKts/bjVyVzXyNVLbM9SmF9XSZicE22vwOJEnA7VYp1/QWXSwcdGFauzcJWpbF3cUMs8u51u9v9SY874KW32tTm7Y7YG6dYj34XQ/m4C3Fmc6I77mtsy9SIe9RcQCIHxEvIuflRWl4eJ47vkeBomcF3vvhoe33eDCVrTC/lt/RePCoe966r+2xG2VgeimLbloMd/i5PGlXX30egVpdf+jzHxRbdyoSP3htgImBcKtaeGMqxZlmk1046NqX1FWrs1wz0ZrHw4IgIIkCDc1CkUScDolI0EUk6EbTDfLlBnXNQJJEzGaj14PHbI8b2yedz0+zIfxMb9eJYQZIbFaQJYFoyMWx4Qgdbe4dwLVQarCZzT/kKlcoNVqVO0GwZcneOtvXuvYttYkLt9bRDYvzR+J43Qo3plMt0LZF7diK/QKUR42jIAggCEzOZTAti852NyupMj6XQsjnoFzV9vVuCoJAZ8RHyOfcMb6ZQo3yA/zJSND12Hf01Gik9Wwf5/gHoBsGggCSJGAYFk03YWRRIOB17uBFPtjcefZwnJ6Yt2W5vd+5sds8MS2Lal1v6TL73CoXbtlHyluShoVSndG+IId6g6iy2FL/6Iv7kCSJel1jvC9ER7uHZLbK7HKWYlWjPeAi3uZhKZlAN0CWYLw/TKWqP/K57DVH9qIWvHW2l418fdc59TSKNvtZB/e7Jmx9Xqlcp1BpUKiJ9Hd6SG6WKdfsnPfGya4ncll7noWirZz03vUVCuUGm4UqJw9FuTW7Qa1h4F6T6WzvRJEkoiEXDlmi2tBxqTJBn9qaqw+OWSpbJZ2ttuhlFpBuNrI974JWNOTiUG+Ii7fW0bedYnmcykPf9UVgihelkPe4OADEe8SLynnZkgMKeh07QN7zvKb9JMDnueN71Au5xYVqDzpb4GQ/jQvw5Dy0R4VlWdyZ3eS9aysti90zE3Fo6Hve89Z9/fL9DWBvAwxF/qyiazStZi3Lruw+OKaPE1vfrgzx6rFOtuTR9ndkHmNqKYcg2NrF4YDLBryigEOV6Gz3EWyCpXypTrVu8+ZCPgcDXYGnOmZ7nke+e+vSWoz1hbh+P0087Cbkd7akyR4EqNB0ldsmOaXKIiG/k1LV5oRufW4qWyXoVfn2uT6KlTozK/mWHrEqi9ye2+SfP5wnsVlGFJv2y4NtnBx9shzyJO/jljvdpTvrGIaF36Pyxslu3E5pT6rCo8a3rhn0d/hJbJQ5f6SDm/fT5It1XKrMt872ABaTc5vMrmbpaHcjSyKabrTe0a1n+6Dj3w76hGWBAIosUa42ODMe58rdBA5Z4shQO0dH2sGySGUrLZnB7c2dDlni7cuL/Pk3Rjg7EWc2qe9rbmyNgWEY3F3IspGvMtIb5MKn6zue2Wqq1Gqua2gGTlWiO+qjVtfpi7sZ7w9TqGj43QqlSo1C2W7STGeriJLI5TsJ/F6Vb5zuoVLXMUyT75zvZ32jDALcnk0zMRBugmoRsGxlCwGK5QYgtN7jB40StlMLbIk7i99cXESVbbWR/axde42NZVkkMyWu3dvg8mQCVZYI+lTOHu546LMsy2ItVSSdrSCIAi5VAgFqdYPJuQ3mVmVEBHo7vKynyySzFap1g99fW0bT7Xn72olOvC6Jtc0qTlV8Ipe1vfJCJOh8ZJPlXvd+eiyKQ5GYWsywmChwZ3YT3bBQZYlipcHCeoG1jSLdUR/35jOtazw20kcmX+HGdJLbs5uYFi2KU7zNRbZQ482TnZgW1Br2XOpq9zw1+Nzr+rfuodYwWrKBexVGvogmyhelkPe4OADEe8SLynmxLItrU+nPDajvdyPwPHd8j3ohi+X6jsaA/TQubMWT8tAeFalslev30/axMZ9JX715qnvPe966L6veRTAc25MyUCg1ODMRJ1+yObimCfE2m5O625g+Smz9WZphREHA7ZD45pk+Lt1ZR8A2H3hpPMZQV4DBLn8rqamKhCwKLd3fZzlme5JrflTj3G721aIgcPG2zY3ujfn25GZvj2jIxZmJGHNJW2XA6ZC5u5AhmakgCnYTnp0Pkq3vGusL7TDnCPocvHt1GacqY2HPly0DjK7oZzlkP8YmT/I+Bn0Orkwm2WIOiKLAJ/eSDHYGmF0t7EpVeNT41hoGF26tAeBQJXpiPnTDpD1oL+53ZjdxOmTeu7bKRr6KIoucOxynPehqvaNb93p9KvUwfSJe5O3Li/R3+DEMk754gJVUkR+82g+IzCxnmVrIcH8p15L42+LIA1QbOqlshbpmcOlOgqgf/vTrwzu407vPDXsMTNPknz6c42/fnUHXTc4diRFrczHQ5cehSOSKda5OpVqNkqoi0dfh58rdJK+fiLOSsvjPv/iUhm6hygJ/8vURuqMePri5yivHOmloOsdHIkiSQKJpuvHRp+sAvDQe587sBooski3W+OjTdTL5Ki9NxElsluiN+TBMuHR7fUclfPuz2+opqDV0qk0u63B3kHeuLtHR7gUevXY9qrp/bSrF9XspfnN5yeZzh1wUK3Yu2v5Z9mckuTW7yfRyFtOE9pALRRKp1hvcX8nx9qVF2oNuQj4Hne0eOtrdvHNlhbWNMlZzQ6RdNfnaqS4EIF9q8NbZ3n27rO2WFyJB5yPXyse9W9Gwm3uLGe4v56jUdWRJpFbXkSVHsxDg4qMba5w/2oFlQUM3+PjmGuWqxs8+mEOWREI+J5ph8jdvT/Fvvj9u66WbAr++OE9Ds1AVgT/7xshDii37icddvyiKvHa8k0O9occC3c+7ifJFUS55XDwfFfMnjNHR0X89Ojo6OTo6en90dPR//TKu4XHxqArolxl7AfWtatYX9flbO74tSsCz7vi2XsiRJuH/sxdF4OrkZ41pW40LNiPq0bG1WGyPLR7ak8YWDzUSdre+2TQtIiHXI+9ZEAREo7zLfdkRDbk4MRpF0wy6ox5+9PoQ4/1h4mH3F7qLTmWrXLydYDVdpliu88rRDo4fivAffjDBd873cXLUlus5PRblT78xwh+9Mci//cEEWlOy7Iu81t3mym7z9r3rq8yu5jEti4Zuy3FNzmWgWUF55Od7Nf70GyO8fLSTdK66wyhhdjXPe9dXd3zX9ftpQv7PXMwamolu2KobW2GYFvWGsSOHPO59e9L3UdNNKnWdaMiF22k3QiY2K6iqtIOq8Kh8sX18o2E3erOB8uNP17m7kGFmOcdKssTP3p8jEnZz836aZKaCpptousWlOwk2czW2v6Pb80XQ52jRHRAgsVHm8p0EHpdCuaYx2B3kUG+Y9c0y4YALmhvvrTHe4sjrhkmtbpvQSKKAIotcvJUAQXjs3Ngag7sL2RYYBqjUDH5zcYmFtQKprC335lAkIiGbIuJyyLidCm1+J/WGxd/9/n5Llq2h2/+tKjLnDncwtZBhM1fn2r0Uk3ObdEd9LKzl6Yn5ME2Lq3cTHB1u5+unu7kymSRfqqObFhdureFUZdK5Gjfvp+2clalQrmkPPbstCsEWGLYfIOiGTfvYir3Wrr3GZm61wG8vL5PO19ANs1WJzBUb5IqNh+bwe9dXuX0/zZlxWyauWtNJ5yq8caKH315eoq6ZZAs1csU6711bwe91sJou2dQBy1Z1WU2XcDrsPoWlRJGNvK2i8fLRDoZ7go891XswL6RztWd6t6IhF0NdAV451onXrSBgO0qO94cp1zQsC0o1nYX1AuubZW7PbjK/XqTWMNB0i0JZYzPfNA0yLeZW8xzqDfHzj+ao1Q1M05Yv/PWFReaahixPEvvJDXuvq198vEjXsld84RXi0dHRLuD/BpwG6sDHo6Ojv5uampr8oq/lUfGicl4+b3L6fj//i9rxmZZJOOhqyU09rnFhe2xvQNuKR/HQHhWf8VA/68J1OmTG+8LPdM8Pj6PK109171sd4HnF9ue+3aHK61Z3dLxvryRYlkVv3P9C7Ph3m7e1uk69Yez42X7fFdM0iYXdrY3Q9qg3DGp1fcfPt0DTlrqEQ5XoinjYzNdav7NFPdmeQx73vj3p+7i90Q8LCpUGAa9KyOdoPdMnyRdbQPZBRQ0LC920qFQ1qnUdhypRrRstFQ9VlXa8o9vn+Xb6RL5Ub1XQG5rZ2rh0R30PjfvWGM8s5TgzEefjT9eIhFzohsmZ5kmFYT58b48aw2S20gLDYOd4UYRKXSe07WfjfWHG+9tsOTnscc2VGjS0nZ/b0Gwt7JmVHPNrBd4618upsSh+t0KxXKdU1ckVa/R1+DFNiyMDbXz46QqbhRohn72h+qwZymqdOFhAQzNapjfbewq+93I/f/PONLpuIssix4baefvyUuv3t+5ht7Vrr7FJ56qUaxpuh4wsCeiGZWuqWxYN3XhoDtfqOpWGwVKiwEtjUQJem7uezJSpNbZk9+zP1gz7WYuigGl89t2SKOBUbWv5cm1vKtp+41nfLUEQODkapSvq5eShCPlyg6WE3Y/i9zhQFRFZtB0LG5rRlJ2056kkgoaFYdI62RRFweYaO2RMxd4sy5L4yGbBZ7m/g3jy+DIoE98C3p2amsoAjI6O/i3wZ8D/9Uu4lj3jReW8fN5A/Uk+//M+ZgEIeJ3EQu4WCFUVCY9TadoGPzoebEB7HA/tUbF9PmzRA84ejhN9Dve+2zjG2jyP+IvnH08zr76I57/f2FWX1iHjUHeCqid9V3b7XIcq4XTsTJ0Pgia/V2Wg088vPl4gsfEZH3Woa6eu5+PG/Unfxwcb/URJYKQnuMPO+knGYDeg7XLIVOs6sijgdikteT+3U0ZVRByKRNjvfOgd3ZovsI0+oUgI8JA721bT3oP3vTXGxXKd02NRbs9uIIpCy1lLEh++t0eNYUwzkGWxBYrvL2U5e7iDRlMurpX3t0n6Wdb/v737D46jPu84/r473S/L2BjiH1h2sCHw2MaAHYEhiW0ITZ0SkgwUmg7QaSltSCAhybRDJxNCY5qhMylNQkibeNoyYZKpm0ySaZvJH23DQGsopcQi1JiBBzPhR2zLxiDLsqTTne5H/9iVcsj6cZJl763v85rx4N3b2312n9Px6Otnv1vjivXLqFYrzMmlGBz69S9dc3LBDCiZthSVWpV9hwb4vz2H+Oimc3jGD9KezzBYLFMcHqRSCY7Z/VaBZQvn0jdQAhi9pyCRSJBpS1Iarkw4W0wymeSytYtJp5MMDA4zJ5+m58gg7161aPRfwib7f9dE12ZheDPuntd7uGT1Ena+cIBKFdKp4CmYYz/DuWwbCaBQqvDia4c5d9l8ug8FU9KNFNTJBCRIkMukSAJXrF/Gjl/spVytkU4m2Lx+GYNDJRJwzC+OMzEbP1tBzttHH/yTy7TRe/RAWHiWuGbjytHR3UzYLrRrzyE2XLCEJ3d1k0oG69faIvr6S6xZeSa5cMR4xPEO0jTboF2cRVEQLwW665a7gQ0RxDGpZu15OdGFerP9IjC2EJ1OPFPdgDYdzfp5mC3NlvfpGi/+K9Z3kEwkGp4TuNH9ntsxn5VL572th3hs0RS8dw7LF53G/jf7J5xlYqrrPt28HPM5bc+w71A/T+0+AMystWm8Qrs9l+aajSs5+NYgF5+3kEqlSm9/iTm5tnEL/4muaT7bNu7T2er71Se6xrVajaFS5W3bXLpm8THHnewavmN+lhuuetdo20SpUmX1itPpXLWY/sHyuD/nI9f4wFt93HDVefz4sT0USzVymSQf3Xwuz738BolElRu3rGL/m/1sXt/BwZ4BPvTec+h68SArz5pPoVhm07oOCsUSN/6m8cv9R0gfLtDTW+CSNWeN9hCfMS832kM80U1Rixa0s/D0AV7Zd4BqzyDJRILL1y6hIyyyJ/uumujanNMxjw9sWE7fQJGXXuuhc/Vilr5jLmcvmcvGizuO+Qxfsb6DgcIwB94cIJtOsfiMOZyzdD7Pvfwml65ZwjMvHgwe9jM3w3pbyFPPd7Pq7AVc2bmcciX4RWbRgjw7X3hjys9Po074z1bYp3yod4gj/UP09ZfY86vDvPR6L8XSUbZseCcL5gVT4B3uG2KdLWL1igUnZJAmjt/ZzShRGzPkfqKZ2d1Azt3vCZc/DnS6+ycne19XV9cK4JUTH2HzSyaTlBN5BoYqtOdStNUKVKtTtxA0y/7jHs+pKu7Xebz4geM+pxO138n2X7+v483LbOV17H4yiSKlWpahUpVcPs9AoUxbKkE+XSFZGZz0GPX7mptPBTfQDpbfFl8jcTd6bpNtl8lkKNTm89bRImeeliWfOEKpVGromixatIjuvhRv9BY4c16eeTk4fLREOt1GIlljsFCBWoV52QqpWoFhsvSXUmTSaSrlMvl0mTTBdSyUquSyOYrFIfLZJIlEgsGhCtlsjqHiEPlMckbnN5WJ3ptMJqml2jkylCKRTDI3C+lqH+XysVPEJZNJKsk8/cUUbakEczIVEokEQ8MphqttJJMJypUy87MValTpKyTJZ1Mkkm0c6R9i/twc5eFhqrVaQ5+fRp3on62xx6qm5lAYTgVzsedq1Kgd87lua2ujyGn0DgxzenuaLEfHvaazcX4yoZWdnZ2vjl0ZxQjxXmBT3fISYH+jb167di3ZbGv+k0BXVxednZ1RhyHTpLzFj3IWT1HkbflJPdqpp6uri84Lz486DJmmOH5HFotFdu/ePeHrURTEjwBbzWwhMABcD9wWQRwiIiIiIid/2jV33wfcDTwGPAtsd/enT3YcIiIiIiIQ0YM53H07sD2KY4uIiIiI1IvkwRwiIiIiIs1CBbGIiIiItDQVxCIiIiLS0lQQi4iIiEhLU0EsIiIiIi1NBbGIiIiItDQVxCIiIiLS0iKZh3iGUkDDz5g/VRWLxahDkBlQ3uJHOYsn5S1+lLN4ilve6urH1HivJ2q12smL5jh0dXVtBB6POg4RERERia1NnZ2dT4xdGacR4p8Dm4BuoBJxLCIiIiISHyngLIJ68hixGSEWERERETkRdFOdiIiIiLQ0FcQiIiIi0tJUEIuIiIhIS1NBLCIiIiItTQWxiIiIiLQ0FcQiIiIi0tJUEIuIiIhIS1NBLCIiIiItLU5PqpNxmFkKeAS4y913Rh2PTM7MDNgOvADsdPcHoo1IGmFmK4AvAr3AL939W5EGJA0xs9uB9wF5YJm7XxZxSDIFM1sH3BkuPu7uD0cXjTTKzN4H3AX8CviJu/8s4pCmTSPE8fcFYH/UQUjDNhJ8YRSA/4k4FmncnwKvAfOAJyOORRrk7t92998DXgdujjoeacglwHrgncDLEccijftd4Avufidwe9TBzIRGiGPMzK4Hnid4PrfEwxPAvwJ9wE+A34o2HGnQecA24FXgH4FrowxGGmdmFwJld1dxFQ/PA1eGf/8OwXemNL8HgS+b2UGgPepgZkIjxPF2A7AF+DDw2YhjkcZsADLuXgLKUQcjDTsA9AODQCniWGR6PgE8EHUQ0rDPh//tR4M9cbIU+DPgT4BixLHMiEaIY8zdbwQws63AT6ONRhr0IvA1M+sD/i7qYKRh94d/eoCHIo5Fpme5u++LOghp2DbgYYJ+/W2RRiLTsR/4OjAE/G3EscxIolarRR2DjGFmI32KH3b3V8N1NxHc1JMGHnD3WH7gTlXKWTwpb/GkvMWPchZPrZQ3tUw0GTO7jKBn6vy6dR3AfQQ3ZK0DbjOzNZEEKMdQzuJJeYsn5S1+lLN4arW8qSBuPh8HPsXbZ474APCou/e4+wDwI4L+YWkOylk8KW/xpLzFj3IWTy2VN/UQNxl3/2OAYLraUUuB7rrlboKbs6QJKGfxpLzFk/IWP8pZPLVa3jRCHA9JoL7ZOwFUI4pFGqOcxZPyFk/KW/woZ/F0yuZNBXE87AXOqltegh7G0eyUs3hS3uJJeYsf5SyeTtm8qWUiHh4BtprZQmAAuB64LdqQZArKWTwpb/GkvMWPchZPp2zeNEIcA+EcmncDjwHPAtvd/elIg5JJKWfxpLzFk/IWP8pZPJ3KedM8xCIiIiLS0jRCLCIiIiItTQWxiIiIiLQ0FcQiIiIi0tJUEIuIiIhIS1NBLCIiIiItTQWxiIiIiLQ0PZhDRESOi5mtAP4IeC/wF+7+X9FGJCIyPZqH2vwGgwAAA8ZJREFUWERkGszsQWBzuLgGeAUohMvvcffCOO+5BrjM3f98in3/J/A37v6jcV47G7iXoOgcBtLAD4Gt7j48s7OZOTP7HvAVgqdVPQl8D7gIeBdBUfxdM7sWuNDdv3yy4xMRmQ61TIiITIO7f8bd17n7OmA/cPPI8njFcOhS4IyZHtPMOoCngP8GzN0vAN4NrAK+OtP9Hkc8HwOOuPtu4FrgZ8C3whhvIfzXR3f/F2Czma072TGKiEyHWiZERGaJmd0D3AiUgZeATwNnA58EUmZ2BPhL4NvAecCZwFHgJnf3SXb9eeDH7v73Iyvcvd/MPg3cEB77FoK2hXaCYvX948Xj7gfM7LeBLwJVoALc5e47Jlo/Tjz3Ar8T/n0vcAewPIzrCeCJum0fAr4EXDfJ+YmIREojxCIis8DM/hC4GrjU3S8CdgMPu/v/AtuAH7j73eE2ve7+Hnc/H/g5QeE8mU3Av49d6e7d7v7NulUXAFeGxfC48YTb3Q/c4e6XAPcAV06xvv481wL5cHQYd/8hwejwd4E/MLN7zay97i3/AVxtZvkpzlFEJDIqiEVEZsfVwHfcfSBc/gbwG2aWqd8o7A9+2MzuNLNvEBSdc6fYdwIYveHDzO4ys2fDPwfMbKQdY5e79zUQz/eBfzazfwAWAH8VbjPR+nqrgJfHnNPXgfcDO4CLCYrjkdd6gCGCkXIRkaakglhEZHakqCtaCb5f2wiK2VFmdjtBG8EgsB34p7HbjONJ6kZr3f3+uj7mxfz6u7y/kXjCkeqNwE6Cnt8d4X7HXT9Gre54mNk1ZnZVuPgK8Flgy5j3lAlaMEREmpIKYhGR2fFvwK117QKfAXa4e5GgIEyH6z9I0ErxEODARwiK18ncB3zMzH7fzFIAZtYW3twGQc9vQ/EAFTN7FZjj7tsI+n8vMrPsROvH7NeBc+uWVxHMNjHSEvEhYNfIi2Y2H8gBr09xjiIikVFBLCIyOx4CHgGeNrMXCGaBuDl87VHgg2b2TeCvgU+Y2S7gceAZgqnKJuTue4HLCUZvf2FmzxG0LVwHXB62JTQUj7uXgc8B283sGYKp224NC/eJ1tfHshsomNnqcNWDwLPhsT4VnvOtdW/ZAvx07H5ERJqJ5iEWEZFpMbObgI3ufkfduhXALe6+dcy2jwKfc/ddiIg0KRXEIiIybWb2feA+d39ukm2uA9a5+5dOXmQiItOnglhEREREWpp6iEVERESkpakgFhEREZGWpoJYRERERFqaCmIRERERaWkqiEVERESkpakgFhEREZGW9v9mFJ8rzS5YhQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Total Gross vs. Popularity\n",
+ "plt.figure(figsize=(10, 6))\n",
+ "sns.set(style='whitegrid')\n",
+ "sns.scatterplot(\n",
+ " data=merged_df,\n",
+ " x='total_gross',\n",
+ " y='popularity',\n",
+ " alpha=0.6,\n",
+ " palette='deep'\n",
+ ")\n",
+ "plt.title('Total Gross vs. Popularity', fontsize=16)\n",
+ "plt.xlabel('Total Gross ($)', fontsize=12)\n",
+ "plt.ylabel('Popularity', fontsize=12)\n",
+ "plt.xscale('log') # Optional: log scale for better visibility\n",
+ "plt.tight_layout()\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Analysis of Total Gross Revenue by Studio\n",
+ "\n",
+ "This analysis focuses on identifying the top-performing studios based on their total gross revenue. The process includes calculating the combined gross from domestic and foreign markets, cleaning the dataset to remove entries with missing values, and aggregating gross revenue by studio. \n",
+ "\n",
+ "We then isolate the top 10 studios based on total revenue and visualize their performance using a box plot, providing insights into revenue distribution across these leading studios. This visualization helps in understanding the range and median gross earnings of the top players in the industry, highlighting studios with consistently high revenues.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAI0CAYAAACUFOOKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABxVElEQVR4nO3dfXzNdePH8feZ2RjKDhtXKhkh93dFcrGZzU1WEpVTpCRyF1e5uaQoKUZRKqHcXFdNloqUm91k5CZFSRa5WW6L4Uw2Znfn/P7w27mamxnO2fecs9fz8bgeV9+ds+/e5+w4O+/v5/P9fE12u90uAAAAAABQrHyMDgAAAAAAQElEIQcAAAAAwAAUcgAAAAAADEAhBwAAAADAABRyAAAAAAAMQCEHAHgcLhACV+M1BgAoDhRyAECxGDNmjOrUqVPo/2bOnHnF/SQkJGj8+PFX9bNnzpyppk2bXvF+NptNS5Ys0WOPPaZWrVqpYcOG6tixo6ZMmSKr1XpVP7O4HD58WHXq1NGqVauctk9n/a6uV0ZGhsLCwi752LZs2aKePXuqcePGioyM1JIlS664v+zsbM2ZM0ddu3ZVo0aN1KJFC/Xu3VurV68ucL89e/bo8ccfv+78F/5uivo6BACUHL5GBwAAlAyDBg3SI4884tgePXq0qlevrkGDBjm+VrVq1SvuZ+HChQoICHB6vqysLA0aNEibN2/WI488on79+qlcuXLauXOnPvzwQyUkJCg2NlaBgYFO/9nuxlm/q+uRkZGhQYMG6Y8//rjotn379umpp55SWFiYhg4dqg0bNuiFF15Q+fLl1alTp8vuc/To0dq0aZMGDhyoOnXqKDMzU/Hx8Ro2bJjGjx8vi8UiSVq1apV++eUXpz+mnj17ql27dk7fLwDAc1HIAQDF4tZbb9Wtt97q2C5TpozMZrOaNGliXKi/eeutt7RhwwbNmzdPrVu3dnz9rrvuUqdOndS1a1fNmjVLY8eONTBl8TD6d/X9999r/PjxOnny5CVvnzNnjqpVq6Y333xTJpNJbdu2ldVq1bvvvnvZQn748GGtWLFC06dPV5cuXRxfb9++vc6cOaOZM2c6CrmrVK1a1eUHMgAAnoUp6wAAt2G32xUbG6uoqCg1atRIkZGRWrBggeP23r176/vvv1dSUpLq1Kmjw4cPS5K+/fZbPfbYY2ratKkaNmyo+++/X3FxcUX+uWfOnNFHH32krl27Fijj+apUqaJBgwapYsWKjq+1b99e06ZN00MPPaQWLVo4cu7atUtPPfWU7rrrLt11110aOXKkTpw44fi+s2fP6oUXXlCbNm3UqFEjPfDAAwWyXun2yzl06JB69+6thg0bqnPnzlq+fLnjtu7du2vAgAEF7p+VlaXmzZvro48+KurTVMCVfleSVKdOHX3yySd65pln1LhxY7Vv375IP2/w4MGqXbu2Pvjgg0vevnHjRoWGhspkMjm+1qFDB+3evVvHjh275Pfkn3Jgs9kuuu2pp57SU089pZycHM2cOVPvvPOOzp49qzp16ujzzz/X5s2bVadOnYtGzVu0aFFg6v7PP/+sXr16qXHjxoqKitKvv/5a4P4XTlnPycnRnDlz1LFjRzVs2FBRUVEFfm+StHbtWnXv3l2NGzfW3XffrX//+986derUJR8jAMDzUMgBAG7jzTff1IQJE9S+fXu999576tSpk6KjozV9+nRJ0vjx41WvXj01a9ZMixcvVnBwsLZv366nn35at99+u9577z1Nnz5dZcuW1XPPPVfk8743btyorKysQqc7P/HEEwWmbEvS/Pnz1bZtW02dOlVt27bVzp079fDDDysnJ0eTJ0/W2LFjtWXLFj322GM6e/asJGnKlCn67rvv9MILL2j27NmqWbOmnn32We3bt69It1/OjBkzVK9ePb333ntq3Lixnn/+eW3cuFGSdP/992vDhg1KS0tz3P+bb77RuXPnCowWX40r/a7yTZs2TQEBAZo5c6YiIiI0ceJExcbGFrrvjz/+WG+99ZbMZvNFt509e1apqamqXr16ga/fcsstkqT9+/dfcp9169ZVlSpVNH78eE2ZMkXff/+9srKyJEmNGjVSv379VLp0afXs2VM9evRQmTJltHjxYoWGhhbp+Th8+LD69u0rf39/vf3223rwwQf173//u9DvGT16tN577z099NBDmjVrlpo2barnn39en376qSTpyJEjGjJkiJo1a6Y5c+Zo9OjRWrNmjV555ZUiZQIAuD+mrAMA3EJaWprmz5+vfv36acSIEZKkNm3ayG6368MPP9Tjjz+uWrVqqXz58goICHBMn96zZ48iIiIKLPR200036YEHHtDPP/+ssLCwK/7sI0eOSNJFJc9ms100ourr+78/nTVq1NCQIUMc20OHDpXZbNbcuXPl5+cnSWrQoIGioqL02WefqXfv3tqyZYvuuecede7cWZLUvHlzVa5cWbm5uZJ0xdsvp0uXLo4C+M9//lP79u3T7Nmz1bp1a0VFRWnq1KlavXq149zw5cuX65///OclS++VFOV3lb/fkJAQvfHGG5Kktm3b6s8//9T777+vhx566LL7r1279mVvy8jIkCSVK1euwNfzt/Nvv5Cfn5/mzJmj559/XvPmzdO8efPk5+enFi1aqGfPno4DE/nTyn18fK5qiv5///tf+fn5adasWSpbtqzatWsnu92uyZMnX/L+v/32m77++mu9/PLLjt9JmzZtlJGRoTfffFPdu3fX9u3blZ2draefflrBwcGOx5n/egUAeD5GyAEAbuHnn39WTk7ORaPU9957r3JycvTzzz9f8vsefPBBvf322zp79qx++eUXLV++XB9//LGk86tqF0VeXp4kFZgCLUn9+/dX/fr1C/zv76PuNWvWLHD/H374QeHh4Y4yLkm1atVSnTp19MMPP0iSmjZtqtjYWA0cOFCLFy9WWlqaY1Xzotx+OR07diywHRYWpu3bt0uSzGaz2rRpo6+//lqSdOrUKa1bt073339/kZ6fC13N7+rCEfjw8HAdOXJER48evaafnX85sgt/V/lf9/G5/EebunXravny5Vq0aJEGDhyoevXqafPmzRoxYoSee+65a8qT78cff9Sdd96psmXLOr4WGRl52ftv2bJFki56Drt06SKr1ap9+/apQYMG8vPzU8+ePTVlyhRt3rxZ7du3V9++fa8rKwDAfXhFIc/IyFDXrl0d5xJeztq1axUVFaWoqCg999xzOnPmTDElBABcyV9//SVJqly5coGvV6pUSdLlRz7Pnj2r559/XnfeeaceeeQRzZ492zEVuajXkr7pppsk6aKRxxdffFFLlizRkiVLCoyEX5gt3+nTpy/6Wv798vOPGzdOgwYN0p49e/TSSy8pNDRUw4YNK/Ltl3PhzzWbzTp79qzj+x544AH98MMPOnr0qFatWqUyZcqoffv2he7zcq7md5U/svv3XJKu+Tzo8uXLS9JFf8PzTwmoUKFCod9vMpnUrFkzjRgxQosXL9a3336rzp0766uvvtJ33313TZmk87/7C1fgDwoKuuz9//rrL/n6+hZYl0D633OakZGhW265RQsWLFDdunX10UcfqU+fPmrXrp3i4+OvOScAwL14fCHPX0DlcueM5Tt9+rTGjBmj6dOna/ny5apbt+5F57kBAIyTX0z+vgDa37cvLC75Jk6cqA0bNmjOnDn66aef9NVXX2ngwIFX9bPvuece+fn5KTExscDXb7vtNjVs2FANGzZUtWrVrrifG2+88ZIrg584ccKRv0yZMho2bJgSExO1cuVKDRs2TGvWrNHUqVOLdPvlnD59+qKf6efn57hEXFhYmG644QbFx8crLi5OnTp1kr+//xUf06Vcze/q7+etS3I8P9cyVV46P2U7KChIhw4dKvD1/O3bbrvtkt83efJkde/e/aKvV6pUSRMnTpSky56nnz8a//cDPHa7XZmZmY7tihUrXvS7v/Cx/92NN96o3Nzciw5MXPgcNm/eXLNnz9b333+vWbNm6dZbb9Wzzz572cXrAACexeMLeWxsrMaPH1/gCPzSpUv1wAMP6P7779fYsWOVlZWl/fv366abblKtWrUknf9gkpCQYFRsAMAFGjZsqNKlS2vVqlUFvr5ixQr5+vqqUaNGki6ekrxt2zb985//dJRq6fyq61LRR8hvuOEGPfbYY1qyZIk2bNhwyfvs3bv3ivtp3ry5EhMTC0yV37dvn3bv3q1mzZopLy9PXbt2daxGHhISomeeeUZNmjTRn3/+ecXbC5P/mKXzjzs+Pl533nmn4/ny8/NzrL7+/fffX/N0danovytJSkpKKnCfxMREhYSEXDRyfjXuvvturVmzxnGqgSQlJCSodu3aF43a57v11luVnJys9evXX3Rb/kH9/HPXL3yN5Y/Kp6amOr62bdu2Auf1t2zZUps3by5wYGTdunWXfQzNmzeXpEs+h5UqVdJtt92mTz/9VOHh4crJyVHZsmXVvn17DR8+XHl5eRRyAPASHr+o26RJkwps79mzR7Gxsfrkk0/k7++vN954Qx9++KEee+wxHT16VLt27VLdunW1cuXKi47sAwCMYzab1bt3b3344YcqVaqU7rzzTv3www/68MMP9cQTT+jGG2+UdL4879y5U5s3b1bjxo3VsGFDffPNN/riiy/0j3/8Q999950+/PBDSdK5c+eK/PNHjBihQ4cOqX///urWrZvat2+vG264QSkpKfriiy+0bds2hYWFOcrZpQwcOFCPPPKI+vfvr759+yo9PV0zZsxQtWrV1K1bN5UqVUqNGjXSu+++K39/f4WEhOjnn3/W1q1b9fLLL1/x9sJ89tlnCgoKUoMGDfTpp59q7969eumllwrc54EHHtAnn3yiatWqqUWLFkV+bi5U1N+VdP5AwSuvvKL27dsrKSlJ8fHxmjFjxjX/bEnq16+fevTooWeffVY9e/bUpk2b9OWXXxa63wcffFBLly7V4MGDZbFYdPfdd6tMmTJKTk7WBx98oPDwcN15552Szr/GMjMzlZCQoEaNGqlOnTqqUqWK3nrrLfn6+iojI0Nvv/12genxjz/+uBYvXqz+/ftr4MCBOnr0qN55553L5qlbt646duyoyZMn68yZM6pTp44SExP19ddf66WXXpKPj49atGih48eP69lnn5XFYlFOTo5mzZqlm2++WXfcccd1PYcAAPfg8YX8Qps3b9aBAwccq7fm5OSoXr16uuGGGzRlyhS9+OKLstlseuihh1S6dGmD0wIA/m7kyJEKDAzU4sWL9cEHH6hatWoaNWqUHn/8ccd9+vbtqxEjRuipp57SwoULNWbMGJ07d06vvfaapPMLrb3zzjt67bXX9NNPP+mBBx4o0s/28/PTO++8o5UrV+qzzz7ThAkTdOrUKVWuXFnNmzfXv/71L7Vs2bLQfTRo0EALFy7Um2++qWeffdax2vbIkSMdRX7cuHEKCAjQ+++/r5MnT6patWoaPXq0evbsWaTbL2fcuHFavHixZs6cqZCQEM2ZM8cxCpuvSZMmuvHGGxUVFXXRomhXqyi/K+n8Nb537typQYMG6dZbb9X06dMLvbxcUdStW1ezZs3StGnTNGTIEN100016/fXXHSvTX4q/v78WLlyoDz/8UPHx8frkk0+Ul5en6tWrq2/fvgUWSrv33nu1dOlSDR8+XM8++6z69++vGTNmaNKkSRoyZIhuvvlmjRw5UrNmzXJ8T6VKlfTRRx9p0qRJGj58uKpWraqXX35ZgwcPvmymadOm6a233tKCBQt06tQphYSEaOrUqbrvvvsknV/F//3339fbb7+tYcOGSTo/Ej9t2jQ+wwCAlzDZizqfz821b99e//nPf5SYmKhDhw5p3Lhxks4v+pKXl6dy5crp999/d0xZ3759u8aNG6cvv/zSyNgAABSb7du3q2fPnlq9evVlz7V2pjp16mjUqFHq16+fy38WAACeyOPPIb9Qy5YtFR8fr5MnT8put2vChAlauHChTCaTnnzySR07dkx2u10LFiy46FIsAAB4o19++UUzZ87Uv/71L4WGhhZLGQcAAFfmdVPW69atqyFDhujxxx+XzWbTHXfcoaefflo+Pj565ZVX9NRTTyk7O1t33303R+wBACVCZmam5s+frxo1amjChAlGxwEAAP/Pa6asAwAAAADgSbxuyjoAAAAAAJ7AY6es22w2nTlzRqVLl77ulWIBAAAAAHA2u92unJwclStXTj4+F4+He2whP3PmjHbv3m10DAAAAAAAClW7dm1VqFDhoq97bCHPv/5m7dq15efnZ3AaAAAAAAAKys7O1u7dux399UIeW8jzp6n7+fnJ39/f4DQAAAAAAFza5U6zZlE3AAAAAAAMQCEHAAAAAMAAFHIAAAAAAAxAIQcAAAAAwAAUcgAAAAAADEAhBwAAAADAABRyAAAAAAAMQCEHAAAAAMAAFHIAAAAAAAxAIQcAAAAAwAAUcgAAAAAADEAhBwAAAADAABRyAAAAAAAMQCEHAAAAAMAAFHIAAAAAAAxAIQcAAAAAwAAuL+QZGRnq2rWrDh8+fNn7JCUlqX379q6OAgAAAACA2/B15c5//vlnjRs3Tvv377/sfU6cOKEpU6a4MgYAeIzExETFxcU5ZV9paWmSpMDAQKfsLzIyUuHh4U7ZFwAAAFw8Qh4bG6vx48crODj4svcZN26chgwZ4soYAFAipaWlOUo5AAAA3I9LR8gnTZpU6O3/+c9/VK9ePTVu3NiVMQDAY4SHhzttFHr06NGSxCwkAAAAN+XSQl6Y3bt3Ky4uTgsWLNDRo0eveT87duxwYioA8B7p6emSpK1btxqcBAAAAJdiWCFftWqVjh8/rgcffFA5OTlKTU2VxWJRTEzMVe2nQYMG8vf3d1FKAPBcsbGxkqTmzZsbnAQAAKBkysrKKnQQ2bBCPmzYMA0bNkySdPjwYfXp0+eqyzgAAAAAAJ6q2K9D3r9/f/3yyy/F/WMBAAAAAHArxTJC/s033zj+e+7cuRfdfvPNNxe4DwAAAAAA3q7YR8gBAAAAAACFHAAAAAAAQ1DIAQAAAAAwAIUcAAAAAAADUMgBAAAAADAAhRwAAAAAAANQyAEAAAAAMACFHAAAAAAAA1DIAQAAAAAwAIUcAAAAAAADUMgBAAAAADAAhRwAAAAAAANQyAEAAAAAMACFHAAAAAAAA1DIAQAAAAAwAIUcAAAAAAADUMgBAAAAADAAhRwAAAAAAANQyAEAAAAAMACFHAAAJ7JarRo1apSsVqvRUQAAgJujkAMA4EQxMTFKTk7WokWLjI4CAADcHIUcAAAnsVqtSkhIkN1uV3x8PKPkAACgUBRyAACcJCYmRjabTZJks9kYJQcAAIWikAMA4CRJSUnKzc2VJOXm5mrNmjUGJwIAAO6MQg4AgJOEhobK19dXkuTr66uwsDCDEwEAAHdGIQcAwEksFot8fM7/afXx8VGvXr0MTgQAANwZhRwAACcxm83q0KGDTCaTIiIiZDabjY4EAADcmK/RAQAA8CYWi0UHDx5kdBwAAFwRhRwAACcym82Kjo42OgYAAPAATFkHAAAAAMAAFHIAAAAAAAxAIQcAAAAAwAAUcgAAAAAADEAhBwAAAADAABRyAAAAAAAMQCEHAAAAAMAAFHIAAAAAAAxAIQcAAAAAwAAUcgAAAAAADEAhBwAAAADAABRyAAAAAAAMQCEHAAAAAMAAFHIAAAAAAAxAIQcAAAAAwAAUcgAAAAAADEAhBwAAAADAABRyAAAAAAAMQCEHAAAAAMAAFHIAAAAAAAxAIQcAAAAAwAAUcgAAAAAADEAhBwAAAADAAC4v5BkZGeratasOHz580W0JCQm6//77dd9992nQoEH666+/XB0HAAAAAAC34NJC/vPPP6tXr17av3//RbdlZGRowoQJmjNnjr788kvVqVNHM2fOdGUcAAAAAADchksLeWxsrMaPH6/g4OCLbsvJydH48eNVpUoVSVKdOnX0559/ujIOAAAAAABuw9eVO580adJlbwsMDFRERIQk6dy5c5ozZ4569+7tyjgAAAAAALgNlxbyokhPT9fgwYNVt25dPfDAA1f9/Tt27HBBKgDwfOnp6ZKkrVu3GpwEAAAAl2JoIU9NTVW/fv3UqlUrjR079pr20aBBA/n7+zs5GQB4vtjYWElS8+bNDU4CAABQMmVlZRU6iGxYIc/Ly9PAgQPVuXNnDRo0yKgYAAAAAAAYotgLef/+/TVs2DAdPXpUv/76q/Ly8rR69WpJ50e7CzvvHAAAAAAAb1Eshfybb75x/PfcuXMlSQ0bNtSuXbuK48cDAAAAAOB2XHrZMwAAAAAAcGkUcgAAAAAADEAhBwAAAADAABRyAACcyGq1atSoUbJarUZHAQAAbo5CDgCAE8XExCg5OVmLFi0yOgoAAHBzFHIAAJzEarUqISFBdrtd8fHxjJIDAIBCUcgBAHCSmJgY2Ww2SZLNZmOUHAAAFIpCDsDlOKcWJUVSUpJyc3MlSbm5uVqzZo3BiQAAgDujkANwOc6pRUkRGhoqX19fSZKvr6/CwsIMTgQAANwZhRyAS3FOLUoSi8UiH5/zf1p9fHzUq1cvgxMBAAB3RiEH4FKcU4uSxGw2q0OHDjKZTIqIiJDZbDY6EgAAcGMUcgAuxTm1KGksFovq16/P6DgAALgiCjkAl+KcWpQ0ZrNZ0dHRjI4DAIAropADcCnOqQUAAAAujUIOwKU4pxYAAAC4NF+jAwDwfhaLRQcPHmR0HAAAAPgbCjkAl8s/pxYAAADA/1DIiygxMVFxcXFO2VdaWpokKTAw0Cn7i4yMVHh4uFP2BQAAAAAoHpxDboC0tDRHKQcAAAAAlEyMkBdReHi400ahR48eLUmaMmWKU/YHAACAksVqtWry5MkaM2YMC6YCHowRcpQYVqtVo0aNktVqNToKAADAdYmJiVFycrIWLVpkdBQA14FCjhKDP1wAAMAbWK1WJSQkyG63Kz4+nsEGwINRyFEi8IcLAAB4i5iYGNlsNkmSzWZjsAHwYBRylAj84QIAAN4iKSlJubm5kqTc3FytWbPG4EQArhWFHCUCf7gAAIC3CA0Nla/v+bWZfX19FRYWZnAiANeKQo4SgT9cAADAW1gsFvn4nP8Y7+Pjo169ehmcCMC1opCjROAPl7FY4R4AAOcxm83q0KGDTCaTIiIiuOwZ4MEo5CgR+MNlLFa4BwDAuSwWi+rXr88gA+DhKOQoMfjDZQxWuAcAwPnMZrOio6MZZAA8HIUcJQZ/uIzBCvcAAADApVHIAbgUK9wDAAAAl0YhB+BSrHAPAAAAXBqFHIBLscI9AAAAcGkUcgAuxQr3AAAAwKX5Gh0AgPezWCw6ePAgo+MAAADA31DIAbhc/gr3AAAAAP6HKesAAAAAABiAQg4AAAAAgAEo5AAAAAAAGIBCDgAAAACAASjkAAAAAAAYgEIOAIATWa1WjRo1Slar1egoAADAzVHIAQBwopiYGCUnJ2vRokVGRwEAAG6OQg4AgJNYrVYlJCTIbrcrPj6eUXIAAFAoCjkAAE4SExMjm80mSbLZbIySAwCAQlHIAQBwkqSkJOXm5kqScnNztWbNGoMTAQAAd0YhBwDASUJDQ+Xr6ytJ8vX1VVhYmMGJAADOxMKdcDYKOQAATmKxWOTjc/5Pq4+Pj3r16mVwIgCAM7FwJ5yNQg4AgJOYzWZ16NBBJpNJERERMpvNRkcCADgJC3fCFSjkAAA4kcViUf369RkdBwAvw8KdcAUKOQAATmQ2mxUdHc3oOAB4GRbuhCtQyAEAAADgCli4E65AIQcAAACAK2DhTriCywt5RkaGunbtqsOHD190286dO9W9e3d17NhRL7zwgmMKCAAAAAC4ExbuhCu4tJD//PPP6tWrl/bv33/J20eOHKmXXnpJq1evlt1uV2xsrCvjAAAAAMA1Y+FOOJtLC3lsbKzGjx+v4ODgi247cuSIzp07pyZNmkiSunfvrlWrVrkyDgAAAABcMxbuhLP5unLnkyZNuuxtqampCgoKcmwHBQXp2LFjV/0zduzYcU3ZjJSeni5J2rp1q8FJAHgz3msAAADcm0sLeWFsNptMJpNj2263F9guqgYNGsjf39+Z0Vwuf2p+8+bNDU4CwJvxXgMAAGCsrKysQgeRDVtlvWrVqjp+/Lhj+8SJE5ec2g4AAAAAgDcyrJBXq1ZN/v7+jqmUy5YtU9u2bY2KAwAAAABAsSr2Qt6/f3/98ssvkqRp06bp9ddfV6dOnXT27Fn16dOnuOMAAAAAAGCIYjmH/JtvvnH899y5cx3/XbduXS1ZsqQ4IgAAUCysVqsmT56sMWPGsAovAAAolGFT1gEA8EYxMTFKTk7WokWLjI4CAADcHIUcAAAnsVqtSkhIkN1uV3x8vKxWq9GRAACAG6OQAwDgJDExMbLZbJLOX96TUXIArrJv3z716NFDKSkpRkcBcB0o5AAAOElSUpJyc3MlSbm5uVqzZo3BiQB4q6lTp+rs2bOaOnWq0VFKFKvVqlGjRjEDCk5DIQcAwElCQ0Pl63t+vVRfX1+FhYUZnAiAN9q3b58OHjwoSTpw4ACj5MVo3rx52rFjh+bPn290FHgJCjkAAE5isVjk43P+T6uPj4969eplcCIA3ujCUXFGyYuH1WpVUlKSJGnNmjWMksMpKOQAADiJ2WxWhw4dZDKZFBERwWXPALhE/uh4vgMHDhiUpGSZN29egXVCGCWHM1DIAQBwIovFovr16zM6DsBlbr311gLb1atXNyhJybJ27doC2/mj5cD1oJADAOBEZrNZ0dHRjI4DcJmRI0cWug3XMJlMhW4D14JCDgAAAHiQmjVrOkbJq1evrpCQEIMTlQzt2rUrdBu4FhRyAAAAwMOMHDlSAQEBjI4XoyeeeKLAwp1PPPGEwYngDSjkAAAAgIepWbOmlixZwuh4MTKbzY7LWYaFhXFqEpzC1+gAAAAAAOAJnnjiCR07dozRcTgNhRwAAAAAiiB/4U7AWZiyDgAAAACAASjkAAAAAAAYgEIOAAAAAIABKOQAAAAAABiAQg4AAAAAgAEo5AAAAAAAGIBCDgAAgGtmtVo1atQoWa1Wo6MAgMehkAMAAOCaxcTEKDk5WYsWLTI6CgB4HAo5AAAAronValVCQoLsdrvi4+MZJQeAq0QhBwAAwDWJiYmRzWaTJNlsNkbJAeAqUcgBAABwTZKSkpSbmytJys3N1Zo1awxOBACehUIOAACAaxIaGipfX19Jkq+vr8LCwgxOBACehUIOAACAa2KxWOTjc/7jpI+Pj3r16mVwIgDwLBRyAAAAXBOz2awOHTrIZDIpIiJCZrPZ6Eglxo8//qiuXbtq27ZtRkcBcB0o5AAAOBHXZEZJ07lzZ5UtW1adO3c2OkqJMnnyZNlsNr322mtGRwFwHSjkAFyOgoKShGsyo6RZuXKlMjMztXLlSqOjlBg//vijMjIyJEkZGRmMkgMejEIOwOUoKCgpuCYzShpe88aYPHlygW1GyQHPRSEH4FJ8WENJwjWZjcNMHGPwmjdG/uj45bYBeA4KOQCX4sMaShKuyWwcZuIYg9e8McqXL1/oNgDPQSEH4FJ8WENJwjWZjcFMHOPwmjfGmDFjCmyPHTvWoCQArheFHIBL8WENJQnXZDYGM3GMw2veGM2aNXOMipcvX15NmjQxNhCAa0YhB+BSfFhDScI1mY3BTBzj8Jo3zpgxY+Tj48PoOODhKOQAXIoPayhpLBaL6tevz8GnYsRMHGPxmjdGs2bN9NVXXzE6Dng4CjkAl+PDGkoSs9ms6OhoDj4VI2biGIvXPABcOwo5AJfjwxoAV2ImDgDAU/kaHQAAAOB6WSwWHTx4kNFxAIBHoZADAACPlz8TBwAAT8KUdQAAAAAADEAhBwAAAADAABRyAC5ntVo1atQoWa1Wo6MAAAAAboNCDsDlZs2apR07duj99983OgoAAADgNijkAFzKarVqw4YNkqT169czSg4AAAD8vyIX8uzsbP3+++86ePCgcnJyXJkJgBeZNWtWgW1GyQEAAIDzrnjZs127dumdd97RunXr5O/vr1KlSik7O1thYWEaMGCAateuXRw5AXio/NHxfOvXrzcoCQAAAOBeCi3k7733nrZs2aIePXpo0qRJuvHGGyVJGRkZWr9+vSZNmqQ777xTQ4YMKZawAAAAAAB4i0ILee3atTVo0KCLvl6+fHl16tRJnTp1UkJCgsvCAfB81apV05EjRwpsAwAAALjCOeQdOnS44g6Kch8AJdeYMWMKbP/73/82KAkAAADgXgot5MuWLdPnn38uScrMzNSwYcPUrFkzWSwW7d+/vzjyAfBwNWvWdIyKV6tWTSEhIQYnAgAAANzDZQv5Dz/8oPfee0+33XabJOmDDz6QzWbTV199paioKL3wwgtF+gHLly9Xly5dFBkZqY8//vii25OTk/Xggw/qvvvu04ABA3T69OlreyQA3NaYMWMUEBDA6DgAAADwN5ct5O+++65uueUWbdy4Ue+8846WLVum8uXL6/PPP9fJkyeVkpKid955p9CdHzt2TNOnT1dMTIyWLl2qxYsXa+/evQXuM2nSJA0bNkxffvmlatSooQ8//NA5jwyA26hZs6aWLFnC6DgAAADwN5ct5E2bNlXdunXVvXt3tWrVSna7XcOGDdMDDzygzp07q3Tp0urevXuhO9+4caNatWqlihUrKiAgQB07dtSqVasK3Mdms+nMmTOSzk+LL1OmjBMeFnAxq9WqUaNGyWq1Gh0FAAAAAC6/ynqPHj308MMP68SJE/rpp5/Up08f3XTTTfruu+/0xhtvKDQ0VDfddFOhO09NTVVQUJBjOzg4WNu3by9wnzFjxujJJ5/Ua6+9prJlyyo2NvaqHsCOHTuu6v7uID09XZK0detWg5OULF9++aWSk5P19ttvKyoqyug4gMvxXmOM9PR0LV68WA8//LAqVKhgdBwAAODGLlvIq1Wrpk8++UQJCQkKDQ1Vp06dJElZWVnq0qWLevfufcWd22w2mUwmx7bdbi+wfe7cOb3wwgtasGCBGjVqpPnz52v06NGaM2dOkR9AgwYN5O/vX+T7u4P8gw7Nmzc3OEnJYbVa9fPPP8tut2vbtm0aNmyYzGaz0bEAl+K9xhjvvPOODh48qOTkZA0ePNjoOIDLWa1WTZ48WWPGjOFvKwBcICsrq9BB5EJXWT937pz69u3rKOOS1K5dOz3xxBPy9T3f5ffs2XPZ769ataqOHz/u2D5+/LiCg4Md27t375a/v78aNWokSXr44Yf1/fffX+EhAVcvJiZGNptN0vkDRYsWLTI4EQBvZLValZCQILvdrvj4eE6RQYkQExOj5ORk/rYCwDUotJDPmTNHr776qvbt23fRbSkpKXr55Zf1/vvvX/b7W7durU2bNslqtSozM1NxcXFq27at4/bq1avr6NGjSklJkSQlJiaqYcOG1/pYgMtKSkpSbm6uJCk3N1dr1qwxOBEAb8TBP5Q0HIQCgOtz2SnrkhQdHa2VK1dq6NChysrKUvXq1WWz2XTw4EGVKVNGgwcP1r333nvZ769SpYpGjBihPn36KCcnRz169FCjRo3Uv39/DRs2TA0bNtTrr7+u4cOHy263q1KlSnrttdec/iCB0NBQxcXFKTc3V76+vgoLCzM6EgAvdKmDf0xbhze71EEoXvMAUHSFFnJJ6ty5szp37qw9e/YoJSVFJpNJNWrU0O23316kHxAVFXXRAlpz5851/He7du3Url27q4wNXB2LxaKEhARJko+Pj3r16mVwIgDeiIN/KGk4CAUA1+eKhTzf7bffXuQSDrgbs9msDh06aOXKlYqIiGDRGTjV7NmzHafeuJP8TKNHjzY4ycVCQkI0YMAAo2M4HQf/4CkSExMVFxd33fspU6aMzp49W2D7et5zIiMjFR4eft25AMBTFLmQA57OYrHo4MGDfECG06WkpOi3HTtUuZR7vaWW/v9ppCd37jI4SUEn8nKNjuAyHPxDSRMcHOw4b9xkMhVYvBcAcGXu9ekRcCGz2azo6GijY8BLVS7lq+4VKV9F8fkp7170iYN/8ATh4eFOG4l+7LHHZLVa1aVLF6arA8BVKnSV9cvJyclxdg4AALxC/sE/RsdRUgQHBysgIICDUMXMarVq1KhRrGwPeLgiFfItW7bovffeU3Z2tnr27KkWLVpoxYoVrs4GAABQJJQT45QuXVo1a9bkIFQx4/rvgHcoUiGfOnWqmjRpooSEBFWsWFFff/215s2b5+psAAAARUI5QUnC9d8B71GkQp6Xl6fWrVtr48aN6tChg26++WbHNScB4EoYuQLgSpQTlDSXuv47AM9UpEJus9m0fft2JSUlqXXr1tq9ezfnkQMoMkauALgS5QQlzaWu/w7AMxWpkA8cOFDPPfecevTooVtuuUUDBw7U8OHDXRwNgDdg5AqAq1FOUNKEhobK1/f8xZJ8fX0VFhZmcCIA16pIhTwyMlLx8fGOEr569WqnXSoDgHdj5AqAq1FOUNJYLBb5+Jz/GO/j48MK94AHY5V1AC7FyBUAV6OcoKQxm83q0KGDTCaTIiIiWOEe8GCssg7ApRi5AuBqlBOURBaLRfXr1+cAFODhWGUdgEsxcgWgOFBOUNKYzWZFR0dzAArwcKyyDsClGLkCUBwoJwAAT8Qq6wBcrnPnzipbtqw6d+5sdBQAAADAbfgW5U6RkZGKjIxUbm6ucnJyFB8fr1KlSrk6GwAvsXLlSmVmZmrlypUaPHiw0XEAAAAAt1CkQn7y5EmNGTNGmzZtUl5enu68805NnTpVVapUcXW+6zJ79mylpKQYHeMi+ZlGjx5tcJKLhYSEaMCAAUbHgBe58DrkvXr1YkopAAAAoCIW8ldeeUWNGzfWG2+8oby8PP33v//VhAkTNGvWLFfnuy4pKSn6JXmXSpUJNDpKAbbc82cK/LrvmMFJCso7l2Z0BHihS12HnFFyAAAAoIiFfP/+/Xrrrbcc28OGDdO9997rslDOVKpMoCqERBgdwyOkp8QbHQFe6FLXIaeQAwBwfaxWqyZPnqwxY8Yw8wzwYEVa1C03N1dZWVmO7czMTJlMJpeFAuA9uA45AADOFxMTo+TkZC1atMjoKACuQ5EKeZcuXdS3b199+umnWrJkiZ588kl17NjR1dkAeAGuQw4AgHNduD6L1Wo1OhKAa1SkQj548GD16NFDGzZs0Lp169S9e3cNGTLE1dkAeAGuQw4AgHNdan0WFI99+/apR48ebrlwNDxTkQr5448/rgcffFAzZszQ22+/rZ49ezJlHR7HarVq1KhRHEU2gMViUf369RkdB+AyvMejJLnU+iwoHlOnTtXZs2c1depUo6PASxSpkKenp+vs2bOuzgK4FOdaGcdsNis6OprRcQAuw3s8ShLWZzHGvn37dPDgQUnSgQMHGCWHUxSpkJctW1ZhYWHq06ePBg4c6Pgf4Ck41woAvBfv8ShpWJ/FGBeOijNKDmco0mXPevTo4eocgEtxLWwA8F68x6OkyV+fZeXKlazPUozyR8fzHThwwKAk8CZFKuQPPPCAJOn06dOy2Wzy8fHRDTfc4NJggDNxLWwA8F68x6MkslgsOnjwIKPjxejWW28tUMqrV69uYBp4i0KnrOfm5mrSpEn6+OOPJZ2//FmrVq3UsmVL/fLLL8USEHCG0NBQx0KEJpOJc60AwItwPi1KItZnKX4jR44sdBu4FoUW8nfeeUfHjh1zXHO8cuXK2rVrl9544w0tWLCgOPIBTtG5c2fZ7XZJkt1uV+fOnQ1OBABwFs6nBVAcatasqVtvvVXS+dHxkJAQgxPBGxRayFetWqUpU6aocuXKBb7esWNHbdu2zZW5AKdauXJlodsAAM+Vfz6tyWTifFoALjVy5EgFBAQwOg6nKbSQly5dWmXLlnVsR0VFSZJKlSqlgIAA1yYDnOjC63N+8803BiUpmbg+MABXs1gsql+/PqPjAFyqZs2aWrJkCaPjcJpCC3l2dnaB7X79+kk6v4Jp/vm4gCcICgoqsB0cHGxQkpKJ6wMDcDXOpwUAeKJCC3mzZs20ZMmSi76+fPlyNWnSxFWZAKc7fvx4ge3U1FSDkpQ8XB8YAAAAuLRCL3s2dOhQPfTQQ9q1a5fatGkjk8mk7777TqtXr9bixYuLKyNw3cLCwrRy5UrZ7XaZTCa1b9/e6EglBtcHBgAAAC6t0BHym266SZ999pkkacaMGXrzzTd17tw5LVq06KIpwIA7s1gsBS6JwzmGxedS1wcGAAAAcIVCLklVqlTRuHHjtHTpUi1btkzjx49XlSpViiMb4DRms1kREREymUyKjIzkHMNiFBoaWmCb6wPD27GIoTH27dunHj16KCUlxegoAAAU2RULOeAtWIHXGK1bty6wfc899xiUBCgeLGJojKlTp+rs2bOaOnWq0VEAACgyCjlKDFbgNcasWbMKbL/33nsGJQFcj0UMjbFv3z4dPHhQknTgwAFGyQEAHoNCDsCljhw5UmD78OHDBiUBXO9SixjC9S4cFWeUHADgKQpdZT0uLq7Qb46MjHRqGADex2QyyW63F9gGvNWlFjHkqgKulz86nu/AgQMGJQEA4OoUWsj/+9//Xva2/MWxAKAw99xzj9avX+/YbtOmjYFpANcKDQ1VXFyccnNz5evryyKGxeTWW28tUMqrV69uYBoAAIrumgs5ABTFwIEDHYXcZDJpwIABBicCXMdisRSYXcYiksVj5MiRGjp0aIFtAAA8QaGFPN/+/fv10Ucf6ezZs7Lb7bLZbDpw4IA++eQTV+cD4OHMZrPatGmj9evXq02bNiyqB69mNptVpkwZZWRkqEyZMrzei0nNmjUdo+TVq1dXSEiI0ZEAACiSIi3q9txzzyknJ0c//fSTqlWrpr1796p27dquzgbASwwcOFANGjRgdBxeb9++fcrIyJAkZWRksNp3MRo5cqQCAgIYHQcAeJQiFfIzZ87o5ZdfVps2bdS2bVvNnz9f27Ztc3E0wLmsVqtGjRrFZYgMwCXnUFKw2rdxatasqSVLljA6DgDwKEUq5BUrVpR0fpGUPXv26IYbbmClZHicmJgYJScncxkiAC7Dat8AAOBqFKmQV69eXZMmTVKzZs300Ucf6b///a/jsi6AJ7BarUpISJDdbld8fDyj5ABconz58oVuAwAA/F2RCvmECRPUokUL1atXTz179tR3332niRMnujob4DQxMTGy2WySJJvNxig5AJe48GA1B68BAEBhilTIZ8+erY4dO0o6f0mXd999VytWrHBpMMCZkpKSHB+Mc3NztWbNGoMTAfBG7du3L7AdHh5uUBIAAOAJCr3s2dtvv63Tp09rxYoVjlVjJSknJ0fr16/XuHHjXB4QcIbQ0FDFxcUpNzdXvr6+CgsLMzoSAC+Ufx3y/PcarkMOAAAKU+gIeePGjVWxYkX5+PioYsWKjv9VrVpV06ZNK66MwHWzWCyOhQhNJhMfkgG4hNlsVmRkpEwmkzp27MiVBQAAQKEKHSFv166d2rVrp7Zt26pRo0bKzc2V3W5X6dKliysf4BRms1n/+Mc/dPDgQd100018SAbgMhaLRQcPHuTAHwAAuKIinUN+00036amnnlKTJk3UqFEj9enTR8eOHSvSD1i+fLm6dOmiyMhIffzxxxfdnpKSot69e+u+++5Tv3799Ndff13dIwCKwGq16s8//5Qk/fHHH6yyDsBlzGazoqOjOfAHAACuqEiFfOLEiWrSpIk2btyojRs3qkWLFpowYcIVv+/YsWOaPn26YmJitHTpUi1evFh79+513G632/XMM8+of//++vLLL3XHHXdozpw51/xggMuJiYmR3W6XdP51xyrrAAAAAIxWpEK+f/9+DRkyRDfccIMCAwM1bNgwHTx48Irft3HjRrVq1UoVK1ZUQECAOnbsqFWrVjluT05OVkBAgNq2bStJGjhwoB599NFrfCjA5bHKOgAAAAB3U+g55Plyc3OVlZUlf39/SVJmZqZjgazCpKamKigoyLEdHBys7du3O7YPHjyoypUra+zYsdq5c6dCQkL04osvXtUD2LFjx2VvS09Pv6p94fxztnXrVqNjOF39+vX1448/Ki8vT6VKlVKDBg288nG6q/T0dC1evFgPP/ywKlSoYHQcp+O95up563sNUBLlvwfybxoArl6hhTw7O1t+fn7q0qWL+vbtq+7du8tkMumzzz5zXJe8MDabrUBxt9vtBbZzc3P1/fff66OPPlLDhg01Y8YMTZ48WZMnTy7yA2jQoIHjQMGFYmNjpdSzRd4XpAoVKqh58+ZGx3C6GjVq6Mknn3QU8mHDhnF+ZzGaNm2aDhw4oK1bt+q5554zOo7TxcbG6qTRITyMt77XACVRbGysJPFvGgAuISsrq9BB5EKnrD/88MOSpMGDB6tHjx7asGGD1q1bp+7du2vIkCFX/OFVq1bV8ePHHdvHjx9XcHCwYzsoKEjVq1dXw4YNJUldu3YtMIIOOIvZbFaHDh1kMpkUERFBGS9GVqtVSUlJkqQ1a9awoB4AAADw/wot5PmLYEnSgw8+qBkzZujtt99Wz549izRlvXXr1tq0aZOsVqsyMzMVFxfnOF9ckpo2bSqr1apdu3ZJkr755hvVr1//Wh8LUCiLxaL69etzKaJiNm/ePNlsNknnZ83Mnz/f4EQAAACAeyh0ynpWVpZ+/fXXAsX8765UnqtUqaIRI0aoT58+ysnJUY8ePdSoUSP1799fw4YNU8OGDfXuu+9q3LhxyszMVNWqVRUdHX3tjwYoRP6liFC81q5dW2A7KSnJK6etAwAAAFer0EJ+6NAhDR069JKF3GQyKTEx8Yo/ICoqSlFRUQW+NnfuXMd/N27cWEuWLClqXgAe5sLZNEWZXQN4MqvVqsmTJ2vMmDGcHgMAAApVaCGvVauWli5dWkxRAHijdu3aFTh4165dOwPTAK4XExOj5ORkLVq0SIMHDzY6DgAAcGNFug45AFyrJ554wvHfJpOpwDbgbaxWqxISEmS32xUfH88ihgBcxmq1atSoUbzPAB6u0ELeokWL4soBwIsxTR0lRUxMTIFFDBctWmRwIgDe6u+zcQB4rkIL+bhx44orBwAvFRMTIx+f8281Pj4+fHCAV0tKSlJubq4kKTc3V2vWrDE4EQBvxGwcwHswZR2ASyUlJSkvL0+SlJeXR0GBVwsNDZWv7/nlWXx9fRUWFmZwIgDeiNk4gPegkANwKQoKShKLxVJgRkivXr0MTgTAGzEbB/AeFHIALmWxWBznkJtMJgoKvJrZbNY///lPSdI///lPLnsGwCU42A14Dwo5AJcym83y8/OTJPn5+VFQ4PXsdrvREQB4OWbjAN6DQg7Apfbt26czZ85Iks6cOaOUlBSDEwGuY7Va9e2330qS1q1bx0JLAFzCbDarQ4cOMplMioiI4GA34MEo5ABcavLkyQW2X3/9dYOSAK4XExNT4LxOFloC4CoWi0X169dndBzwcBRyAC515MiRQrcBb7JmzRrHlHW73a5vvvnG4EQAvJXZbFZ0dDSj44CHo5ADAOAkQUFBBbaDg4MNSgIAADyBr9EBgCtJTExUXFzcde8nLS1NkhQYGHjd+5KkyMhIhYeHO2Vf3uyee+7Rhg0bHNtt2rQxMA3gWsePHy+wnZqaalASAADgCRghR4mRlpbmKOUoPs8880yB7YEDBxqUBHC9sLCwApf5a9++vcGJAACAO2OEHG4vPDzcKSPRo0ePliRNmTLluvcFAJdisVgUHx+vnJwc+fr6stgSAAAoFIUcgEvNnz//ou3nnnvOoDSAa5nNZkVERGjlypWKjIxksSUABTjrNDyJU/EAb+HVhTwtLU1559KUnhJvdBSPkHcuTWlpfkbHgJdZu3btRdsUcngzi8WigwcPMjoOwKWcXcgBGMOrCzkA4+VfAupy24C3yb8UEQBcyFmn4Umcigd4C68u5IGBgfrTmq0KIRFGR/EI6SnxHGWF07Vr167AtZhDQ0ONCwMAAAC4EVZZB+BSTz75pHx8zr/V+Pj46IknnjA4EQAAAOAeKOQAXMpsNjtGxcPCwljkCgAAAPh/Xj1lHYB7ePLJJ5WamsroOAAAAPA3FHIALsciVwAAAMDFmLIOAAAAAIABKOQAAAAAABiAQg4AAAAAgAEo5AAAAAAAGIBCDgAAAACAASjkAAAAAAAYgEIOAAAAAIABKOQAAAAAABiAQg4AAAAAgAF8jQ4AAAAAAK6SmJiouLg4p+wrLS1NkhQYGOiU/UVGRio8PNwp+4JnYoQcAAAAAIogLS3NUcoBZ2CEHAAAAIDXCg8Pd9oo9OjRoyVJU6ZMccr+AAo5AKDEYzojAAAwAlPWAQBwIqYzAgCAomKEHABQ4jGdEQAA97Vv3z6NHj1a0dHRCgkJMTqOUzFCDgAAAABwW1OnTtXZs2c1depUo6M4HYUcAAAAAOCW9u3bp4MHD0qSDhw4oJSUFIMTOReFHAAAAADgli4cFfe2UXIKOQAAAADALeWPjuc7cOCAQUlcg0IOAAAAAHBLt956a4Ht6tWrG5TENSjkAAAAAAC3NHLkyEK3PR2FHAAAAADglmrWrOkYJa9evTqXPQMAAAAAoLiMHDlSAQEBXjc6Lkm+RgcAAAAAAOByatasqSVLlhgdwyUYIQcAAAAAwAAUcgAAAAAADEAhBwAAAADAABRyAAAAAAAMwKJuAC4pMTFRcXFxTtlXWlqaJCkwMPC69xUZGanw8PDr3g8AAABgNJePkC9fvlxdunRRZGSkPv7448veLykpSe3bt3d1HAAGSEtLc5RyAAAAAOe5dIT82LFjmj59uj7//HP5+fnpkUceUcuWLVWrVq0C9ztx4oSmTJniyigArlJ4eLjTRqJHjx4tSfw7BwAAAP7GpSPkGzduVKtWrVSxYkUFBASoY8eOWrVq1UX3GzdunIYMGeLKKAAAAAAAuBWXjpCnpqYqKCjIsR0cHKzt27cXuM9//vMf1atXT40bN76mn7Fjx47L3paenn5N+yzJ0tPTtXXrVqNjuET+68FbH5878/bnnveaq8d7DeA9eM0bg+fdGDzvcDaXFnKbzSaTyeTYttvtBbZ3796tuLg4LViwQEePHr2mn9GgQQP5+/tf8rbY2Fgp9ew17bekqlChgpo3b250DJeIjY2VJK99fO7M25/72NhYnTQ6hIfhvQbwHrzmjcHzbgyed1ytrKysQgeRXTplvWrVqjp+/Lhj+/jx4woODnZsr1q1SsePH9eDDz6op59+WqmpqbJYLK6MBAAAAACAW3BpIW/durU2bdokq9WqzMxMxcXFqW3bto7bhw0bptWrV2vZsmWaM2eOgoODFRMT48pIAAAAAAC4BZcW8ipVqmjEiBHq06ePunXrpq5du6pRo0bq37+/fvnlF1f+aAAAAAAA3JpLzyGXpKioKEVFRRX42ty5cy+6380336xvvvnG1XEAAAAAAHALLh0hBwAAAAAAl0YhBwAAAADAABRyAADg8axWq0aNGiWr1Wp0FAAAioxCDgAAPF5MTIySk5O1aNEio6MAAFBkFHIAAODRrFarEhISZLfbFR8fzyg5AMBjUMgBAIBHi4mJkc1mkyTZbDZGyQHAy3jzaUkUcgAA4NGSkpKUm5srScrNzdWaNWsMTgQAcCZvPi2JQg4AADxaaGiofH19JUm+vr4KCwszOBEAwFm8/bQkX6MDAAAAXA+LxaKEhARJko+Pj3r16mVwIteYPXu2UlJSjI5xkfxMo0ePNjhJQSEhIRowYIDRMQBcp0udljR48GCDUzkPhRwAAHg0s9msDh06aOXKlYqIiJDZbDY6kkukpKRoz87d+scNwUZHKaCs/CVJGUdOGRvkb/48nWp0BABOcqnTkijkAAAAbsRisejgwYNeOzqe7x83BOvp1t79GJ1hzkbvO88UKKlCQ0O1evVq5eXlqVSpUl53WhLnkAMAAI9nNpsVHR3ttaPjAFBSWSwW2e12SZLdbve6A68UcgAAAAAADEAhBwAAAAC4pZiYGPn4nK+tPj4+XnfpM84hB4DrlJaWphO5ufr8lHddhsNVTuTmyictzegYAADAA3j7om6MkAMAAAAA3FJoaKh8fc+PI/v6+nrdom6MkAPAdQoMDJTt6DF1r8hiUkXx+SmrAgMDjY4BL2O1WjV58mSNGTOGhd0AwItYLBYlJCRIOj9lnUXdAAAA3ExMTIySk5O97txCACjpzGazOnToIJPJpIiICK876EohBwAAHs1qtSohIUF2u13x8fGyWlnPAQC8icViUf369b1udFyikAMAAA8XExNTYMEfRskBwLuYzWZFR0d73ei4RCEHAAAeLikpSTabTZJks9m0Zs0agxMBAFA0Xr+oW965NKWnxBsdowBbbqYkyce3rMFJCso7lyapitExAAC4Kk2bNtWGDRsc282aNTMwDQAARefVhTwkJMToCJeUkpIiSQoJcbfyW8VtnzMAAC5n//79BbZ///13Y4IAAHCVvLqQDxgwwOgIlzR69GhJ0pQpUwxOAgCA5zty5Eih2wAAuCvOIQcAAB7t1ltvLbBdvXp1g5IAAHB1vHqEHAAAeL+RI0dq6NChBbYBeLbZs2c7TvN0J/mZ8me8upOQkBC3nSGMy6OQAwAAj1azZk3deuutOnjwoKpXr856KIAXSElJ0e7fflVw5QCjoxTgXzpPknTq5H5jg1wg9cRZoyPgGlHIAQCAxxs5cqRGjx7N6DjgRYIrB+jRbncYHcMjfLx0p9ERLpKYmKi4uDin7CstLU2SFBgY6JT9RUZGKjw83Cn7ul4UcgAA4PFq1qypJUuWGB0DAOACzi7k7oRCDgAAPJ7VatXkyZM1ZswYmc1mo+MAQIkXHh7utFFob75KFausAwAAjxcTE6Pk5GQtWrTI6CgAABQZhRwAAHg0q9WqhIQE2e12xcfHy2q1Gh0JAIAiYco6AADwaDExMbLZbJIkm82mRYsWafDgwQangrfg8ltXh0tvAVeHQg4AADxaUlKScnNzJUm5ublas2YNhRxOk5KSop07d6p8+fJGRynAbrdLkg4dOmRwkv/JyMgwOgLgcSjkAADAo4WGhiouLk65ubny9fVVWFiY0ZHgZcqXL6/mzZsbHcPtbd261egIgMfhHHIAAODRLBaLfHzOf6Tx8fFRr169DE4EAEDRUMgBAIBHM5vN6tChg0wmkyIiIrjsGQDAYzBlHQAAeDyLxaKDBw8yOg4A8CgUcriEO65I6q6rkUqsSApcC3d8n5F4rzGK2WxWdHS00TEAALgqFHK4REpKivb8ukNVy5c2OopDWVueJCn94G8GJynoaEaO0REAj5SSkqJff/1N5cq61/TkvNzzf1oP/H7c4CQFncnk2twAALgbCjlcpmr50urXtLLRMdzehz+dMDoC4LHKlTWr0e1djI7hEbbvWWF0BAAAcAEWdQMAAAAAwACMkANehHNqr443n08LAAAA90chB7xISkqKduxKlm9Ff6OjFGDzyZUk7Tq61+Ak/5N7KsvoCAAAACjhKOSAl/Gt6K/A0JuNjuH20pIOGx0BAAAAJRznkAMAAAAAYAAKOQAAAAAABqCQAwAAj2e1WjVq1ChZrVxvHQDgOSjkAADA48XExCg5OVmLFi0yOgoAAEVGIQcAAB7NarUqISFBdrtd8fHxjJIDADwGhRwAAHi0mJgY2Ww2SZLNZmOUHADgMSjkAADAoyUlJSk3N1eSlJubqzVr1hicCACAonF5IV++fLm6dOmiyMhIffzxxxfdnpCQoPvvv1/33XefBg0apL/++svVkQAAgBcJDQ2Vr6+vJMnX11dhYWEGJwIAoGhcWsiPHTum6dOnKyYmRkuXLtXixYu1d+9ex+0ZGRmaMGGC5syZoy+//FJ16tTRzJkzXRkJAAB4GYvFIh+f8x9pfHx81KtXL4MTAQBQNC4t5Bs3blSrVq1UsWJFBQQEqGPHjlq1apXj9pycHI0fP15VqlSRJNWpU0d//vmnKyMBAAAvYzab1aFDB5lMJkVERMhsNhsdCQCAIvF15c5TU1MVFBTk2A4ODtb27dsd24GBgYqIiJAknTt3TnPmzFHv3r2v6mfs2LHDOWGLUXp6uiRp69atBidxnfzHiKJJT093yuuB5/3q8LwbxxnPPc/71XPWa94dNWjQQMnJyapfv77XPsb09HSZjA7hQXiPNwbPu3G8+T3em/uTSwu5zWaTyfS/Px12u73Adr709HQNHjxYdevW1QMPPHBVP6NBgwby9/e/7qzFKTY2VpLUvHlzg5O4TmxsrNLTjE7hOSpUqOCU10NsbKx05pgTEpUMznzeTzohT0nijOc+NjZW1hPnnJSoZHDWa95dhYaGGh3BpWJjY5Vx+pTRMTyGM9/jT506df2BSginPu8n+et6Nbz5Pd6T+1NWVlahg8guLeRVq1bVli1bHNvHjx9XcHBwgfukpqaqX79+atWqlcaOHevKOAAAAMBVSUtL8+qRR2dKT09XWhojMsDVcOk55K1bt9amTZtktVqVmZmpuLg4tW3b1nF7Xl6eBg4cqM6dO+uFF1645Og5AAAAAADeyKUj5FWqVNGIESPUp08f5eTkqEePHmrUqJH69++vYcOG6ejRo/r111+Vl5en1atXSzo/BX3SpEmujAUAAAAUSWBgoDIyMjxyqmxx27p1qwIDA42OAXgUlxZySYqKilJUVFSBr82dO1eS1LBhQ+3atcvVEQAAAAAAcDsunbIOAAAAAAAuzeUj5AAAAJeSmJiouLg4p+wrfyEpZ02XjYyMVHh4uFP2BQDA5VDIAQCAx3N2IXdHaWlpOnH6uOZsXGR0FLf35+lUVQ6wGx0DAK6IQg4AAAwRHh7utFHo0aNHS5KmTJnilP0BAFAcKOQAAAAeIDAwUKXPmvR0615GR3F7czYuUvnAikbHAIArYlE3AAAAAAAMQCEHAAAAAMAAFHIAAAAAAAxAIQcAAAAAwAAs6gYAAADAraSlpen4ibP6eOlOo6N4hNQTZ2X3STM6Bq4BI+QAAAAAABiAEXIAAAAAbiUwMFAm2196tNsdRkfxCB8v3amKgYHXvZ/Zs2crJSXFCYmcKz/T6NGjDU5ysZCQEA0YMOCav59CDgAAAABQSkqKkn/bLf9KwUZHKSDX11+StPfEKWODXCDrZOp174NCDgAAAACQJPlXClb1rhajY3iEA1/FXPc+KORwibS0NB3PyNGHP50wOorb+zMjR7lpLMIBAAAAlDQs6gYAAAAAgAEYIYdLBAYGyjc9Vf2aVjY6itv78KcTquCERTiAkiYtLU1nzp7U9j0rjI7iEc6cPam0NP7sAwDgTvjLDHiRtLQ05Z7KUlrSYaOjuL3cU1lK8+dUAQAAABiHQg4A8EiBgYE6fSpXjW7vYnQUj7B9zwoFMhsHAAC3QiEHvEhgYKCOZZ1UYOjNRkdxe2lJhyknAAAAMBSLugEAAAAAYAAKOQAAAAAABqCQAwAAAABgAAo5AAAAAAAGYFE3AAAAoBAZGRnaunWr0TEKyM7OliT5+fkZnOR/MjIyjI4AeBwKOQAAAHAZISEhRke4pJSUFEnSLbfcYnCSgtz1+QLcFYUcAAAAuIwBAwYYHeGSRo8eLUmaMmWKwUkAXA8KOQA4wYm8XH1+ymp0jALO2mySpAAf91ou5ERerioZHQIAAMANUMgB4Dq56/S8v/5/OmMlN8tXSe77nKFoZs+e7Zgu6y7y8+SPGrqTkJAQtx1lBYC/S0tLU9bJ4zrwVYzRUTxC1slUpZWyX9c+KOQAcJ3c9YM20xnhKikpKdqZvEPly7rPYlL2nDxJ0qGU3QYnKSgjM9voCAAAN0YhBwAAV618WT+1qBVsdAy3t2VvqtERAKDIAgMDdTLPpOpdLUZH8QgHvopRYGDF69oHhRwAAACA20k9cVYfL91pdIwCzpzNkSSVCyhtcJKCUk+cVUUWaPFIFHIAAAAAbsVd1xqx/nV+vYpqlW4zNsgFKlZy3+cMhaOQAwA81plMq7bvWWF0jAKyczIlSX6lyxqcpKAzmVZJQUbHAIAiYX0WlBQUcgCAR3LXkYD81b6r13C38hvkts8Ziu7P06mas3GR0TEKSM86I0mq4F/O4CT/8+fpVN1eraLRMQDgiijkgJfJPZWltKTDRscowHYuV5LkU8Z93nJyT2VJVY1OgevB6AlKGnc9oJKaYpUk/aNaNYOT/M/t1Sq67fMFAH/nPp+OAVw3d/3wkT9iGFLVjfJVdd/nCwAuhYNQAOB9KOSAF+HDGgAAAOA5fIwOAAAAAABAScQIOVzmaEaOPvzphNExHDKy8yRJ5f1KGZykoKMZOapgdAgAuAppaWlKz8zWlr2pRkdxe+mZ2UpLSzM6BgDATVHI4RLueG7u8f8/j/kft7pXtgpyz+cLAAAAgGtRyOES7nguM+cxA4BzBAYGKiPtuFrUCjY6itvbsjdVgYGBRscAALgpziEHAAAAAMAAFHIAAAAAAAzAlHUAAAAAgCQp62SqDnwVY3SMAnLPnpEk+QaUMzhJQVknU6XKFa9rHxRyAAAAAIDbLjSckmKVJIVUrmZwkgtUrnjdzxmFHAAAAIDXSkxMVFxcnFP2lfL/V+3JXyz4ekVGRio8PNwp+3IGd1yYWfLuxZkp5AAAAABQBFw1Ac5GIS8ijqwBAPA/GZnZ2rI31egYDtk5eZIkv9KlDE5SUEZmttERgBIvPDycz8pwWxRyA3BkDQDgydzxHMP8g923uGE2d3y+AADugUJeRBxZAwDgPHc8x9Cbzy8EAHgvrkMOAAAAAIABXD5Cvnz5cs2aNUu5ubl6/PHH9eijjxa4fefOnXrhhRd05swZtWjRQi+//LJ8fRm4B1AysV4FAABAyeHS5nvs2DFNnz5dn3/+ufz8/PTII4+oZcuWqlWrluM+I0eO1KuvvqomTZpo7Nixio2NlcVicWUsAEXgrsWQUlh0rFcB4HJ4jwfgau76PiO513uNSwv5xo0b1apVK1WsWFGS1LFjR61atUpDhgyRJB05ckTnzp1TkyZNJEndu3fX22+/TSFHAc76x+zN/5DdHcWw6Fivwhh8aDAGz7t34D2+6HjNA9fGm99nXFrIU1NTFRQU5NgODg7W9u3bL3t7UFCQjh075spIKMG8+R+yK1AMgWvDe40xeN6vDu/xno/XPNwd7zNF49JCbrPZZDKZHNt2u73A9pVuL4odO3Zcf1C4tYoVK+qhhx4yOsYlbd261egIAJzAnd9nJO99r+F5R0nDax7AhVxayKtWraotW7Y4to8fP67g4OACtx8/ftyxfeLEiQK3F0WDBg3k7+9//WEBAAAAAHCirKysQgeRXXrZs9atW2vTpk2yWq3KzMxUXFyc2rZt67i9WrVq8vf3dxyNW7ZsWYHbAQAAAADwVi4t5FWqVNGIESPUp08fdevWTV27dlWjRo3Uv39//fLLL5KkadOm6fXXX1enTp109uxZ9enTx5WRAAAAAABwCya73W43OsS1yB/6Z8o6AAAAAMAdXam3unSEHAAAAAAAXBqFHAAAAAAAA1DIAQAAAAAwAIUcAAAAAAADUMgBAAAAADAAhRwAAAAAAANQyAEAAAAAMACFHAAAAAAAA1DIAQAAAAAwAIUcAAAAAAADUMgBAAAAADAAhRwAAAAAAANQyAEAAAAAMACFHAAAAAAAA1DIAQAAAAAwgK/RAa6V3W6XJGVnZxucBAAAAACAi+X31fz+eiGPLeQ5OTmSpN27dxucBAAAAACAy8vJyVGZMmUu+rrJfrmq7uZsNpvOnDmj0qVLy2QyGR0HAAAAAIAC7Ha7cnJyVK5cOfn4XHzGuMcWcgAAAAAAPBmLugEAAAAAYAAKOQAAAAAABqCQAwAAAABgAAo5AAAAAAAGoJADAAAAAGAACjkAAAAAAAagkLuZ7OxsoyMAAOA1uLorAMCdUcjdyN69e7Vw4UJlZWUZHQWAF8nMzDQ6AlDs9u/fL0kymUzGBgGKWf5BKA5GGSsvL8/oCPAQFHI3smPHDm3btk05OTmSeCOF9+K1XXz27Nmjjz/+WJJks9kMTgMUj3Xr1mncuHE6fPiw0VGAYpf/uudglHHOnDmjl19+We+++67mz5+vc+fO8TfYBbzl4BOF3A3kH0Hr1q2bTCaTxo4dK4k3Ulfw9H+wnmrz5s2aM2eOFi9erKNHj/LaLkZ79uzRp59+qnPnzsnHh7d8eL/169frzTff1ODBg3XzzTfzIbiYrVy5UitWrDA6Rol19uxZDRkyRElJSUZHKdHKlSunp556St26ddOmTZs0depULVq0iFNTnWT9+vWaMmWK+vbtqwMHDnj850o+nRls7dq1mjVrlrZt2yZJmjFjhkqVKqUvv/zS2GBeyG63O/7B7t69mzfFYrJu3Tq9+uqrOnPmjDZt2qQtW7Y4buODsut16dJFzZo10wcffMABqWKSnJysBQsWOLaZtlh81q1bp0mTJumVV17R3XffrcOHDys2Nla5ublGR/NaF76vbNq0yTHTD8Xj77+DgIAAPfDAAzp9+rQk/s4aIf/3ccstt6hatWp66623VLduXe3atUvz58/n38d1SkpK0tSpU9WwYUN17tzZK071pZAbLCkpSZ988okmT56sd955R1lZWQoNDVVaWppXvMDcSX4ZX758uV544QWD05QMGzZs0Jtvvqnx48drxIgRCgkJ0bfffqsFCxZoy5Yt8vHx4cOCC+UfdGrfvr1Onjzp+DdAMXctPz8/de3aVbt375YklSpVitd5MbBarYqJiVGDBg3UqFEjnTp1SsOGDdO5c+fk6+trdDyvlf++smvXLh06dEh33HGH9u3bZ3CqksVkMmnbtm06e/asJKlBgwZ6//339eeffzIzygD5/yZMJpNsNpvKli2rbt266Z///KeOHTumn376yeCEnuvQoUN69913NXHiRHXp0kU9evSQyWTS/PnztXnzZp08edLoiNeEf6UGu++++9S1a1eNGzdOO3bs0Jw5c/T7779r3bp1+vHHH42O53XWrFmjjz76SI888oj8/PwK3MYRS+fasGGDxo8fr27duqlFixY6fvy4VqxYodzcXP3222/q06ePvvvuOz4sONmuXbv0yiuv6OzZsypdurQkqWXLlvr555+1cOFCSZwO4yr5Bzpq1aolf39/TZo0Sa+++qokycfHxzFSzoi5a5jNZvXo0UOBgYGaOnWq+vbtK4vFor59+xodzSv9/dzNXbt26bXXXpPFYlFcXJw+//xzLVy4UFu2bKF8FJP58+fr6aef1pQpUxQUFKRHHnlEK1eulMQoeXE4duyYxo0b5zgoks/Hx0d2u12lS5dWaGioypUrp3Xr1hmU0rOdOnVKgYGBuv3223XTTTfJarXqpZde0ssvv6zFixfrzTff1Lfffmt0zGvCJ2ED7Nq1S2vXrpUkNW3aVCdPnlR8fLzef/993XHHHSpfvrz27t2ryZMn6/fffzc4rWe7cCQwJCREAQEB2r59u44ePer4+pYtWzRz5kxGDp1oyZIlOnz4sFasWKGvv/5azz77rHr37q033nhDr7/+uvr3769ly5bxnDtRWlqa9uzZoz/++EN9+/bV+++/r61bt+qGG27Q2LFjdezYMaWnp/Ocu8DfT4lJT09XhQoV9K9//UsnT57U5MmTJZ0fKd+8ebMWLVrE78CJ9u/fr+3bt2vXrl3q0KGD7rnnHu3fv19Vq1ZVjx49JHEQxNn+/nrPyclR3bp19Z///EdffvmlBg8erICAAGVkZGj69OmKjo7W8ePHDU7sffLfQ3bv3q09e/Zo2rRpmjhxooKCgtSvXz+tX7/e8VmTA9+ude7cOQUFBWnv3r166aWXClzZxG63O35Xfn5+evLJJ/Xrr79q+/btRsX1SBkZGZo9e7Y2b96srKwsvfTSSwoPD9e5c+dksVi0atUqPfbYY/r222898gAUc7iKWWZmptavX6+FCxfqscce04ABA/T666/r+eefV0JCgjp16iTp/D/azZs3q0KFCgYn9lx//8DwxRdf6Ny5c6pdu7beeOMNjRw5UrGxserVq5eCgoJUrlw5WSwWRg6d6KWXXlLFihV18OBBTZ48We3bt9ejjz7quN3Pz08BAQE8506SmJioZcuW6fTp0xo9erRSU1O1Y8cOjRw5Un369FHp0qV17Ngxpaam8r7iRBcW648//lirV6/WHXfcod69e6tv376aN2+epkyZotGjR8tms6lDhw687p1kzZo1evPNN1WlShVVrVpVFotF7dq1k6+vr+Li4jRnzhx169ZNwcHBRkf1Kvmv34ULF+rHH3/U/v379eSTT6pVq1aqX7++AgIC1LlzZz399NOy2Wzy9/c3OLH3MZlMWr9+vcaMGaMGDRrIarXq/fff15NPPqm7775be/fu1ezZszV37lz179/f6Lhe66+//tK7776re+65RzExMRowYIDGjh2r1157TWXLlpXdbpePj482bNigvLw8tW3bVm3atFGpUqWMju5RfHx8FBQUpKCgII0YMUK7du3Sfffdp06dOjkK+Llz51SuXDmPPODNIbNilJeXp7Jly+qpp57SggULtH79ek2aNEkrVqxQRESEjh8/7jjns0+fPpoyZYoqV65scGrPlf+BYcGCBZo3b55OnTqlCRMm6LffflN0dLSSk5P14Ycf6tSpU7rjjjtUtWpVgxN7vu+//16HDx9Wbm6uAgMDVadOHUVERGjEiBHasGGDYyrR119/rbVr16pXr14GJ/YOGzZs0Ntvv60+ffooNDRUEydO1N13363Bgwdr7ty5OnPmjHbv3q2vv/5a8+bNk81m88g/WO7o0KFDMplMMplMWrFiheLi4jR06FDt3LlTH330kSpUqKB+/fpp9+7devfdd3X33XfzXuMk69atU3R0tCZOnKgPPvhAL774ourVq6e1a9eqZcuW6tq1qw4fPqxFixbJarUaHdcrbN68WTt37pQkLV26VF9//bXGjh2rJ554QuvWrdPq1atVtmxZ3X777dq/f79Kly5NGXeRvXv3au3atZo5c6bef/99NWrUSP369dOJEyd0xx13KCoqSuPGjeN0vGJwww03KDExUd99951mz56tjIwMjR07VhkZGfLx8dGmTZvUr18/x0J7derUUWBgoMGpPUtAQIDuuOMOTZ06VVlZWerQoYPuuusuHTx4UGlpaVq2bJk++ugjPfbYYx55sMNk51NZsVi7dq1WrFihffv26Z577lH79u1Vt25drVy5Ujt27NDmzZtVsWJFDR06VHfddZfRcT3ab7/95jgiWblyZQ0fPlxz585VYmKivvjiC8clQWrVqqWJEydqwoQJMpvNRsf2eFarVT169FBwcLDuv/9+3XHHHapRo4YGDRqkf//730pNTdXUqVPVpk0bbdu2Ta+//rpq1apldGyPt3HjRj3//POaN2+e6tatq8OHD6tPnz6qV6+e/Pz89Mgjj+iuu+5Sdna2Fi5cqE6dOumWW24xOrbHs9vtOnfunFq2bKmnnnpKffr00XPPPacOHTqoV69eslqtGj9+vKpVq6YePXro3Llzqly5MmXcCex2u3JycjR+/Hh16NBB4eHhjtsmT56sr776SjVr1tTcuXO1YcMGff/993r66af5AHyd1q9fr/Hjx2vatGlq2rSp3nnnHZnNZlksFknnD5CMHTtWixcv1qpVqxQeHq7bbrvN2NBeKC8vT+fOndPQoUOVnp6ul156SQ0bNpQkvfbaa1q7dq1iYmJUqVIlLViwQPHx8Zo/f75Kly7NzBwXOXnypL744gvt27dPUVFRatWqlQYMGKB//OMfCgsL0/PPP+9YhOzvszdRuP379+vMmTPKy8tTvXr15OvrqxUrVui3337ToEGDtGXLFn3wwQcqU6aMTpw4oYkTJ6pu3bpGx74mTFkvBt9++63eeOMN/etf/9Lp06e1Y8cOvfnmm3rwwQfVrVs33X///Xr33Xf1ySef6P3331eTJk1447xGa9eu1eTJk1WjRg39+eefaty4sW666Salpqbqt99+04ABA7RixQoNHjxYr776qmbMmMG5VU5SsWJFtWvXTj/99JPKli2rqVOn6pFHHtEzzzyjV199VfPmzdPTTz+t9957T++99x5l3AnsdrsOHjyoChUqyN/fX5mZmRoxYoR69Oihhg0b6ocfftBHH32kGjVqKCgoiGmLTla2bFl9/vnnevTRR7Vz5061bNlSy5cvV/369dWoUSNNnDhRw4cP15dffqmhQ4c6FtnD9TGZTPLz81N6eroCAgIcX1+2bJn27NmjuLg4DRw4UAsXLlT//v115513qnz58gYm9nzr16/XG2+8oVdffVVNmzZVRkaG43/52rZtq5YtWyo9PV39+vUzMK13yi9yeXl5KleunKKjo/Xiiy/qm2++UdWqVRUUFKSxY8cqJydHv//+uypVqqQKFSro5ZdfvmgRW1yfo0eP6qefflKrVq1UqlQpVapUSY8//rj++9//KiEhQXl5eZo9e7aefPJJPfPMM3rzzTcdZRxF8/fTkW666SY98MADatq0qVq1aqV9+/YpIyND99xzjypXrqygoCBJ8ujBNQq5i+VfuH7ixIlq2rSpJKlVq1aKj4/XqlWrFBQUpLvvvltDhgzRnXfeqdtuu403zmu0YcMGzZgxQ1OmTNFtt92mr776Sj/88IN69uypP/74Q6VLl1aLFi20detWPfzww7rjjjso405w8uRJ+fj4KDAwUCNHjtSYMWMUEBCgV199VWPHjlVkZKQqVKigr776Sg899JAiIiL4cOwkJpNJDzzwgPz8/DRmzBgdO3ZMw4cPV7du3SRJlStXVnR0NEXQBUwmk7Kzs1WrVi3FxsaqR48ejuv/Llq0SD4+PmrQoIHeeustZWZm8jtwsuzsbFmtVv3yyy+6++67JZ2fBjp79mz5+vqqfv36ql69uiTxfnOdNm3apBEjRmjRokWqVauWDh06pPfff1+hoaF6+eWXVb58ed1///3aunWrduzYoYoVKxod2evkl/Fvv/1WMTExKlWqlO666y69+OKLevHFF+Xj46OHHnpIVapU0fjx4x3f9+CDDxqY2jvZbDa9/vrrWr16tRo2bCir1ao2bdqoWrVqqlq1qlJTU/XFF18oICBA8+fP12+//aa6des6yjiDbVeWfzrS66+/riZNmigrK0v+/v5KTExU27ZtValSJU2dOlWTJ09WnTp1jI7rFBRyFzp8+LBmzJihtm3bOsq4JAUHB6tDhw767bfftGfPHseHiZYtWxoV1eNt2rRJw4cPV2xsrGrUqCFJql+/vjZt2qSmTZvqvffe0w8//KBatWpp8eLFWrhwIdN2nSA9PV3PPfecGjdurLvvvlutWrVSZGSk9u/fr8jISM2cOVPff/+9srKyNG/ePHXr1k3lypUzOrZX8ff3V9euXZWbm6v58+cXeF0fOHBA586d88gVR93VDz/8oCNHjqhbt27y8/NTdna2qlevrk8//VQPP/ywSpUqpaZNm2rOnDkaNGiQ6tatqxtvvNHo2F4lLy9Pfn5+euaZZzRlyhRVq1ZN9957r2Oq4hdffKGkpKQCi0ji2mVnZ8tutys9PV05OTl6/vnnFRERoYiICNWpU0fjxo3TkSNHdPjwYb3zzjucluECJpNJmzdv1uTJk/Wvf/1LN954o8aMGaPTp08rOjpaw4YNk81m0zPPPMOgjgsdO3ZMhw4d0qhRo5SZmamaNWvq9ttvl7+/v77++muVKVNG27Zt0x9//KE//vhDs2fPLjCFmjJeuPzTkVauXKnnn39eTZo0kXT+c07+6Ui1a9fWvHnz9Pvvv+vLL7/UfffdZ2xoJ6GQu8iff/6pHTt26Omnn9bHH3+szz77TB07dlT58uVlt9tVpUoV1atXT2vWrNFjjz3GSO11yl8M78CBA45Cvnr1apUqVUply5bV448/rtOnT+uzzz7TrFmzKONOUqFCBY0fP15r165VdHS0+vTpo/r16+vzzz9Xs2bN1KJFC3Xp0kVdunTRsWPH+KDgIn5+furWrZtMJpNmzJjhOD3mgw8+0GuvvebR07jczenTpzVlyhSVKlVKUVFRjlJ+2223ae7cuZo4caLatWunO+64g3OWnWj79u06efKkwsLCVKpUKdntdjVu3Fjdu3fX22+/rf379yskJER//fWXFi9erLfeeks333yz0bG9Qrt27TR16lQ999xzysrK0pgxYxQVFaXc3Fzdeuutev/991W6dGllZmbqhhtuMDqu1/jzzz+VnJwsf39/NWnSRH/88YceffRRx5oJn332me69917dc889euWVV3TmzBn+xrpYZmamtm3bphYtWmj48OGaMmWKgoOD9dhjj+nee++VJB05ckSnTp1STk5OgYOxlPErK8rpSAMGDNDs2bN1//3366abbjIwrXNRyF0kJydHS5cu1XPPPaehQ4dq+vTpKlWqlMLDwx2XHLLZbLr55psp407Qrl07RUdH69VXX1VOTo727dunffv2aebMmZLOT919+eWXdfbs2QL/yHH9atSoodtuu02NGzfWxIkT1atXLwUHB+utt97StGnTVKVKFUly/D9cw8/PT/fff798fHw0fPhw+fj46IMPPlDNmjWNjuZVwsPDVapUKU2cOFF5eXnq1q2bfH19lZubq5o1a6pGjRq6++671alTJ49c6dUd2Ww2/fbbb45TAdq1ayeTyaQbbrhBPXv2dFwD+/jx4ypTpoymTZvG697JwsLC5OPjoxdeeMHxGSb/fOb8v6mcluE8+/bt0/Dhw1WvXj1lZmaqevXqOnnypOLi4hyL6N14442KiopSRkZGgVmYcJ3s7GytXbtWnTt3Vr169TRq1ChNnTpVmZmZjkVtq1WrpmrVqhkd1WMV5XSkOnXqqEGDBgYndTI7nGrXrl32X3/91Z6ammrfu3evfejQofbTp0/bExMT7Y8++qj9iy++sNvtdvvXX39t79Gjh33Pnj3GBvYyiYmJ9tatW9sjIiIcX8vKyrLbbDYDU5Uchw4dsn/00Uf2KVOm2OvVq2dfvny50ZFKnHPnztk///xz+969e42O4tUSExPtERER9qVLlzq+tmrVKvuDDz5oP3HihIHJvNO5c+fsS5YssT/22GP2b775xm632+15eXn23Nxcu91ut//www/2vLw8IyOWCImJifbw8PACr3s419GjR+1du3a1f/rpp3a73W63Wq12u91u37t3r71v3772CRMm2DMyMuw//vijvXPnzvaffvrJwLQlz6xZs+yvv/66/a+//rLb7XZ7cnKy/cknn7S/9dZb9uPHjxuczrPlv5+vW7fOfu+999q/+uqrArd//vnn9k6dOtkPHTpkRDyXYoTcifJX+K5evbr++OMP9e/fX506ddKOHTvUvn17nTt3Tp9++qnjOp7Tpk1jpWkna9++vUqVKqVXXnlFiYmJCg8PZwpXMbr55pv10EMPKS8vT5mZmY5LsaD4+Pv7O6avw3Xy32tGjx6tlJQUlS5dWt98840mT56sSpUqGR3P6/j7+ysqKko2m03z5s2TzWZzTN1dsGCBYmNjtXDhQsdqu3CN9u3by8fHRyNHjlTp0qXVpUsXoyN5ncOHD6tly5bq0aOHbDabPvvsM/3444/avn276tevr5UrV+rQoUOONVzyz7OFa9n/f2G9u+66S0uXLtWaNWvUoUMH1atXT88++6ymTp3qWFAVRcfpSOdxHXIn2bBhg6ZNm6aXX35ZNWrU0LJly7R+/XqFh4dry5Ytmjx5skwmk1asWKFFixZp/PjxlHEXWrNmjUaOHKlXXnmFDwzFzM41NlGC/Prrr4qLi1Pp0qXVqVMnpkq7WHZ2tpYtW6Zly5ZpzJgx2r9/v15++WXNnz/f+6YwurF169apevXqjpXs4Ty//fabLBaLBg4cqBUrVshsNjsu9/TDDz+ocuXK6ty5s7Kzs2U2m/mb6yIXPq9/316wYIH27t2rRo0aKTw8XJUqVVJ6eroqVKggm83GqahFlH/AadGiRXr22WfVrl07x23p6en65Zdf9J///EdVq1ZVmTJl1LNnT6/9G0shd4JNmzZp2LBhBVb43r59uz744AO9/fbbeuONN5Sdna0xY8bIZDIpMzNTZcuWNTi19+MDAwB4n+zsbC1fvlzTp09XWlqaPv30U9WrV8/oWIDTLF++XPHx8apUqZIGDRqkChUqqEyZMvrwww+VlZWlQYMGUcRd6Pfff9f8+fN18803q1atWmrfvr2k81d4yF8bZMmSJdq3b59+/fVX/fvf/5aPj49q165tZGyPlJWVpa+++kpLly7Vk08+qbCwMNlsNtntdpUqVUpbtmxRs2bNvP4gB1PWneBSK3yvWrXKcfugQYM0d+5c7dmzR7Vr11aZMmUMyVnStG3b1ugIAAAn8/PzU9euXeXj46NGjRp57YgJSq6oqChFRUVJkjIyMlSmTBlt2bJFsbGxmjBhgiRW7XaVlJQUPffcc2rfvr1OnjypU6dOOQp5qVKllJubK19fX/Xo0cMxYyc+Pl5Wq1UjRoxQhQoV+N1cBU5HOo9C7gRXWuHbZrPJbDY7VpnmHyoAANeOtRLg7Ww2m7799lstWLBANWvWVFJSkv797387Vp6G8+3bt09jxozRo48+qh49euinn37Siy++qHLlyikzM1PPP/+846oavr6+8vPzU8+ePSWJqerXIf8qMZI0f/58ValSRfv379e7776r+fPne30Zl5iy7lTffPON4x9uXFycpPOj535+fvxDBQAAQJFlZGRo/fr1ysvL0y233KJGjRoxVd1FcnJy9Nxzz+nQoUP64osvZLPZ9NRTT6lMmTJq06aN3nvvPbVu3VrR0dFGR/VaJfl0JAq5k61du1avvPKKxo4d65hyAQAAAMD9HD16VLNnz9awYcM0ZMgQ1apVS8eOHVONGjU0evRoSedHz1988UXNmjVLN954o8GJvVdWVpZWrFhR4k5HYsjWydq1a6dx48Zp9OjRWrFihdFxAAAAAFxG1apV9f333+urr77SnDlzdODAAR05csRRxqXzl6Oz2WwGpiwZ8k9HKkllXKKQu0RYWJjefPNN1a9f3+goAAAAAC7w94IdHR2t5ORkWa1WvfXWW/L19dWkSZMkST/99JNmzpypgQMHMjpeDEriKRlMWQcAAABQYhw6dEjPPvusXnjhBd18882qVKmS3nzzTf3jH/9Q7969deLECQ0YMECVKlXS8ePHNXz4cLVr145z+OESjJADAAAAKDF+/fVX7d69W3FxcVqwYIG+/fZb9e7dWx9//LE2btyoypUra86cOTpz5oyGDRumdu3aSSqZo7dwPUbIAQAAAHi9/BFum82m4cOHq3Tp0nrooYc0YcIEPf3000pPT9evv/6qkSNHqlKlSo5LnDEyDldihBwAAACAV/vzzz8VHx+v33//XT4+Pho1apTKlSunm2++WR9++KF++uknHTp0SN9++61+//13SZKvr68kRsbhWr5GBwAAAAAAVzp16pS++OIL3XjjjerQoYM6dOigSpUq6YcfflC3bt00cuRIpaam6siRI8rJyTE6LkoQpqwDAAAA8HppaWn69ttvNW3aNA0dOlSlS5fW7NmzNWPGDNWpU6fAfZmmjuLClHUAAAAAXi8wMFD33XefPvjgA23ZskWZmZkqV66cPv74Y2VkZBS4L2UcxYVCDgAAAKDEqF27tkaNGqWaNWuqWrVqWrNmjTIzM42OhRKKKesAAAAASqxdu3apbt26RsdACUUhBwAAAFDi2Gw2+fj4cL44DEUhBwAAAADAAJxDDgAAAACAASjkAAAAAAAYgEIOAAAAAIABKOQAAAAAABiAQg4AgJfZtm2bevfuraioKHXt2lVPPfWU9uzZI0l68sknZbVar2p/v/zyi9q3by9JWrRokebMmeP0zAAAlES+RgcAAADOk52drQEDBmjevHmqX7++JGnZsmXq37+/EhMTtWHDhuvaf69evZwREwAAiBFyAAC8SmZmptLT03X27FnH1+677z69+OKLGjdunCTp8ccf159//qn27dvrl19+cdzv79sxMTHq2LGjHnzwQcXExDjuM3PmTL3yyiuSpD179jhG4u+77z4tXbq0GB4hAADegxFyAAC8yI033qiRI0fqqaeeUuXKldWsWTO1bNlS9957r8LDw/X5559r4cKFMpvNl93Hzp079c4772jZsmUKCgrSSy+9dNF9cnNz9cwzz2jUqFGKjIzUsWPH1LNnT1WvXl1NmzZ15UMEAMBrMEIOAICXeeKJJ7RhwwaNGzdOQUFBmjt3rrp166b09PQiff+mTZt0zz33KCgoSJL08MMPX3Sf/fv3KysrS5GRkZKkKlWqKDIyUt9++63zHggAAF6OQg4AgBfZunWrPvjgA5UvX15hYWEaNWqUvv76a5lMpkueP2632x3/nZ2dfcmvlypV6qLvy8vLk8lkumhfubm5zngYAACUCBRyAAC8iNls1qxZs7RlyxbH144fP66MjAzVrl1bpUqVcpRms9msHTt2SJI2b96s48ePS5LuuecebdiwQUePHpUkffHFFxf9nJCQEPn6+iouLk6SdOzYMa1evVqtW7d26eMDAMCbcA45AABepEaNGnr33Xc1ffp0HT16VP7+/qpQoYJee+01hYSEqFOnTurdu7dmzpyp559/XhMmTNDixYtVv359x6rsderU0ciRI/X444+rXLlyatSo0UU/p3Tp0nrvvff06quvaubMmcrLy9PgwYPVqlWr4n7IAAB4LJP973PSAAAAAABAsWDKOgAAAAAABqCQAwAAAABgAAo5AAAAAAAGoJADAAAAAGAACjkAAAAAAAagkAMAAAAAYAAKOQAAAAAABqCQAwAAAABggP8Dh42TQN4JSKYAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Calculate total gross\n",
+ "merged_df['total_gross'] = merged_df['domestic_gross'] + merged_df['foreign_gross']\n",
+ "\n",
+ "# Drop rows with NaN in total_gross or studio\n",
+ "merged_df = merged_df.dropna(subset=['total_gross', 'studio'])\n",
+ "\n",
+ "# Group by studio and sum total gross\n",
+ "top_studios = merged_df.groupby('studio')['total_gross'].sum().reset_index()\n",
+ "\n",
+ "# Sort by total gross in descending order and get the top 10 studios\n",
+ "top_10_studios = top_studios.sort_values(by='total_gross', ascending=False).head(10)\n",
+ "\n",
+ "# Filter the merged_df to include only the top 10 studios\n",
+ "top_10_studios_names = top_10_studios['studio'].tolist()\n",
+ "filtered_df = merged_df[merged_df['studio'].isin(top_10_studios_names)]\n",
+ "\n",
+ "# Create the box plot for top 10 studios\n",
+ "plt.figure(figsize=(14, 8))\n",
+ "sns.boxplot(\n",
+ " data=filtered_df,\n",
+ " x='studio',\n",
+ " y='total_gross',\n",
+ " palette='deep'\n",
+ ")\n",
+ "plt.title('Total Gross by Top 10 Studios', fontsize=16)\n",
+ "plt.xlabel('Studio', fontsize=12)\n",
+ "plt.ylabel('Total Gross ($)', fontsize=12)\n",
+ "plt.xticks(rotation=45)\n",
+ "plt.tight_layout()\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Analysis of Top Titles by Popularity\n",
+ "This section visualizes the top 20 most popular movie titles based on popularity metrics, providing insight into which titles have the highest audience engagement and reach.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+AAAAI0CAYAAACd/0PwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd1QU198G8Gep0lQsKFE0do0oKsbYArYg9t5L7GgUW+y9CzbsGgVRwd4BFTtYsAEigg1RiqiIgNKXsvP+4bv7k5goKDu7kOdzTk7c3WHme3dnZ+eZuXNHIgiCACIiIiIiIiJSKg1VF0BERERERET0X8AATkRERERERCQCBnAiIiIiIiIiETCAExEREREREYmAAZyIiIiIiIhIBAzgREREKsSbkRRO/NyIiOhbMIATEZHoZs2ahVq1an3xv02bNilt+YGBgRgyZAgaN26Mli1bYsaMGXj37l2uafz9/dGnTx9YWFjAxsYGR48e/df53b59+6vtadOmDY4fP45atWohISFBsYyJEycq5vP315VBWcsYMmTIZ222sLBA165d4e7uXqDLyqtZs2ahc+fOBT6fw4cPY/369d89XyIi+u/RUnUBRET03/PHH3+gf//+isczZ85E5cqV8ccffyieK1++vFKWHR4ejmHDhqF58+ZYu3YtkpKSsGHDBowcORJHjx6FtrY2wsPDMWrUKLRu3Rr29va4ceMG5s6dC0NDQ9ja2n42z7p16+LQoUOKx2fOnMGePXtyPaejo4Py5cvj0KFDKF68OADg6NGjePHihVLaqQqNGjXCzJkzFY/T0tJw/PhxLF26FAAwePBgVZX2Xf744w+kpaUpHm/fvh2tWrVSXUFERFRoMYATEZHoKlWqhEqVKikeFytWDKVKlUKDBg2Uvmx3d3eULVsWmzZtgra2NgCgcuXK6NOnD/z8/GBtbY0dO3agQoUKWLduHSQSCaysrJCQkIAtW7b8YwA3NDTMVXtQUBAA/GN7SpUqpYxmqYXixYt/1uamTZsiJCQE7u7uhTaAf7quEhERfQ92QSciIrUkCAIOHz6MLl26oH79+rCxscHu3btzTVOrVi0cPHgQ48aNg4WFBdq0afPV7s7Vq1fHiBEjFOEbAKpWrQoAePnyJQDAz88PrVq1gkQiUUzTrl07PH36FLGxsd/cpk+7f8+aNQsnTpxAWFgYatWqhdu3b//j39y4cQN9+vRB/fr1YWVlhQ0bNiAnJ0fx+vPnzzFq1Cg0btwYjRo1wsiRI/H48eOv1nL9+nXY2tqifv36GDRoEEJCQgAAiYmJMDc3h4uLS67pAwMDUatWLTx58iRfbdbQ0EDt2rXx6tUrxXMJCQmYN28erKysYGFhgaFDh+LBgwe53qeGDRsqamzQoAEGDx6MR48eKabZtGkTGjZsmGtZjx49+uJ7mZKSgmXLlqF169YwNzdH06ZNMXPmTCQlJSmmqVWrFrZv345OnTrhl19+gbe3d64u6G3atEFMTAz27duneD9q1aoFb2/vXMvy9PSEubk5EhMT8/V+ERFR0cYATkREamndunVYtGgR2rRpg61bt8LW1harVq2Ck5NTrunWrFkDfX19bNq0Cb/99huWLl2Kw4cP/+t8Bw0ahEGDBuV67vLlywA+BvG0tDS8ffsWlStXzjWNmZkZACAiIqIAWvexW7O1tTXMzMxw6NAh1K1b97Npbt68idGjR6NixYrYvHkzRo4cCVdXVyxbtkwxzfjx45GTkwMnJyc4OTkhMTERdnZ2uUL6P1myZAkGDx6M9evXIysrC8OGDUNiYiKMjY1hbW2N06dP55re09MTderUQa1atfLd1sjISFSsWBEAkJqaigEDBsDPzw9//vknnJycIAgCBg8enCvcZ2ZmYtq0aRg4cCDWrVuHjIwMDB06FPHx8flevtyff/6Jy5cv488//4SLiwtGjBgBLy8vbN26Ndd0mzdvxqBBg7Bo0SI0btz4s9fKli2L9u3b49ChQ6hVqxbq1Knzj++XtbU1jI2Nv7leIiIqetgFnYiI1E5iYiJcXV0xcuRITJkyBQDQsmVLCIIAFxcX/P7774qu3FWrVsXatWsBAFZWVnj9+jW2b9+Ovn375mlZr1+/xqpVqxRnROPi4gAABgYGuaaTP05JSSmQNlaqVAmlSpXCq1ev/rXr/fr162FhYaE46GBlZYUSJUpg9uzZGDlyJPT19fH8+XOMHz8ev/76KwDA1NQUXl5eSEtLg5GR0b8uf+bMmejTpw+Aj13l27Rpg/3792P8+PHo0aMHxo8fj+fPn6Nq1arIzs7G2bNnYWdn98U2CYKA7Oxsxb/j4uJw4MABPHz4ELNnzwbw8ex2VFQUPD09Ub16dQAfP1tbW1ts3rxZMfhednY2Jk2ahAEDBuSq8cCBA5gwYUJe3uJcpFIpsrKysGjRIlhZWQEAfvnlF9y7dw937tzJNW2LFi0wcODAf5zPTz/9BB0dHZQpU0bxuXXv3h1r165FcnIyjIyMkJCQgBs3bnx2sIiIiIhnwImISO3cv38fWVlZn11v3alTJ2RlZeH+/fuK5zp27JhrmrZt2yImJgZv3rz56nJev36NYcOGQSaTwcnJCRKJRHF7qU+7nwP/u+2UhoY4P53p6ekIDg5G69atkZ2drfjPysoKMpkMt2/fRsmSJfHjjz9i/vz5mDNnDs6dO4cKFSpg6tSpXwzfANC+fXvFv+XX38u7gVtbW6NkyZKKs7rXrl1DUlISOnXq9MV5+vr6om7duqhbty7Mzc3RunVr7N27F8OGDVNc/3337l1Ur15dEb6BjwPUtWvX7rMg/Ony5DX6+/vn4d37nK6uLnbt2gUrKyu8fPkS169fh6urK8LDw5GVlZVr2mrVquVr3l26dIFMJsOFCxcAfByEz8DAgAO1ERHRZ3gGnIiI1M6HDx8AAGXKlMn1fOnSpQHkPgttYmKSaxr5mfH3799/cST1p0+fYvTo0cjOzsauXbsUA20ZGhoC+NhV+lPyUbC/FmwLSlJSEmQyGdauXas4w/+puLg4aGhoYPfu3di0aRMuXbqEY8eOoVixYhg5ciTs7e0/O4ggp62trRiJXa5UqVKK7vXa2tro3LkzvLy8YG9vD09PTzRr1uyz9/rvLC0tFWe6JRIJ9PX1YWZmlut6+6SkpM8+V+DjZ/3pe66rq/uPNX7PqPGXLl3CypUrER0dDWNjY5ibm6NYsWKQyWS5ppOvZ3lVunRp/Prrrzh9+jR69uwJT09P2NraQkdH55trJSKiookBnIiI1E7JkiUBAO/evUO5cuUUz8vv1S1/HcBng1zJrxH+0mjj9+/fx+jRo2FoaIg9e/bgxx9/VLxmYGCAsmXLIjo6OtffyB9/Oq0yybu8jxs3Dm3btv3sdXkYNjU1xYoVKyCTyRAUFIQjR45gy5YtqF69+me9A+SysrKQnp4OPT09xXPv3r3L9b5269YN7u7uePDgAa5cuYLFixd/tWYjIyPUq1fvi9OUKFECz58//+z5uLi4XMuXSqWf1RgfH6/4XCUSyWfB+e8HTT4VERGBSZMmoUePHnB3d1ccnJk0aRLCw8O/2rav6datG6ZNm4anT58iKCgIM2bM+O55EhFR0cMu6EREpHbq1asHbW3tz0aWPnPmDLS0tFC/fn3Fcz4+PrmmuXTpEqpWrfqvZ2tfvnyJ0aNHo3Tp0jhw4MA/BupmzZrhypUruQYyu3jxImrWrPmPZ2+/1Ze6sxsaGqJ27dqIjo5GvXr1FP9pa2tj3bp1ePPmDR4/foyWLVsiNDQUGhoaaNSoEZYtWwYtLa1co47/k2vXrin+/fbtWwQFBaFJkyaK5+rXr49q1arBwcEBwMdR4AuCpaUlnj17liv0ZmZm4uLFi2jUqFGuaa9cuaL4d3x8PIKCgvDLL78A+Pj+ZGRk5BrBPCAg4F+X+/DhQ2RlZWHMmDGK8J2WloaAgADF5QV59U+fW9u2baGvr4/FixejYsWKsLS0zNc8iYjov4FnwImISO2UKlUKQ4YMgYuLCzQ1NfHzzz/j7t27cHFxwfDhw1GiRAnFtNeuXcOSJUvQpk0b+Pj44MKFC1i/fv2/znv58uVISUnBggUL8Pr1a7x+/Vrx2g8//AATExOMHDkSvXv3xqRJk9CnTx/cvHkTHh4eX5zvtyhevDjevHmDGzduwNzc/LPXJ06ciPHjx8PQ0BC//fYbEhMTsX79emhoaKBmzZrQ1taGgYEBZs6ciQkTJqBEiRI4efIkJBLJF68/1tDQwIoVK5Ceng4DAwNs3rwZJUuWRP/+/XNNJx9crHv37tDX1y+QNvfs2RN79uzB6NGjMXnyZBgZGWH37t149+4dxo4dm2vaJUuWIDU1FaVKlcKWLVtQokQJxaBsv/76K1auXIm5c+di0KBBePz4Mfbv3/+vy61Tpw40NTWxevVqDBgwAImJidi1axfevXuX767ixYsXR2hoKO7evYvGjRtDIpFAR0cHHTp0wKFDhzB+/Pj8vzFERPSfwDPgRESklqZPn47JkyfD09MTdnZ2OHv2LGbMmIFp06blmm7UqFGIjIzEH3/8gVu3bsHJyemzwdvksrKycPXqVeTk5ODPP/9Ev379cv3n6ekJAKhduza2bduG6OhoTJgwAVeuXMHKlSvRoUOHAm1jv379ULp0adjZ2eHGjRufvd62bVts3boVISEhGDduHFasWIEGDRpg79690NPTg5aWFnbu3InKlStj0aJFsLOzw/Pnz/HXX3/lGuTs77S0tDBv3jxs3LgRU6dORenSpeHu7p6rCzgAxWjh3bp1K7A2GxoaYt++fbCwsMCSJUswdepUaGhoYN++ffjpp59yTTtr1ixs374d06ZNQ7ly5bB//37FNfjVqlXDsmXLEBoaitGjR+PixYvYuHHjvy63SpUqcHR0xJMnTzBmzBisWbMG5ubmWLhwIV6/fp2v+7vb2dkhMjISo0aNyvV38vera9eu+XlLiIjoP0Qi5LffFRERkZqoVasWZsyYgZEjR6q6lCJp586d2LdvHy5fviza6O/Ax1uVzZ49Gzdv3vzitfzqZtGiRXjy5AkOHDig6lKIiEhNsQs6ERER5XLu3DkEBwdj3759sLe3FzV8F0ZHjx7Fo0ePcPjwYaxbt07V5RARkRpjACciIqJcIiMj4e7ujrZt22Lo0KGqLkfthYSE4NSpUxg8ePC/Xv5AREQEsAs6ERERERERkSjYp4yIiIiIiIhIBIWmC7pMJkNqaiq0tbUhkUhUXQ4RERERERH9BwiCgKysLBgYGHz3uCiFJoCnpqbi6dOnqi6DiIiIiIiI/oNq1qypuB3mtyo0AVxbWxvAx0br6OiouBoiIiIiIiL6L8jMzMTTp08VmfR7FJoALu92rqOjA11dXRVXQ0RERERERP8lBXEpNAdhIyIiIiIiIhIBAzgRERERERGRCBjAiYiIiIiIiETAAE5EREREREQkAgZwIiIiIiIiIhEwgBMRERERERGJgAGciIiIiIiISAQM4EREREREREQiYAAnIiIiIiIiEgEDOBEREREREZEIGMCJiIiIiIiIRMAATkRERERERCQCBnAiIiIiIiIiESg1gJ86dQqdOnVCp06d4OjoCADw8/NDly5dYGNjAycnp+9eRmZG5nfPQwyFpU4iIiIiIiJSDi1lzTg9PR3Lly+Ht7c3ihcvjgEDBuDy5ctYsmQJ3NzcYGpqCjs7O/j6+sLa2vqbl6NTTAc2lYcUYOXKcT7STdUlEBERERERkQop7Qx4Tk4OZDIZ0tPTkZ2djezsbBgaGqJy5cowMzODlpYWunTpAm9vb2WVQERERERERKQ2lHYG3NDQEJMmTUKHDh2gp6eHn3/+GW/fvkXZsmUV05iYmCA2NlZZJRARERERERGpDaUF8MePH+PYsWO4cuUKjIyMMG3aNEREREAikSimEQQh1+O8CAkJyfXY0tKyQOoVQ0BAgKpLICIiIiIiIhVRWgC/fv06mjVrhtKlSwMAevbsCRcXF2hqaiqmiYuLg4mJSb7ma25uDl1d3QKtVSyF6WABERERERERAVKp9LMTwd9KadeA165dG35+fkhLS4MgCLh8+TIsLCzw4sULREZGIicnB15eXrCyslJWCURERERERERqQ2lnwFu2bImHDx+iZ8+e0NbWRr169WBvb48WLVrA3t4eUqkU1tbWsLW1VVYJRERERERERGpDIgiCoOoi8kJ+2v+fuqDzNmRERERERESkDF/KovmltC7oRERERERERPQ/DOBEREREREREImAAVzOZ0ixVl/BVhaFGIiIiIiIidaO0Qdjo2+joaqNjA3tVl/FFZ4I2qboEIiIiIiKiQodnwImIiIiIiIhEwABOREREREREJAIGcCIiIiIiIiIRMIATERERERERiYABnIiIiIiIiEgEDOBEREREREREImAAJyIiIiIiIhIBAzgRERERERGRCBjAiYiIiIiIiETAAE5EREREREQkAgZwIiIiIiIiIhEwgBMRERERERGJgAGciIiIiIiISAQM4EREREREREQiYAAnIiIiIiIiEgEDOBEREREREZEIGMCJiIiIiIiIRMAATkRERERERCQCBnAiIiIiIiIiETCAExEREREREYmAAZyIiIiIiIhIBAzgRERERERERCJgACciIiIiIiISAQM4ERERERERkQgYwImIiIiIiIhEwABOREREREREJAIGcCIiIiIiIiIRMIATERERERERiUBLWTM+cuQI3N3dFY9fvnyJbt26oV27dli5ciWkUik6dOiAKVOmKKsEIiIiIiIiIrWhtADep08f9OnTBwAQFhaG8ePHY/To0RgwYADc3NxgamoKOzs7+Pr6wtraWlllEBEREREREakFUbqgL1q0CFOmTEF0dDQqV64MMzMzaGlpoUuXLvD29hajBCIiIiIiIiKVUtoZcDk/Pz9kZGSgQ4cO8PLyQtmyZRWvmZiYIDY2Nl/zCwkJyfXY0tKyQOoUQ0BAwFenKSztyUtbiIiIiIiI6H+UHsAPHjyI4cOHAwBkMhkkEoniNUEQcj3OC3Nzc+jq6hZojWIpLOE6L4pSW4iIiIiIiP6NVCr97ETwt1JqF/TMzEzcvXsXbdq0AQCUL18ecXFxitfj4uJgYmKizBKIiIiIiIiI1IJSA/iTJ0/w448/Ql9fHwBgYWGBFy9eIDIyEjk5OfDy8oKVlZUySyAiIiIiIiJSC0rtgh4dHY3y5csrHuvq6sLBwQH29vaQSqWwtraGra2tMksgIiIiIiIiUgtKDeAdO3ZEx44dcz3XrFkzeHh4KHOxRERERERERGpHlNuQEREREREREf3XMYATERERERERiYABnIiIiIiIiEgEDOBEREREREREImAAJyIiIiIiIhIBAzgRERERERGRCBjAiYiIiIiIiETAAE5EREREREQkAgZwIiIiIiIiIhEwgBMRERERERGJgAGciIiIiIiISAQM4EREREREREQiYAAnIiIiIiIiEgEDOBEREREREZEIGMCJiIiIiIiIRMAATkRERERERCQCBnAiIiIiIiIiETCAExEREREREYmAAZyIiIiIiIhIBAzgRERERERERCJgACciIiIiIiISAQM4ERERERERkQgYwImIiIiIiIhEwABOREREREREJAIGcCIiIiIiIiIRMIATERERERERiYABnIiIiIiIiEgEDOBEREREREREImAAJyIiIiIiIhIBAzgRERERERGRCBjAiYiIiIiIiETAAE5EREREREQkAqUG8MuXL6Nnz57o0KEDli1bBgDw8/NDly5dYGNjAycnJ2UunoiIiIiIiEhtKC2AR0dHY+HChdi6dSs8PDzw8OFD+Pr6Ys6cOdi6dSvOnDmDkJAQ+Pr6KqsEIiIiIiIiIrWhtAB+4cIFdOzYEeXLl4e2tjacnJygp6eHypUrw8zMDFpaWujSpQu8vb2VVQIRERERERGR2tBS1owjIyOhra2NsWPH4vXr12jVqhVq1KiBsmXLKqYxMTFBbGxsvuYbEhKS67GlpWWB1CuGgICAr05TWNqTl7YQERERERHR/ygtgOfk5MDf3x9ubm7Q19fHuHHjUKxYMUgkEsU0giDkepwX5ubm0NXVLehyRVFYwnVeFKW2EBERERER/RupVPrZieBvpbQAXqZMGTRr1gylSpUCALRr1w7e3t7Q1NRUTBMXFwcTExNllUBERERERESkNpR2DXjr1q1x/fp1JCUlIScnB9euXYOtrS1evHiByMhI5OTkwMvLC1ZWVsoqgYiIiIiIiEhtKO0MuIWFBUaNGoWBAwciKysLLVq0wIABA1C1alXY29tDKpXC2toatra2yiqBiIiIiIiISG0oLYADQO/evdG7d+9czzVr1gweHh7KXCwRERERERGR2lFaF3QiIiIiIiIi+h8GcCIiIiIiIiIRMIATERERERERiYABnIiIiIiIiEgEDOBEREREREREImAAJyIiIiIiIhIBAzgRERERERGRCBjAiYiIiIiIiETAAE5EREREREQkAgZwIiIiIiIiIhEwgBMRERERERGJgAGciIiIiIiISAQM4EREREREREQiYAAnIiIiIiIiEgEDOBEREREREZEIGMCJiIiIiIiIRMAATkRERERERCQCBnAiIiIiIiIiETCAExEREREREYmAAZyIiIiIiIhIBAzgpFSZmVmqLuGrCkONRERERERU+GmpugAq2nR0tNG59WxVl/FFXldWqroEIiIiIiL6D+AZcCIiIiIiIiIRMIATERERERERiYABnIiIiIiIiEgEDOBEREREREREImAAJyIiIiIiIhIBAzgRERERERGRCBjAiYiIiIiIiETAAE5EREREREQkAgZwIiIiIiIiIhEwgBMRERERERGJQEuZMx8yZAgSEhKgpfVxMUuWLEFqaipWrlwJqVSKDh06YMqUKcosgYiIiIiIiEgtKC2AC4KAiIgIXLlyRRHAMzIyYGtrCzc3N5iamsLOzg6+vr6wtrZWVhlEREREREREakFpAfz58+cAgBEjRuD9+/fo27cvatasicqVK8PMzAwA0KVLF3h7ezOAExERERERUZGntACelJSEZs2aYf78+cjKysLQoUMxatQolC1bVjGNiYkJYmNj8zXfkJCQXI8tLS0LpF4xBAQEfHWawtKevLQFKHrtISIiIiIi+lZKC+ANGzZEw4YNFY979+6NjRs35gpkgiBAIpHka77m5ubQ1dUtsDrFVFjCaF4UpbYARa89RERERERUMKRS6Wcngr+V0kZB9/f3x82bNxWPBUFAhQoVEBcXp3guLi4OJiYmyiqBqEBlZmapuoQ8KSx1EhERERH91yjtDHhycjI2btyIgwcPIisrCydOnMDixYsxefJkREZGomLFivDy8kKvXr2UVQJRgdLR0UbHrotUXcZXnfFYpOoSiIiIiIjoHygtgLdu3Rr3799H9+7dIZPJMHDgQDRs2BAODg6wt7eHVCqFtbU1bG1tlVUCERERERERkdpQ6n3AJ0+ejMmTJ+d6rlmzZvDw8FDmYomIiIiIiIjUjtKuASci9ZaZma3qEr6qMNRIRERERJRXSj0DTkTqS0dHC+0GLlF1GV90cf+CPE8rzcqGrrZ6b9IKQ41EREREpDx52hPs0aMHBg4ciM6dO0NPT0/ZNRER5ZuuthasRy5VdRlf5OsyP0/TFZagXljqJCIiIlIXedpzmjdvHg4fPowNGzbAxsYG/fv3R82aNZVdGxHRf5Kuthaa26v3wQQA8NuUtwMKRERERPRRngK4paUlLC0tkZSUBE9PT/zxxx8wMTHBkCFD0KFDB2XXSERERERERFTo5XkQtqSkJJw6dQqHDx+GkZEROnTogFOnTmHevHnKrI+IiIiIiIioSMjTGfBp06bB19cXrVq1wqJFi9CwYUMAwIABA9C8eXMsW7ZMqUUSERERERERFXZ5CuDVq1fHnDlzUKpUqdx/rKWFAwcOKKUwIiIiIiIioqIkT13Q/f39Pwvfffv2BQBUq1at4KsiIqIiQ5pVOO7nXljqJCIiosLri2fAJ06ciBcvXiA6OhpdunRRPJ+dnQ0dHR2lF0dERIWfrrYWmkxX73vOA8Cd1Xm/7zwRERHRt/hiAJ8xYwZiYmIwf/58zJ//v9vNaGpqonr16kovjoiIiIiIiKio+GIAr1ixIipWrIhz585BIpGIVRMRERERERFRkfPFAD5gwAAcOHAAjRo1yhXABUGARCJBYGCg0gskIiIiIiIiKgq+GMA3bNgAAHB1dUXZsmVFKYiIiIiIiIioKPpiADcxMQEAzJo1C97e3qIURERERERERFQU5ek2ZBUqVEBgYCBkMpmy6yEiIiIiIiIqkr54BlwuPDwcAwcOhJaWFnR0dHgNOBER/WdJs7Khq52nn0+VKQw1EhER/Rfl6dd53759yq6DiIioUNDV1kLDhYtVXcYX3Vu8MM/TSrOzoKulrcRqvl9hqJGIiCgv8hTAK1SogIcPHyItLQ2CICAnJwdRUVHo27evsusjIiIiJdLV0oaFwyJVl/FF92ctytN0hSWoF5Y6iYio4OUpgM+bNw+XLl2CVCqFiYkJoqKiYGlpyQBOREREakNXSxsNNy9QdRlfdW/CElWXQEREKpKnQdj8/Pxw6dIl/Pbbb9ixYwdcXV1RrFgxZddGREREREREVGTkKYCXLVsW+vr6qFq1Kp4+fYpffvkFb968UXZtRERERP9Z0uwsVZfwVYWhRiIidZKnLuja2tq4e/cuqlWrhqtXr+KXX35BWlqasmsjIiIi+s/S1dJGi93zVF3GF90YtkzVJRARFSp5OgM+bdo0HDx4ENbW1nj8+DGaNm2Krl27Krs2IiIiIioiMnPU/2x5YaiRiAq3PJ0Bb9CgARo0aAAAOHz4MJKTk2FkZKTMuoiIiIioCNHR1EbXYzNVXcYXefRyVHUJRFTEfTGAjx079ot/vH379gIthoiIiIiIiKio+mIAb9++vVh1EBERERERERVpXwzgPXr0EKsOIiIiIiIioiItT9eAN2zYEBKJ5LPnAwMDC7wgIiIiIiJ1lpWTBW1NbVWX8VWFpU6i/5I8BXAvLy/FvzMzM3H69Gno6ekprSgiIiIiInWlramN0eemqLqMr9rZ3knVJRDR3+TpNmQVKlRQ/FelShVMmDAB3t7eyq6NiIiIiIiIqMjIUwD/u/DwcMTHxxd0LURERERERERFVr6vARcEAVlZWZg+fXqeFuDo6IjExEQ4ODjAz88PK1euhFQqRYcOHTBlivp33SEiIiIiIiIqCPm+BlwikaB48eIwNDT86t/dvHkTJ06cQKtWrZCRkYE5c+bAzc0NpqamsLOzg6+vL6ytrb+9eiIiIiIiIqJCIs/XgD979gyurq7Ys2cPQkNDv/o379+/h5OTE8aOHQsACA4ORuXKlWFmZgYtLS106dKF15ETEREREalYlixL1SXkSWGpk+hL8nQGfNOmTThz5gxsbW0hk8mwYMECDBo0CEOHDv3Xv1mwYAGmTJmC169fAwDevn2LsmXLKl43MTFBbGxsvgsOCQnJ9djS0jLf81CVgICAr05TWNqTl7YARas9haUtQNFqD9c19cb2qC9+d9RbUWoP1zX1ltf2zL86WoRqvs9Sq515as9P5rWhp2sgQkXfLl2aiochj/M0bV3z2iim5u3JkKYiNI/t+a/LUwD38PDA8ePHYWRkBAAYMWIE+vfv/68B/MiRIzA1NUWzZs1w/PhxAIBMJst1L3FBEP7x3uJfY25uDl1d3Xz/nTooTBvrrylKbQHYHnVWlNoCsD3qrii1pyi1BWB71FlRagvA9qi7vLZns19vJVfyfSY0P5qvz+b47VbKK6YA9PzFp8ita5+SSqWfnQj+VnkK4CVLloSBwf+OuhQvXhz6+vr/Ov2ZM2cQFxeHbt264cOHD0hLS0NMTAw0NTUV08TFxcHExOQ7SiciIiIiIiIqPPIUwC0tLfHHH3+gX79+0NTUhIeHB3744QecP38eAGBjY5NreldXV8W/jx8/jjt37mDx4sWwsbFBZGQkKlasCC8vL/Tq1asAm0JERERERETqSiaTQkND/XszK7POPAVw+aBru3btyvW8m5sbJBLJZwH8n+jq6sLBwQH29vaQSqWwtraGra3tN5RMREREREREhY2Ghi787qp/V/XmP+dtbItvkacA7ubmBgDIzs6GIAjQ1tbO8wJ69uyJnj17AgCaNWsGDw+PbyiTiIiIiIiIqHDL023I4uPjMWrUKDRo0AD169fH0KFDv2kEcyIiIiIiIqL/qjwF8CVLlqBBgwbw8/ODn58fGjdujEWLFim5NCIiIiIiIqKiI08BPCIiAhMmTEDx4sVhbGyMiRMnIioqStm1ERERERERERUZeQrg2dnZkEqlisfp6enfdA9vIiIiIiIiov+qPA3C1qlTJwwbNgw9e/aERCLBsWPH0L59e2XXRkRERERERFRkfDWAP336FNWrVwcA3LhxAzKZDD179kTv3r2VXhwRERERERFRUfHFAH7s2DE4OjqicuXKiIqKwpo1a/Drr7+KVRsRERERERFRkfHFAO7m5gZPT0+UK1cO9+7dg5OTEwM4ERERERER0Tf46iBs5cqVAwA0bNgQiYmJSi+IiIiIiIiIqCj6YgD/+0jnmpqaSi2GiIiIiIiIqKjK023I5HjrMSIiIiIiIqJv88VrwJ88eYJGjRopHmdkZKBRo0YQBAESiQSBgYFKL5CIiIiIiIioKPhiAL9w4YJYdRAREREREREVaV8M4BUqVBCrDiIiIiIiIqIiLV/XgBMRERERERHRt2EAJyIiIiIiIhIBAzgRERERERGRCBjAiYiIiIiIiETAAE5EREREREQkAgZwIiIiIiIiIhEwgBMRERERERGJgAGciIiIiIiISAQM4EREREREREQiYAAnIiIiIiIiEgEDOBEREREREZEIGMCJiIiIiIiIRMAATkRERERERCQCBnAiIiIiIiIiETCAExEREREREYmAAZyIiIiIiIhIBAzgRERERERERCJgACciIiIiIiISgVID+IYNG9CxY0d06tQJrq6uAAA/Pz906dIFNjY2cHJyUubiiYiIiIiIiNSGlrJmfOfOHdy6dQseHh7Izs5Gx44d0axZM8yZMwdubm4wNTWFnZ0dfH19YW1trawyiIiIiIiIiNSC0s6AN2nSBHv37oWWlhbi4+ORk5ODpKQkVK5cGWZmZtDS0kKXLl3g7e2trBKIiIiIiIiI1IbSzoADgLa2NjZu3Ihdu3bB1tYWb9++RdmyZRWvm5iYIDY2Nl/zDAkJyfXY0tKyQGoVQ0BAwFenKSztyUtbgKLVnsLSFqBotYfrmnpje9QXvzvqrSi1h+uaemN71Be/O+otr59Pfik1gAPAxIkTMXr0aIwdOxYRERGQSCSK1wRByPU4L8zNzaGrq1vQZYqiMK1wX1OU2gKwPeqsKLUFYHvUXVFqT1FqC8D2qLOi1BaA7VF3Rak9RaktQNFuj1Qq/exE8LdSWhf08PBwPHr0CACgp6cHGxsb3L59G3FxcYpp4uLiYGJioqwSiIiIiIiIiNSG0gL4y5cvMW/ePGRmZiIzMxOXLl1C//798eLFC0RGRiInJwdeXl6wsrJSVglEREREREREakNpXdCtra0RHByM7t27Q1NTEzY2NujUqRNKlSoFe3t7SKVSWFtbw9bWVlklEBEREREREakNpV4Dbm9vD3t7+1zPNWvWDB4eHspcLBEREREREZHaUVoXdCIiIiIiIiL6HwZwIiIiIiIiIhEwgBMRERERERGJgAGciIiIiIiISAQM4EREREREREQiYAAnIiIiIiIiEgEDOBEREREREZEIGMCJiIiIiIiIRMAATkRERERERCQCBnAiIiIiIiIiETCAExEREREREYmAAZyIiIiIiIhIBAzgRERERERERCJgACciIiIiIiISAQM4ERERERERkQgYwImIiIiIiIhEwABOREREREREJAIGcCIiIiIiIiIRMIATERERERERiYABnIiIiIiIiEgEDOBEREREREREImAAJyIiIiIiIhIBAzgRERERERGRCBjAiYiIiIiIiETAAE5EREREREQkAgZwIiIiIiIiIhEwgBMRERERERGJgAGciIiIiIiISAQM4EREREREREQiYAAnIiIiIiIiEgEDOBEREREREZEIGMCJiIiIiIiIRKDUAL5582Z06tQJnTp1wqpVqwAAfn5+6NKlC2xsbODk5KTMxRMRERERERGpDaUFcD8/P1y/fh0nTpzAyZMnERoaCi8vL8yZMwdbt27FmTNnEBISAl9fX2WVQERERERERKQ2lBbAy5Yti1mzZkFHRwfa2tqoVq0aIiIiULlyZZiZmUFLSwtdunSBt7e3skogIiIiIiIiUhtayppxjRo1FP+OiIjA2bNnMXjwYJQtW1bxvImJCWJjY/M135CQkFyPLS0tv69QEQUEBHx1msLSnry0BSha7SksbQGKVnu4rqk3tkd98buj3opSe7iuqTe2R33xu6Pe8vr55JfSArhcWFgY7OzsMGPGDGhqaiIiIkLxmiAIkEgk+Zqfubk5dHV1C7hKcRSmFe5rilJbALZHnRWltgBsj7orSu0pSm0B2B51VpTaArA96q4otacotQUo2u2RSqWfnQj+VkodhC0gIADDhg3Dn3/+iR49eqB8+fKIi4tTvB4XFwcTExNllkBERERERESkFpQWwF+/fo3x48djzZo16NSpEwDAwsICL168QGRkJHJycuDl5QUrKytllUBERERERESkNpTWBd3FxQVSqRQODg6K5/r37w8HBwfY29tDKpXC2toatra2yiqBiIiIiIiISG0oLYDPmzcP8+bN+8fXPDw8lLVYIiIiIiIiIrWk1GvAiYiIiIiIiOgjBnAiIiIiIiIiETCAExEREREREYmAAZyIiIiIiIhIBAzgRERERERERCJgACciIiIiIiISAQM4ERERERERkQgYwImIiIiIiIhEwABOREREREREJAIGcCIiIiIiIiIRMIATERERERERiYABnIiIiIiIiEgEDOBEREREREREImAAJyIiIiIiIhIBAzgRERERERGRCBjAiYiIiIiIiETAAE5EREREREQkAgZwIiIiIiIiIhEwgBMRERERERGJgAGciIiIiIiISAQM4EREREREREQiYAAnIiIiIiIiEgEDOBEREREREZEIGMCJiIiIiIiIRMAATkRERERERCQCBnAiIiIiIiIiETCAExEREREREYmAAZyIiIiIiIhIBAzgRERERERERCJgACciIiIiIiISAQM4ERERERERkQgYwImIiIiIiIhEoNQAnpKSgs6dO+Ply5cAAD8/P3Tp0gU2NjZwcnJS5qKJiIiIiIiI1IrSAvj9+/cxYMAAREREAAAyMjIwZ84cbN26FWfOnEFISAh8fX2VtXgiIiIiIiIitaK0AH748GEsXLgQJiYmAIDg4GBUrlwZZmZm0NLSQpcuXeDt7a2sxRMRERERERGpFS1lzXj58uW5Hr99+xZly5ZVPDYxMUFsbGy+5xsSEpLrsaWl5bcVqAIBAQFfnaawtCcvbQGKVnsKS1uAotUermvqje1RX/zuqLei1B6ua+qN7VFf/O6ot7x+PvmltAD+dzKZDBKJRPFYEIRcj/PK3Nwcurq6BVmaaArTCvc1RaktANujzopSWwC2R90VpfYUpbYAbI86K0ptAdgedVeU2lOU2gIU7fZIpdLPTgR/K9FGQS9fvjzi4uIUj+Pi4hTd04mIiIiIiIiKOtECuIWFBV68eIHIyEjk5OTAy8sLVlZWYi2eiIiIiIiISKVE64Kuq6sLBwcH2NvbQyqVwtraGra2tmItnoiIiIiIiEillB7AL1++rPh3s2bN4OHhoexFEhEREREREakd0bqgExEREREREf2XMYATERERERERiYABnIiIiIiIiEgEDOBEREREREREImAAJyIiIiIiIhIBAzgRERERERGRCBjAiYiIiIiIiETAAE5EREREREQkAgZwIiIiIiIiIhEwgBMRERERERGJgAGciIiIiIiISAQM4EREREREREQiYAAnIiIiIiIiEgEDOBEREREREZEIGMCJiIiIiIiIRMAATkRERERERCQCBnAiIiIiIiIiETCAExEREREREYmAAZyIiIiIiIhIBAzgRERERERERCJgACciIiIiIiISAQM4ERERERERkQgYwImIiIiIiIhEwABOREREREREJAIGcCIiIiIiIiIRMIATERERERERiYABnIiIiIiIiEgEDOBEREREREREImAAJyIiIiIiIhIBAzgRERERERGRCBjAiYiIiIiIiETAAE5EREREREQkApUEcE9PT3Ts2BE2NjbYt2+fKkogIiIiIiIiEpWW2AuMjY2Fk5MTjh8/Dh0dHfTv3x+//PILqlevLnYpRERERERERKIRPYD7+fmhadOmKFmyJACgffv28Pb2xoQJE774d4IgAAAyMzM/e61k2eIFXmdBk0qleZ62ZGlDJVby/fLTFgAoaayvpEoKRr4+mxJ6SqykYOSnPcbF1bs9+V3XjI2KTntKGap3W4B8tsegaLWntJ56tye/353SxYpOe0rrqndbgHx+d7SLzm8oAJTQKjrtMdIwUGIlBSM/7dGXGCmxkoKRn/boooQSK/l++f3uaMJYSZUUjPy1p7TS6igof2+PPIPKM+n3kAgFMZd8+Ouvv5CWloYpU6YAAI4cOYLg4GAsXbr0i3+XnJyMp0+filEiERERERERUS41a9aEkdH3HawS/Qy4TCaDRCJRPBYEIdfjf2NgYICaNWtCW1s7T9MTERERERERfS9BEJCVlQUDg+/v+SJ6AC9fvjz8/f0Vj+Pi4mBiYvLVv9PQ0Pjuow1ERERERERE+VWsWLECmY/oo6A3b94cN2/eREJCAtLT03H+/HlYWVmJXQYRERERERGRqEQ/A16uXDlMmTIFQ4cORVZWFnr37o369euLXQYRERERERGRqEQfhI2IiIiIiIjov0j0LuhERERERERE/0UM4EREREREREQiYAAnIiIiIiIiEgEDOBEREREREZEIGMCJiOi7FMRYnhwPlIio8MjIyFB1CaRCSUlJqi6hUGMAV0PyHVFVrdzcEVZv//T5KOMzi4yMLPB5FqTY2FhER0cjKytL1aX8J924cQNbt24FAEgkkm9eBxMTE5GZmQmJRFKQ5RH9I1X/vql6+UQFISMjA87OzggICCiyQSw+Ph4JCQmIjY0VbZmFZfsQERGBjRs34tatW6oupdBiAFczgiBAIpHgxo0bmDZtGlJSUkSvQSaTAQAePXok+rLpy+TrBwAEBwcjODgYAAo8vCQlJcHZ2Rn3798v0PkWlIsXL2LSpElYsGABli5dikOHDinWWxKHiYkJNm7cCFdXVwDfFsIFQcDp06exbNkyBAYG4sWLF8ooVWUeP36Mc+fOqbqMPCssO3/5IW/Ts2fP8OLFC6Slpam0Fvm22tfXF/Hx8SqrpaDJD4QmJCSouJL8K4rrvbIJgoCqVati3bp1mDZtmkq/V8oQHh4OOzs7rF69GuPHj8fdu3cLfBny9S46Ohrh4eEACn5fTllycnKgq6sLHx8fBAYGqroc0f39s/uWrMYArmYkEgnu378Pd3d32NjYwNDQULRl37x5E2/evIGmpiaePHmCP//8s8htVAs7+cbZzc0NS5Ysgbe3d64z1d+zI/Hp32pqakImkyEgIODbi1WSyMhIbN26FStWrMDOnTtRoUIF7N+/H7t372YIF4EgCJDJZKhRowaWL18OR0dH7NmzB0D+Q7hEIkHXrl0RHh6OSZMmKbY3hXmHWF77vXv3sGfPHri7u+PSpUsqripvJBIJ/P39ceLECVy8eBFSqVTVJX0XeeC9du0axo8fjylTpmDXrl2KnV2xybffR44cURy4KuxevXoFANDW1saTJ08wcuRItT8j+vftS2EJPepET08PFSpUQGhoKDIyMvDkyRPFa4V5+w18PAExffp0DB06FIsWLUK3bt1w4sQJZGVlFWjbJBIJfHx8MGHCBOzfv19xQgVQ3/dQXle1atVgYmKCx48f4+DBg7h3756KKxOXRCLBxYsXMW3aNGzduhXTpk3D7du38zUPBnA19ObNG0RERCAhIQHJycmiLdfX1xdt2rRBbGwsqlevDmNjY+jr6yteV9cNwn/N3bt34enpiX379qFLly54/vw5Fi5c+N3deCUSCUJDQ/Hw4UMYGBhg1KhROHfuHIKCggqu+AKQk5MDAwMDFC9eHFpaWujVqxeqVKmCmJgYXLhwQdXlFXkymQwaGhrYvXs3bt++jcGDB2PNmjXYsWMHgPyHcD09PRgbG6N69eo4dOgQMjIyIJFIkJOTo6wmKJVEIsH169cxY8YMWFhYoE6dOrh48SJOnz6t6tL+lfzz8vf3x/z58+Hv7w8PDw/Y2dkV6oOw8m3awYMHsXPnTqxcuRIxMTE4d+4cnj9/rpKawsPD4ezsDCsrK5QuXbrQrudyS5cuRfv27QEAFStWRLly5VC8eHHF6+p2UPTTXghnz57F7t27ceHCBURFRam4ssJBvq148+YNqlSpglOnTqFr165wd3eHr68vgMJ/QCM7Oxvly5dH165doauri0qVKuHly5fQ1tYu0LY9e/YMGzduxKZNmzB06FAAwObNm5GTk/Ndl3Upk7z97u7uOHPmDH777TdkZGTg/PnzuHPnjoqrE094eDhcXV2xa9cu/Pzzz3j//j1q1KiRr4OPDOAqJgiC4ksWEhKC4OBgtGzZEgsWLICvry+uXbuG9PR0pdYg/4GcNWsWhg8fjq5duyIiIgL6+vpwdXXFs2fP8ObNG15rqyJ/3wiXK1cOderUwezZs7FlyxZcunQJ9+/fx/Lly79rOZGRkQgKCsKoUaOwe/duREVFoXfv3ooNiqp3pBITE5GVlYWSJUvC1NQU3t7eePbsGQ4cOABjY2OULFkSV69eVWmNRdn9+/eRmpoKTU1NxMTEKALavHnzcPbsWbi4uOTqjv4ln3bf+vDhAxwdHeHo6AiZTIYFCxYA+NgLozASBAEPHjzA+PHj0b9/f4wbNw7t2rXD2bNn4ePjo+ry/pFEIkFwcDA2b96MFStWYPny5Vi+fDkqVaqEtWvXqvy7/63S09Ph5eWF4OBglClTBnXq1EHfvn0RHR0NDw8PUc6E/9P2u2fPnjh06BBu3rxZaNdzuW3btqF8+fLo168fJBIJ0tLScOXKFUXvCQ0N9drNlG+b5L1T9PT0sGbNGly7dq3Qrudikp/5mz59OqZNm4bixYujWbNmMDc3h7e3N3bt2gVPT09Vl/ldihcvjuzsbMXJBxMTE6SlpSn2gQvqoKSRkRHMzc1x6NAhrFu3Dnv27MGpU6cwY8YMAOp5IEMQBKSmpuLevXuYP38+Bg0ahClTpsDIyAienp7w9/dXdYmisbCwwPHjx3HixAmsXr0a586dg5OTU57/Xr22jP8x8qNcEokEvr6+mDBhAg4fPow//vgDtWrVgp2dHQ4dOoTz588r7SyEIAiKH8isrCxMnz4do0ePRqdOnRAeHo6HDx9i1apV6NevHxwdHQv12ZDC6NOj9YGBgXj48CHevn2Lli1bolSpUpgwYQKWLVuGqVOnwsjI6Jt3IN68eYPp06ejX79+WLduHWQyGfbu3Yt169Zhy5YtSEpKUumOVHh4OGbNmoU7d+6gVKlSaNOmDZ48eYLVq1cjPDwcCxcuxIgRIxARESFqr5H/CkEQcOjQIQwYMACpqamoUKECTE1NoaenB+Djma+5c+fC0dERx48f/+r8JBIJLl26hEmTJmHFihWws7NDTEwMfv/9d2hqamLIkCGYPHkykpKS1PIswN99WqN8m378+HFkZmbC2NgY9erVQ0ZGBjw9PZVyLWFBeP36NW7duoXHjx8D+NgzoX379sjKylK7EPUl8s8iMzMTenp66N27N37++WfMmjUL6enpaNSoEXr16oXo6GhoaWkpvRb59vvcuXPYt28f7t+/jzZt2mD48OHYunWr2q4P+bFnzx7o6+ujRYsWePnyJbZs2YLRo0ejS5cu2Lhxo0rGsvmS2NhYBAcHw93dHYIgoEqVKujSpQt8fX2Rnp5eKLY5qhIWFoatW7di06ZNsLe3R0JCAqKiomBpaYlGjRrB09MTZcqUUXWZ30wmk0FLSwsbN25ErVq1APzve6ytrY1bt25982+TfPoXL17gxYsXSEhIQOPGjREZGYk+ffpg7dq12L59O0qUKKFWJ7z+/vtmYGCAkiVL4ujRo5BKpahSpQpatmyJgIAAXL16tUiOji9/D2JiYpCamgoDAwNERUXh+PHjWLFiBczMzFCsWDFoa2vneT9cub8+9K/i4+Ph5eWFAQMGICoqCuvXr4ezszOePn2KHTt2YNq0aVi9ejWGDRuGv/76C82aNcvVHbwgfLpzIO9OmpKSAjc3N2RnZ2Pnzp2YPn06TExM8PDhw8+6pJPyyT8fZ2dnXLt2DRUrVkR8fDzGjx+PefPmwcvLCwcPHkRAQADWrFnzzTvKxYoVQ0ZGBrKystC0aVM0adIEffv2xaFDh/Dw4UNcvnwZ3bt3z7XOiKlcuXIIDQ3FqVOnIJPJYGtrC1tbW6SkpCA9PR05OTm4fv06JBKJ0neq/4skEgkWLVqEpUuXYuTIkdi7dy/Kly+PyZMnY//+/dDS0oKuri66du0KCwuLr84vLCwMLi4ucHFxwY0bN+Di4oIqVapAT08PU6ZMwf79+9G4ceNcXVnVmUQiwa1btxAcHAwLCwu0b98e79+/h5OTE2bOnIkPHz4gOzsbBgYGePnyJX7++WdVl6z4Lj9+/Bg6OjqwsrKCg4MDXFxc8OOPP6JZs2aQSCSIjIxEUlISjIyM1PKMzKfkbbp69SrOnj0LTU1NWFpaYsCAAbh8+TLmzZuHpUuXonHjxqhZs6bS169Pu2t6eXmhe/fumDlzJqZNmwYbGxsIgoDly5djwYIFaNSokVJrKUjy9/nBgweIjo6GiYkJXF1dsXTpUly5cgX79+8HAHh4eKB69eqijmXzpXrlSpcuDUNDQwwbNgza2tpwdnZGUFAQXFxc0Lp1axVWqv4+fPgAQ0ND3Lx5E+fOnUNycjLCwsIwceJE9OnTB7a2tjAyMlJ1md9Mvg9VrFgxxXPv3r1DpUqVEBISglWrVsHe3v6bth3y3gPOzs6oXr06UlJSMHjwYGzevBm3b9/G1q1bcfbsWUyePBna2toF1qbv8el35+rVq3j37h3KlCmDRo0aITw8HPv378fw4cORkJCASpUqYfDgwbneu6JCIpHg8uXLcHFxQfny5bF48WL8+uuvuHbtGs6fPw8jIyPs3r0bCxcuzPN+OPdUVcTf3x+3bt1Cly5dkJGRAXNzc1SsWBGenp6YMmUKPDw8MHLkSGzatAnbtm2DsbFxgdcg/1KdOXMGHh4e2LRpk+Ls4dixY6GtrQ0rKytcuXIFP/30U4Evn/7dhw8fYGBgAC0tLdy/fx83b97Enj17sGLFCmRkZODHH3/E7du3kZWVBQMDA2zYsAFVq1bN93KCg4Nx/Phx2NjYoESJEggNDUXjxo2hoaGh2EE5evSoYqA3VeyAy6+RrF27NgDg/PnzKF68OEqVKgUNDQ1cv34dx48fh4aGBhYsWKA4K0vf79MfXx0dHSxevBgLFy6EnZ0ddu3ahRkzZmDw4MGoUqUKgoODsX37dpiZmX11vsWKFcOvv/4KLy8veHh4YPPmzTh9+jQCAwOxdu1aTJ48+bPlq7N79+5h+fLlqFGjBh4/fow6deqgcePGuHTpEgYNGoSUlBRs2bIFvr6+ePr0KQDVt00+AJCTkxMsLCwwdOhQdO/eHfr6+pgyZQratGmD+Ph4DB06tFAdCLl79y6WL1+OhQsXIigoCM+ePcOTJ0/QsWNH7Nu3D3PmzMG6detECYWCIOD169e4c+cOdu/eDS8vL9SpUwetWrXC06dP8dtvv0EQBJQrV07ptRQkeZDYvHkz6tati8TEROzevRubNm1CbGwsevbsCS8vL/Tu3VvVpeb6nj169AiCIKBMmTL48ccf8fz5c4wePRrAxzNbhoaGSEtL44mGT8jfv2fPnsHAwABVqlRBkyZNsGfPHgwdOhQdO3aEh4cHgoODkZOTo/KDLcpgYGCAW7du4fnz55g0aRJatWr1TdvviIgIuLi4YNeuXThw4ACuXLmCypUr48GDB3j27BlevXqFmTNnomXLlir/fZCT17Br1y6cPXsWtWvXhkwmQ1xcHBo2bIinT59i0KBBSE5OxurVq2FiYqLiipUjPDwc69evVwziGR8fjzp16iA5ORmCIODZs2dYsmQJmjdvnud5MoCLTP6lat++Pby9vbF06VKsXbsWTZs2RVBQEAwMDGBtbY379+/jw4cPePnyJZo1a1agNQQFBeHYsWNYunQpgI9dD62trVGhQgXk5OQgKSkJU6ZMwebNm5GWlqb0a9Apt4iICLi7u2P69OmKM4s//PAD1q1bh/DwcGzZsgWurq6QSCQYO3bsdy0rOjoaurq68PLywoMHDzBjxgxUr14dNWvWRKVKldC3b1+kp6fj7t27yMjIgK6urug/CpqamjA0NETTpk1hZWWFmzdvYuvWrYiLi8PatWvRq1cvtGzZEsWKFUPp0qVFra0o+3QH4OTJk3jz5g2aNm2KGTNmYNWqVRg1ahR27NiBsLAwxMbGYty4cf8avuXzSk5OhkQigZGREW7cuIHU1FRs2bIFP/zwA4yNjWFiYpJrueqwA/JPEhISkJaWhooVKyI0NBTr1q3DypUrYW5ujhMnTuDhw4coVqwYFi1ahLS0NFy+fBnh4eHYt28fNm3aBED1bXvz5g02bNiAzZs3IzU1FW/evIGPjw/q1q2LpUuXYtGiRRg9ejTatm2LnJwctb5W+dN1JiAgAF26dEHz5s3RvHlz3Lx5U3Gt7x9//IH09HSldqmXD1IIfPyMTU1NYWpqismTJyMrKwsuLi64d+8eHB0dceTIEQwcOFBptShLcnIyDhw4AEdHR9SqVQspKSlwcHDAypUrsXnzZgwYMAD+/v5o3LixqkvN1Yvsxo0bMDAwgK6uLtq0aYM6derA2dkZu3btwsuXL7F27VqG77+RH6hbsmQJfv75Z+jr62PGjBmYMGECzp49iytXruCvv/7CvHnz1Hob8U8SExORlpaGChUqfHG6KlWqwMDAAPb29mjVqhWAb9t+Z2RkoGbNmvDy8sL58+exZs0aXL9+HVFRUZg0aZJiOnUJ33LR0dHw8fGBm5sbihUrhqioKJw4cQLZ2dlYtGgRYmJiYGxsrJQTheri7du3KFu2LMLCwnD06FG8evUKMpkMvXv3Rp8+fZCdnZ3v3pcM4CIKDw/H9evX8fPPP+Onn36Ck5MTxo4di7Nnz6JTp06YO3cuZDIZXr9+jdOnT2P9+vWoU6dOgX4Zg4KCUKdOHcycORN37txBkyZNULZsWQQHByMzMxM6OjqKs4uxsbGwt7cvkOVS3v3444+wt7dHaGgopFIpKlSogPfv3yMsLAzbt29XdBeXX2fy6Q7f18jXpeDgYMTGxsLKygqdOnUCADRp0gQxMTH46aefEBMTozgrU6lSJcydO1fUbkUBAQGQSqWQSqWKLoGvXr3Chw8fFDtNNWvWRHx8PCpUqPDVH1DKv09veXf8+HH89NNPuHr1KkaNGoVp06bByckJ3bt3x8GDBxW9E740r4sXL2LPnj2QSqVYsmQJJkyYgOXLl+Py5cvIzs7G/v37MWfOHLXa8fgnUqkUbm5u6NWrFzIzM5GTk4OQkBBcvHgR5ubm6NGjByQSCfz8/JCTk4P+/fsjJycHXl5ecHJyQrVq1VTdBAAfbxv1448/wtvbG7du3YKenh4MDQ0RGRmJpUuXIiMjA4sXL0aNGjXQokULVZf7rz7tdp6YmAhTU1MEBgYiMTERxsbGaNasGXbv3o13794V+MHsv/v07GlAQADS09PRsmVL6OnpISEhAUuWLAHw8eCHqakpsrKyoKurq9SaClpERATKlCmDpKQkxbXdenp6sLW1xYkTJwAABw4cUGWJn7lz5w5u3rwJV1dXODg44PXr1+jUqZNi/+rVq1eoUaMGypcvr+pS1c6DBw+wYcMG/PXXX7hy5Qq8vb3h4OCAgQMH4vnz5wgLC8P06dOV/t0qaOnp6di1axeys7MxcODAfz14LJPJUKpUKRw6dAjGxsb52h+XT5uQkIBSpUrB1NQUHz58gKurKzZt2gQzMzP4+PggISEBMpkMgiBAU1NT5b+Bf2+jnp4esrKy8OjRIzRs2BCVKlVSXJqqq6v7Tb0v1Z38PYiJiYGenh6aNWuGU6dOYceOHejevTu6deuGAwcO4NmzZwC+7YAMA7iITpw4AXd3d9SrVw8tW7bE6NGj0a1bN8TExEAQBPTu3RuOjo4YO3Yspk6dijp16gAo2DMlO3fuRHZ2Nv766y/Mnz8flSpVws6dO3Hq1CmsWLEC7du3x5s3b/DgwQN25RWZTCZTDOBUokQJ+Pj4KEZT/vnnnxEeHg4HBwdUrFgRp0+fVtz26WvhW74hkZ/F8vX1xaJFi1CrVi04OjrC1dUVZmZmKFmyJPbu3Yvhw4crdiJlMhnatGmj9LZ/ys/PD3PnzkXv3r3h5eWFGzduYNKkSWjWrBmOHz+OFy9eYOHChXj48CHOnTuHOnXqQEdHR9Qai7JPf3xDQ0Nx7tw5nDhxArdu3cKqVatw/vx5aGpqYuLEidi9ezcSEhJgYGDwxXmGh4dj7969mDBhAh49eoTevXvj1KlTWLx4MXx9fZGYmIjFixejWbNmanf0/+90dXUxcuRIpKSkYMeOHejWrRu2b9+O2bNno2zZshg0aJBivIS6deuiWLFi6Nu3L7p27aqya+PkA8jIb8sVFxeHFi1aoGXLlnj8+DFGjhypOFu8b98+ZGZmokuXLtDQ0EDFihVVUnNeSSQS3L59G9u3b8e8efMAfBzwzM/PD7Vr11Zcx67sszPh4eHw8PDA0KFDceHCBbi6uiIzMxPW1tYYMWIEYmJisHXrVmRkZODt27dwcHAodOE7ODgYU6ZMweHDh9G6dWv4+vrC2NgYVatWVQSN9+/fw8jISKVnQ/++DdHV1UXdunWxZs0ahIWFYcuWLXBwcIChoSEmTJigNgfF1MHbt2+RnJwMLS0tVK5cGW/evEGTJk1QpUoVnDhxAoMHD8alS5ewfft2zJo1C2XLloWGhobab7f/Tk9PD5aWlrhx4wZOnDiBHj16wMzMLNe2Evjf/pV8+5Hf8H3lyhXs3LkTRkZGGD9+PBo3bgwjIyMcPXoUNWvWxO7du7FkyRK1Gejy088xMjISmpqa0NHRQYsWLfD48WMUL14c1apVg7a2NlJTUyGVSqGjo1OoPvu8kA+OvXTpUlSvXh1JSUlwcnJCuXLlcObMGQQGBuLgwYOYNWsWgG+7a4tE4HCPonn8+DGOHTuG3377Ddu2bUP9+vWhr6+Pe/fuYciQIWjRogVSUlKQmJio2BAU9Er9+vVrbNu2Db169YKFhQW6du2KmjVrYvXq1Vi9ejWSkpIQFxeH6dOno3r16gW6bMqb27dvo2TJkqhVqxbc3Nxw69YtDBs2DFKpFM+ePUNKSgo6duyY56OOSUlJims4nzx5gnnz5mHt2rXIzs7G0KFDUaFCBaxbtw4AsHjxYqxatQolS5ZUVvP+lSAIyMnJwezZs9GyZUt069YNiYmJmD17NqpXr44WLVpg3rx5mD17Ntq1a4fMzEwkJyez27mSPH36FKamplixYgUGDBgAX19ftG7dGrt378ajR4/Qt29fDB48+Ks/PE+fPoW7uztkMhmWLVsG4OMZslWrVsHFxQWNGjXKVy8OVfq0zkePHmHLli2oU6cOunXrhtevX2PRokXo06cPhg0b9o9/o2pXr17F/PnzUb9+fTx69AgnT56EoaEhjhw5Ak1NTezevRtTpkxR+4Go4uPjcfXqVfTo0QNZWVlYvXo1vLy84OfnB+Dj4F83b97Eu3fvkJqaiuHDh+O3335TWj0ymQwhISE4ePAg9PX1ERYWhl27dkEikWDAgAFo3Lgxhg4dioSEBMTGxqJWrVowNTVVWj3K8PDhQ0yZMgUDBw7E77//Dn9/f1y5cgX+/v5o2bIlTp06hblz56rVupOeng5tbW3ExMRg6dKlyM7OxqZNm2BkZIQNGzZAT08PY8aMKXThUVnCw8Mxbdo0GBgYoFixYvjtt9/Qpk0bXL16FaVLl8br168xYMAAzJ49G/Hx8fjjjz/QoEEDVZedb59uk2/duoVz587B2NgY3bt3R6VKlQB83FfW0ND4rvEZQkJC4OjoiMmTJ8PLywsfPnzAgAED8P79ezx8+BDJyclo1aoVWrZsWSDt+l6ffg927dqFK1euICMjA02bNkViYiKMjIzw9OlTVKxYETdv3sTmzZtRs2ZNFVetHE+fPsXBgwfRsWNHNG7cGEuXLsW1a9fg5uaG9evXIzs7G+3bt0e7du2+eRkM4Er29u1bhIeHK7rnzJ07F2XKlMGUKVNw6tQpvH37FgcPHlTci/JrXTm/RUBAAIoVK4a6desiOzsbu3btQmJiImbOnAkA6NixI+rUqYO1a9cCgGKIfRLHpxu9Q4cOYcOGDWjSpAk0NTXh4OCAffv2wd/fH4MGDcp3N6/MzEy0adMGQ4cOxZgxYxAdHQ03Nzf069cPZ8+eRfv27bFu3To8f/4cixYtgqGhIerVq6eMZubZtm3boK+vj/79+0NXVxcJCQmYPn06fvnlF4wZMwYAvul6G/qyT9fDhIQEzJgxA3379kW9evUQFRWFY8eOYdWqVXBzc4O/vz/mzZuHsmXLfnGet2/fxs2bN5GSkoKIiAgMHToUzZo1g7a2Ntzc3LB8+XLcvHkTRkZGhebzvHPnDqKiolC/fn2ULFkSq1evRuXKldG9e3e8fPkSc+fOxd69e2Fqaqry4P327Vts27YNCxYsQGRkJKZMmYJVq1YhJycHw4YNg46ODs6fP499+/YhJycHtWrVgrW1tVoHEkEQ8O7dO0yYMAEVKlSAmZkZhg8fjlGjRsHY2Bg7d+4E8PFWU1paWsjIyECFChWU1qbXr1/j2rVr6Nu3L3x9fXHt2jXcvn0ba9euRc2aNZGSkoJRo0ahQoUKWLNmjdq+r//k0/dMJpPBzs5OEWINDQ0RGxuLBw8eIDExEdWqVUOjRo1Uuu5EREQgPT0dderUgZubG4KCgvD27VtMnDgRPj4+ePv2LcqXLw9dXV2cPHkSO3bsKJLdZ7/F8+fPMWfOHAwdOhS//vorPDw8cO3aNTg6OqJ48eKYMGECateujT59+mD48OFYt26dopdmYfHp2e2nT59CKpXCxMQEYWFhuHHjBvT09NCtWzeYmZlh7ty5sLOzw48//pjn+UdGRiIkJASdOnVCbGwsnJycIAgCHB0dAQBr1qxBTEwMBgwYgCZNmqjt2BrXrl3Dhg0bcODAAUREROD+/ft4+vQpfv75Z8X33tLSMk8DrhYm8m3Xhw8f0KNHD5iYmGD79u2KE1JTp05F7dq1MWbMGGRkZKBYsWLftb1Tj8PyRVRWVha8vb0xe/ZsuLi4AACWLl2KZ8+ewdvbG926dcPIkSMVo8wq47YDcXFxmDVrFiZPngxPT088efIEgwcPRmBgIFxdXQF8HAXd398fEyZMAAAOQiKiT7+8L1++RHp6Ok6cOIEFCxbAwMAAs2fPxqBBg1C/fn3s378/3/dX1NHRwcaNG7Ft2zbs2bMHZmZmaNOmDRITExEXF4caNWrAxsYGOjo6KFOmjMrCd1RUFF6+fInU1FRYWFjA19cXr1+/BgCUKlUKq1atwsGDB+Hr6wsAhSasFSby9fD9+/coVaoUmjRpguTkZJiamiIqKgoaGhrYtWsXTpw4gYkTJ341fIeGhmLBggUYOHAg5s2bhxo1auDKlSu4c+cOsrOzMWTIEFy5cgXGxsaF5vMMDg7GpEmT8OjRI9jZ2SEsLAzTpk3Dy5cvcfjwYVSoUAHHjx9HhQoVVB6+gY+fZUJCAvz9/ZGTk4MWLVrAwMAA586dw9GjR1GjRg10794dLVq0wJgxY9Q+fL958waurq4oUaIE+vbti0uXLuH169coWbIkdu/eDUEQMHHiRAAfb11YunRpxfgQympTYmIioqKiMH36dLx8+RLdu3eHubk5zp8/j2fPnsHQ0BDOzs54//493r59q5QalEG+Hty8eRN79+6Fv78/du7cCV1dXcyZMwcZGRkoV64c2rVrhz59+ihuo6aqdSc9PR1//fUXvLy8sG/fPpw+fRrTp09H06ZNcfLkSTRu3Bjt27dXjHTO8P0/0dHRGDJkCEaOHImOHTvCyMgIVlZWSE1NRUZGBiQSCWxtbREUFIRhw4blukSysMjJyVFc4nf16lXY29vD3d0dw4cPx7t371CjRg2kpaXhyJEjSE5OxsyZM/MVvoGPJzzk13lraWmhdu3aePLkCU6dOgUAmDZtGkxMTLBjxw4kJSWpTfgODAzE8OHDFY/fv3+PqlWrQltbGzVq1MAvv/yC8PBwCIKAZs2aoXv37kUufAMft10BAQE4d+4ctm3bhsTEREWvKgC5bhUpv5zse7Z3qt9DKMK0tbXRv39/bN68GWfOnIGjoyMuX76MHj16IC4uDqmpqdDQ0MDvv/+O9evXK+U6pLJly8LW1hbAx9ts7N27F4cOHcKaNWsQEhKCR48eAQB8fX0VZ8TVdeerqJFf8w0A+/fvx9SpU+Hp6YmwsDAYGxtj7NixMDQ0xMSJEzFixAgsW7YsX9eQyo/2NmrUCHv27MHq1auxf/9+xYj7Ojo6uHfvHvbt24eFCxeiRo0aSmnn11y7dg1//PEHNmzYgO7du8PCwgKNGjXCrFmzEBkZCalUitKlS6Ndu3Ycl0DJrl27hlmzZiEwMBDt2rXD7t278fDhQzRq1AgmJibw8/PDypUrv7qtSktLw6VLl5CRkYGEhAQAwPjx42FgYAAvLy/cvHkTABS3LFHnjljy2qKjo/Hu3TusWrUK8+fPx8yZMzF//nyEh4dj8uTJiImJQU5ODkqUKKHiiv93676KFSuiUqVKuHr1KsqVKwdLS0tER0crRnBv1aoVNDU1cx3YU9ftf2ZmJgRBwOnTp+Hu7o4SJUpgxYoVePbsGZycnGBoaIiNGzfiw4cPiltLKZN8vfjpp5+Qk5MDT09PJCYmwtzcHP3790diYiJOnz6Nx48fK0J4YbrdmPz61SVLliAmJgabNm3C6dOnsX37duTk5GDixIlIS0tTdZkKenp6GDlyJJKSknD58mU0bdoU5cuXx/jx41G/fn1s3LgRTZs2hZ2dHaZNm8bw/YmXL1+iZMmSSEpKUjzn5+cHiUSi6A3ZunVrLF26FBs2bFDcPq+wePfuHQYNGoT3798jPj4eGzZswPLly+Ho6Ig///wTV69eRdmyZfHbb78hKSkJiYmJ+b4MLycnBzVq1EC9evXQs2dPeHp6olevXujXrx+uXr0KLy8vAMDs2bMxd+5ctbq1Y6NGjRAdHY2RI0cCACpXrozMzEy8ePECMpkMZmZmqFKlCt69ewdAvX+vv1epUqXg5uYGIyMjxV2qNmzYgDNnzuDQoUMF2ku5cJx2KMS0tLRgbm6OrVu34uLFi7hz5w4CAwNhbGyMWrVqoUmTJgBQ4PfOi4+PV5xVt7e3h0wmQ6VKldClSxdMmzYNL168QE5OjuKetQCK5BEtdSY/Q3b16lUEBQVh5syZOHz4MO7evQtjY2PUrVsXI0eOhJubG+Lj4/O18yY/e/HgwQNkZ2ejXr16OH78OHr16gVNTU3Y2Nhgzpw5CA4OxqhRo1R2u5iIiAisWrUKixYtQuPGjbF48WKsW7cO8+fPR2JiIlasWIEGDRpAS0sLV65cweDBg1VSZ1H19y5wqamp8Pf3R0hICJYvX44WLVpg//79WLZsGaZOnaq4U8I/ka9zUqkU+vr66NGjBzIyMuDs7Izhw4ejbt26sLOzw+bNmxWjDcuXra6hD/hY240bN7BgwQKUKFEC1apVg7m5OWxtbSGRSDBlyhSsWbMGK1euVIvBACMiInD06FF07twZtWvXxvDhwzFkyBCYmZmhb9++WLduHQRBQGRkJI4fP46VK1eifv36qi77i5KSkrBq1Sr06dMHGzduxNy5c9G8eXMMGzYMVatWxaxZs2BkZIRevXrBwcEBHz58UGo9f+8l0KdPH9SpUwfBwcHYvXs3Bg4ciGLFisHNzQ0+Pj6Ks0mFydu3b7F3717s3bsXMTExePDgAS5evAhBELBlyxaMHTsWL168QN26dVVa56efRfXq1TF27Fhs27YN0dHRiIyMROXKldGvXz9cv34d7969g6GhoVpvb1TB0tISs2fPhqurK2QyGbS1tXHq1Ck4OjrC0NAQgiDAwMAg1z2+C9N7WKZMGfzwww8IDg5Go0aNUKVKFVSvXh0ymQxt27ZFVFQUdu7cib1796Jq1arfNGCjpqYmHj9+DODjZXSTJ0+Gjo4ObG1toaGhgbNnzyInJwfdunVDlSpVCrqJ30wqlUJXVxcXL16Era0tZs+ejZUrV6JMmTJwdXVF1apVoa+vDx8fHwwZMgRA4frsv+TT/Zm0tDRoaGigSpUq6NSpE+7cuYPu3btj6dKlmD9/PkxNTbF8+XLUr1+/wHqJ8Qy4Enx6dEhDQwM5OTkoV64c+vbtiylTpuDXX39FSEgIHBwckJKSUqBHkwRBQGxsLPr37w8XFxfcvHkTOjo6qFixIqKjo1GhQgW4ubnB3NwcycnJ2LBhAzIzMwts+fR1n37eYWFhsLOzQ5kyZWBpaYkxY8YgMTERZ86cQXBwMMzMzDBjxox8nzmRSCS4dOkSpkyZAmdnZ8yfPx+lS5fG8ePH4eDgAH9/f7i7u+Ovv/6Cra2tyo5oampqwtzcXHEAoHHjxoiLiwMAzJ8/H127doW+vj7evHmD7du3KwZIoe8XEhKiOBN99epVREdHw9bWVvEjI7+t08mTJ/H06VMA+GLAlN9qbO7cuZg8eTJCQ0PRqlUrVK5cGfv370dwcDCMjIwwY8YMlfW2+BahoaHw8/PDqlWrMGHCBBgaGuLUqVP48OED2rdvj4ULF0JbW1stwjcAHDlyBM7OzrC3t8fJkycBABs2bMCDBw8QGRmJ1q1bw8fHBzNnzsTo0aPVPnwDUJyx37t3LxITE7Fs2TLcvHkTzs7OqFixIhwdHeHh4YEOHTrg7du3ShlLRe7TnS83NzcsWLAAR44cQdeuXdGyZUs8efIEHh4eSE5ORsOGDdG3b99COUpwVlYWpFIpkpKScOPGDQwbNgyVKlXCunXrsHHjRmzfvl2twveZM2dw5swZPH36FH/++Sd0dXXh7e2Ny5cv4+zZswgLC4ORkRGAohMgCoqOjg6aNGmCYcOG4ejRo1ixYgV27NgBMzMzZGZmKrpuF0aCICjO4p47dw76+vp4+fIlTp48qTgJUq9ePZiYmCA7Ozvf4Vu+7xQUFIQ9e/Zg+fLlkEgk2Lx5M3bv3o3z58/jt99+Q/PmzdVqwLLw8HAAUNyJIS0tDaVKlcK5c+cwadIkzJs3D/Xq1cPLly8RFBSE7du3o3LlyqosuUAlJiZixIgRCAkJUdyHfceOHQgPD4eFhQVcXV2RmJiI5s2bw9HREXFxcYr9oIL6LnAQNiXx9/fHkydPMGjQoH983dfXFyYmJkq7jubatWsIDg5GaGgoGjdujJ49e2LEiBEYPnw4unTpAuDjQFYJCQkFfvad/t2nOwx79+5F9erV8fjxY6xbtw5Hjx5F7dq1ERkZiY0bN6JSpUoYN27cN+3Yh4WFYf78+diyZQt8fHywe/du/Pzzzxg/fjzi4uLQs2dPnD9/HhUqVFDpD+urV6/g4OCAGTNmoGLFirhy5Qp27doFNzc3AP8bbE1dByspzJydnXHx4kVMnjwZ7u7uKF68OEqVKoWGDRsiKytLcWu6FStWYObMmV89+HH37l04ODhg+/btmD9/PjQ0NODk5IRXr17h6NGjePv2LRYuXAh9fX21uD76a3JycpCdnY2+fftCIpFg165dKFWqFLy8vODv74/y5cujf//+iq6K6nLtdFpaGtzd3ZGSkoLk5GTIZDIYGhqiUqVKKFOmDNq2bYt3795BQ0MDpUqVUpu6v+b169c4d+4c7t+/j5EjR8LY2Bjz5s1D06ZNMXjwYAiCgDdv3oh2947r169jw4YNGD58OE6cOAFdXV1s3rwZly5dUgRBFxeXQvP7Kl8Pnj9/DkNDQ5QuXRoxMTGQyWRwdXXF4sWLcebMGfj5+aF3795qMfq1fDRrd3d3nDlzBiNHjsT48ePh5uaG0qVLY/fu3bh//z5q166NUaNGFaoDf6qQmZmJW7duwdnZGd26dUOvXr1UXVKBSUlJwe+//47Zs2fD2NgYgwYNQufOnWFiYgIvLy9MnDjxm0e0vnr1KpYvX45BgwbhxYsXSE5Oxu+//w4DAwMMHToU48aNQ9++fdWmF0xGRgYGDhyIn376CcuWLUNCQoKixl69eqFLly6oVq0a1q9fDwBf7PlWmMlPRq1ZswbPnj1DZGQk3N3dMX36dGzfvh3Dhg1Djx49FLckW7duHdzc3Aru8gGBlCIoKEjo3Lmz8OTJk1zP5+TkKHW5MplM8e+kpCTh6dOnQrdu3QRnZ2fhr7/+Euzs7IRXr14ptQb6ugsXLgiDBg0SoqOjBUEQhL/++kswNzcXHj58KAiCIERFRQmxsbF5nl9mZmauxzdu3BDs7e2FxMREwcnJSTh69KgwevRoYdSoUUJwcLCQlpZWcI35RvLvwocPHwSpVCoIgiB4e3sLQ4YMEQRBENzd3YWxY8cK2dnZSv/e/Jd8uo3YuXOnYG9vL9y8eVO4e/eu4O7uLrRu3Vro3r27sGTJki/O5/3798L9+/cVj48cOSKcOHFCuHTpktC3b18hKipK2LBhg/DgwQMhPDxceP78udLaVJDk709GRoYgCIIQHx8v9O/fX1i5cqVimhMnTghz584VoqKiVFLj30VGRgohISGCIAhCVlaW4OrqKhw4cECQSqXCgwcPhHHjxgk2NjZCx44dFdscdRcfHy+EhYXlei4mJkZwdXUVpk6dKjx9+lR48eKF0K9fP2Hjxo251mtlO3/+vDB58mTh/PnzgiAIQkpKijBu3Dhh4sSJgiAIglQqFeLi4kSr53vJ37tr164Jbdq0EYYNGyY4OTkJERERwtWrV4WOHTsK58+fF2xsbIRr166puFpBePTokZCcnCwIwsd1YsyYMUJKSoqwd+9ewc7OTnj9+rVw8+ZNISEhQVi6dKnw9u1bFVdceEilUuHatWtC//79BWdnZ1WX802ioqKEpUuXCr6+vrn2HQ4cOCD89ddfgiAIQlhYmLB9+3Zh69atgp+fnyAIwjdtQ2QymbB+/Xrh9OnTgiAIwrt374QzZ84If/zxhxAeHi48ffpUuH37dgG0qmCFh4cL/fr1E2bNmiUMGTJEOHDgQK7Xra2thT/++EMQhG97X9RZdna24t9r164VevToITx69EgQBEG4e/eusH//fqFHjx6CnZ1drr8r6P1m9T8NUchkZGQgMzMTFhYWsLGxQVRUFID/DYqj7DM/EolE0SXGyMgINWrUwL59+yCVShEfHw8fHx/cv39fqTXQv8vKykJGRgYOHDgAiUSCpKQk5OTkYMyYMZg0aRJ69OiBJ0+ewMzMLM9nTsLDwzF16lSMGTMGCxcuVKx/ffv2xZMnT6Cnp4devXrhp59+Uhy5kw9mJojcAUb42+UZAFC8eHHF0dXk5GTUqFEDV69exalTpzBp0iRoamoWijOmhYHwt7Odo0aNQosWLbBz505IpVIMGjQIq1evxk8//YSbN28iISEBMpnss/nIZDIEBQXh8uXLOHLkCO7cuQMdHR0cO3YMzs7OWLNmDczMzBAWFoa4uDhUrVpVra57+zfy9+fGjRuYPn065s6dizNnzsDFxQV3797FqlWrAADdu3fHxIkT1WbcDF9fXwwYMACHDh3C69ev0b17dxw9ehReXl6KMUgGDRqEcuXKFYqRuKVSKfbu3Yv9+/fjyZMniud/+OEH2NjYoHr16vDy8sKPP/6I+fPnw8rKSqln8f/+HShRogSioqJw9+5dvH//HgYGBli1ahUSExMV136WKVNGafUUNIlEgqCgIHh6emLLli0YPXo00tLScPz4cejo6KB3795wcXHBrFmzVH7P4oyMDOzfvx/Tpk1DSkoKypUrByMjI2zatAl+fn7YuHEjUlJSsG7dOhgbG2PGjBlfvWPDf4n8N/jBgwe4fPkyQkNDc12GKO+OPnbsWPz888+qKvO7FCtWDG/fvsWpU6fQr18/BAcHIyEhAb/88gsOHz6Mx48fo3r16rCzs8O4ceMUt3fN6zbk0/0YiUQCmUymuNyndOnSMDc3R1paGrZs2YKcnBw0adJE7QYuq1q1KhwdHfHkyROkp6ejf//+AD7eTQAAfHx8MGvWLABF65INQRCgqamp2DeZOnUqOnXqhKlTp+LRo0do3LgxBgwYgIMHD+L9+/c4d+6c4m/zMwhyXnCv9ju9f/8eR44cAQA8fPgQCxYsgKurK2JjY1GrVi24uLggKytLqd1n//7Flm8QgI/B38DAQLGhYTcs8YWGhuLu3bsAPo6MX6xYMaxYsQIlSpSAh4cHXr16BeBjGJo1a1a+bskUHh6OCRMmoGnTpvjzzz/x66+/QkdHB6mpqWjatCnu3LmDsLAwxQA6AwYMyHWrMTE3rJ+GvytXriAkJOSzacqUKYMTJ05g69atWLZsmVKv5fyv+fT9P3jwIJycnLB06VLY2trCxsYGzs7OuHHjBiwtLTFv3jwcPnwYpUqV+seDHxoaGqhduzbCwsKwePFiJCYmon379gCg6JoaEBCA0NDQQtMFF/j4fbh16xaWLFkCW1tb2NraYt++fdi6dSv27NmDixcvKu7pqk7tGjJkCLZu3YrQ0FBs374dfn5+WLt2Le7cuYNnz54BAIYOHYqNGzfmupWKutLV1UXLli2hq6sLT09PxeBGwMcQbmFhgYCAAKSkpKBu3bqwsLBQWi2CICi+A2fOnMHZs2dRrlw5rFq1Cg8fPsTp06fx4cMHGBoaYvv27Yqd1sJEKpUq7ptdu3ZtNG/eHFZWVpBKpbh69Srat28PV1dXtG7dWuVBolixYhg2bBhMTU2xYMECAB8PiOzevRvbtm2Djo4O/P39Ubp0aeTk5KhNt191Ie9OO336dERERGDw4ME4c+aM4iQR8DGEW1lZFYrxIf5OJpOhbNmyWLduHVasWIHmzZvD3d0dc+fORXx8PPr166e4nem3kkgkuHPnDvbs2YOgoCB069YNlSpVUnTZTk9Ph0Qigb6+vuJaa3UMsZUrV1bcq3zFihUAPp6ckR+QUZcDzAVJIpHAx8cHdnZ2WLVqFZYvX46RI0eid+/emDVrFh4+fAjg43egYcOGigMS8r8t0FoEVW9NC7lXr15hz549yMzMRPny5VG6dGlERETgwoULmD59OjZs2IAJEyagffv2SrnW7tN5nj17Fi9evECbNm1yBRdlLJe+ThAEpKamolWrVtDV1UW9evUwYMAAVKlSBZUqVUJsbCwWL16sGKU1v/ecTE1Nxfjx49GxY0f07dtX8fyRI0fg7e2NgQMHQiqV4tatW7h16xZmzZqFNm3aFHAr8+/MmTNwdnbGgQMHFAOAyD158gRjxoyBi4uLaNdy/tfs2bMHly9fxqxZs2Bvb482bdpgzpw5OHr0KPbv348ZM2agadOm//r3n25P9u3bh4CAAFSoUAHdu3dHsWLFsHr1auTk5CA+Ph6jRo1Si3UuP/bt2wdtbW3FdyolJUUxeriBgQHevHmjtmeGYmNjERUVBUdHR1SvXl2xI/2t1zaKLS0tDfr6+orH9+7dg7e3N7S1tRWjugMf78e+adMmrF69Ot+3C/pW7u7u2LdvH9q0aYPbt2/D0dERWVlZWLlyJX799Vf07dtXrW4t9DXy73F0dDTevn2LcuXKYfz48fjpp5+wcuVKAB/Pgvn6+mLo0KEq78Ei31WVb3tevnyJv/76C1lZWZg7dy4WLlyIiIgI/PTTTwgNDYWjo6NaDXqlLhITEzF16lQsWrQIcXFxWL58ObZv347k5GRUr169yOwvyscHAD6OH/H48WPs2LEDWlpaiI+Px8mTJ7/5uubAwEDMnz8fVatWhY6ODszNzWFmZobTp0/j3bt3eP/+PbZu3YrLly8jISEBU6ZMUen7+vdl//1xZGQkZs6ciWrVqmH58uWqKFE0oaGhmDt3LhwdHeHj4wNvb280btwYc+bMwY4dO3D8+HEcO3YM6enpWLFiBcaNG6e87UiBdmj/D4mIiBDWr18vCIIgbNmyRahVq5bg4OCgeP3ChQvCnj17BBsbG2H69OlKr+fYsWNCp06dhPnz5wu//PKLcOvWLaUvk/LGzc1N2LVrl7B8+XJhwoQJQvv27QV3d3fh9evXQnZ2tjB06FBh06ZNn13H/TXJycmCnZ2dkJ6enmtZ/fr1ExwcHIQJEyYId+7cEdLS0hTXqqr6Wp7Hjx8Lo0aNEqZOnap4Tl6T/P+pqakqqa2oevTokeDp6al4vHjxYiE9PV1wcXERJkyYICQkJAgbNmwQZDKZsHfvXiEmJuar8wwICBAuXLggPHr0SJBKpYKjo6OwcOFCITY2Vnjz5o2QkpIivHv3ThAE1a9zXyOvT36t4LFjx4Q+ffrkut5r3rx5iusEP/0bdfH3etLS0oRVq1YJXbt2FZo3by5IpVK1q/nvnj59KvTr109ITk7OVeu9e/cEBwcHYcWKFcKFCxeEoKAgoVu3bsKFCxdEqy0wMFAYNGiQkJ6eLhw5ckQYPHiwMHDgQOHZs2dCaGioMHr0aOH9+/ei1fO95O/v7du3hdGjRwvjxo0THj16JMTExAiDBw8W5s2bp5g2ISFBVWUqfPjwQfHv27dvCz4+PsKbN2+ER48eCcuXLxdmzJghZGVlCTdu3BAuXLggREZGqrBa9SP/vB8/fiy8f/9e2Lp1q7B69WqhV69eQnR0tPDkyROhTZs2ajE2zPeKiIhQ/Fu+TZe3Pz4+XggJCRFu3ryZr3nGx8crxuQJDg4Whg8frrhm+NChQ8KyZcsUY268fftWOHbsmHDjxg2hQ4cOQnh4eEE065t9ui19+PDhv/6+h4eHC0OHDi1UY1d8C09PT8HBwUHIysoSHBwcFOMjzZw5U0hNTRVevnypmFbZ+6Lsgv6NTE1N0aJFCyQmJmLAgAGYP38+0tPTsXnzZshkMrRr1w5Dhw7Fvn378OjRI9y4cUNptQQGBsLHxwfbt2/HkiVLMGHCBCxYsAC3b99W2jIp70xMTHDu3DmMHTsWmzZtQqNGjeDg4AA7OzssWrQII0aMQK9evfLdVS47OxsvXrzIdU1/Tk4ONm/ejJkzZyru76inp6foSiT2EVjhbx1sfvzxR7Rr1w5SqRTHjh1THImVyWSK2j49A0bfRyqVIigoCN7e3jhz5gyAj2cDhg4diqCgIKxbtw6GhoYIDAxEdnY2hgwZgh9++OEf5yXvonj37l1MnDgRly9fxrhx4xAYGIhx48ZBT08PixcvxrRp05CamorSpUsDUM+ud3Ly9U/eI2Ds2LEwNzdH3bp1sX79eqSkpODx48cICgqCgYGB4u9U3aZPv1fyNsg/n5ycHOjp6eHPP//E+vXrsX37drW/DZYgCDh16hTMzMyQnp6OmJgYxWsNGjRA165dUalSJbi4uGDHjh2wt7dHu3btlNYd2t/fH8ePH4eHhwcEQYCWlhZMTU2RmJiIqKgoTJ48GaamphgyZAikUik2b96MEiVKKKUWZZBIJPDz88OiRYvw22+/QSaT4ezZs3j79i0cHR0RGhqq6EovVg+Df/PixQts2bIF4eHhOHLkCBwcHLB3714sXboUd+/eRefOnaGvr4+JEyfCwsIC7dq14+0q/0b+eS9cuBCRkZGIiYmBt7c3Vq9ejYoVKyIzMxM1atRQ621EXiQlJcHZ2VmxTyRvj/z/pUqVQt26ddG0adM8bzvCw8Nhb2+Pd+/eAQA+fPiA27dvw8/PDwDQo0cP1KxZEwEBAThy5AiMjIyQmpqKI0eOwMnJCVWrVi3oZuaZ8MmZ7j179mD69OkYOnQojhw5guTk5FzTVq1aFc7OzoVq7Iq8kH/OCQkJSEpKQrNmzVCzZk1cvXoVlStXRq9evWBsbIy4uDiEhYWhQoUKikt4lb0vmveLTUkhOzsbOjo6sLS0hJWVFSwtLbF+/Xr4+vrCy8sLbm5usLKygra2NipWrIimTZvmuo7ge33atSYrKwv+/v6IjIzEmTNnMHr0aAwePBgSiQQTJ07Eli1bFPdYJtWwsbHBuXPnsGvXLjRr1gyBgYFYunQpqlSpgs2bN6NmzZowNTXN1zwFQYC+vj4aNGiAgIAA1KpVCyVLlsTvv/8OALh9+zbev3+v0p2nTzf+hw4dQmJiImQyGXr27ImMjAwEBwdDU1MT3bp14yBrSiCTyaCrq4uePXsiPj4eHh4eKF++PCZMmICpU6eiT58+0NbWxvHjx5GUlITU1NR/XF9SUlJgaGgITU1NPHjwAD4+Pli3bh2aNGkCT09PzJkzBytXrsS0adNw5coVGBkZqdX10V8ikUjg7++PtWvXYt68edDU1ETNmjXRqVMnXLx4EUOGDIGOjg4mTZqkNtdDyr9XPj4+uHXrFuLj4zFs2DDFPZk1NTUV1y2ruttwXkkkElhZWWHbtm0YNmwYnJycAEBx+8E6deqgTp066NmzJ3JycmBoaKi0Lp2+vr5wdHSEhYUFXr16hatXr2LNmjUYNGgQnj17hpIlS8LS0hLXrl1Du3btULJkyUJ1ix6ZTAaZTAYfHx8MHjwYffr0Qdu2bXHo0CEcPHgQw4YNw6ZNmxSBQ9WhLC0tDTk5Odi3bx/CwsLg7u4OfX19eHl5ITAwEA0bNsTw4cPh5uaGlJSUXAfK6KPY2FisXr0av/32G+rXr4+yZcvi2bNncHZ2hkQiwf3792Fvb1/gg0yJ4dPtgKamJmQyGQICAmBhYfHFdTcv6/Xz588xe/Zs9OzZEz/99BMAoGXLllizZg0cHBxQpkwZdO3aFT169IBMJkPDhg1RrFgxDBkyBL169VLpyYRPb916/fp13Lx5Ex4eHvD19cWePXsAAB06dIChoaHib4rieAnyA+ybN2+Gvr4+Ro4ciW7dumH8+PGoW7cu3rx5gwcPHmDdunWKS5xE2x9V6vn1IkjenUPeJUoqlQodO3YUZs6cKQiCIPj4+Aj29vZCq1athNDQUCEuLk6ws7P77HYq30p+axxBEISQkBDh2bNngiAIwsGDB4V58+YJJ0+eVLx+8ODBXN1xSHzyLlDXr18X+vXrJ1hbWwuXLl0qsPn7+PgI7du3F/766y8hJCREyMnJEe7evSt06NBBuHjxYoEt53vs379fGDRokBAeHi7UqlVLOHz4sJCcnCwcPHhQmDJliuDl5aXqEos0Nzc3YcSIEUK/fv0EOzs74dixY4Kfn59gbW0tjB8/XujcubPw9OnTf/zb9+/fCw4ODsKRI0cEQRCE5cuXCzY2NoKnp6fikglPT0+hSZMmarO+5de+ffuEpUuXCoLwv9uTTJ8+XYiJiRHi4uKE+Ph4QRDUq9v51atXhZ49ewpPnjwRBg0aJIwcOVJxK7/Cesu+8PBwoWvXrsKIESOEM2fOKNYvMdtz9epVoU+fPorb6wUEBAgDBw4UXrx4IQiCIMyYMUOwt7cXfHx8hLZt2xaqW3r+ff3dvXu3MHv2bMX6nZCQIHTu3FlwdHRUdLdV5br06bLlXc1tbGxyXQoya9YsYfXq1YIgfLz9Hn0uPj5eiIyMFNauXSu0bdtWCAoKEgRBEN68eSN4eXkJhw8fFgICAgRBUK9tXH6EhIQIoaGhgiAIwvPnz4W+ffsK9+7d+655hoWFCf3791f89mVnZwuTJ09WXM534cIFwcbGRjh69Giuv/v0Fleqcv/+fWHVqlWCIAjCy5cvhZkzZwr9+vVTvH7hwgVh6NChgru7u+J2fkXVkydPhM6dOwv3799X/EYKgiCcO3dOsLOzE2xsbBS3kxQbz4Dng/D/R9p8fX2xdetWmJubo1OnTjh58iQ6d+6MuXPnYvny5bC0tERMTAxq1aoFAFizZk2uo0zf6vHjx7h37x569eqFw4cPY+/evZBIJGjWrBkWLVqE7OxsBAQEIDMzE3369EG/fv2+e5mUd8I/nJGRP/7555+hpaUFCwsLxaBU8m7X33KGQb4sa2trCIKAI0eO4PTp0yhXrhwyMjIwY8YMtGrVSuUDf2RkZODevXtwdHTE1atXYW1tjdatW+PYsWOK2140adJEJfX9F4SFheHo0aM4fPgw4uPjcf/+fVy5cgW9evXCmTNnkJSUBC0trX/tdqahoQEjIyOEhoaiTJkymDNnDrS1tXHp0iXUrFkT1atXR+fOnSGTyQrNmae/fyeMjY2RmJiIjIwMxZlMbW1tvHv3LtdZb1WfCfzU/fv3sWTJEkRFRUEmk2Hx4sXYtm0bevbsWahGrpV/FikpKShRogR27dqFu3fv4tq1a0hJSUHPnj0VZ/SV/f4/fPgQo0ePxoEDBxSfe/369aGjo4OMjAwAwJgxY7BhwwY4Oztj8+bN+e65pCry9+/OnTsICAhAq1atUKNGDYSHh+Pq1auwsrJCSkoKihcvjsDAQFSpUgV9+vRRWc8k4ZOR56Ojo1GhQgVMnDgRMpkMDx48QMmSJVGnTh00aNAAr1+/VlwmQP8jCAJev36N2bNnY8iQIRg0aBAMDQ3h5OSEadOmKfZfP6VO27i8ioyMRFBQELZs2YIxY8agSpUq6N27N5KSkgDk7jGaVykpKZg8eTJq1KiB3r17QyaTYcKECTAxMVFsX9u1aweZTIaVK1eiZcuWKFu2LDQ0NJR6x6O8ql+/PsqXL4/Q0FCYmpqiS5cu2Lt3LzZs2IDx48ejXbt2yMrKwsmTJ9G1a1dVl6tUgiCgatWqqF27tuKzWblyJXJycrBgwQIkJSWhdu3aKtlX5hYrD+RdOSQSCR48eICDBw9iyJAhePjwIU6cOIGcnBx4eXmhdevWmDhxIjZu3IhatWopvvgFEb4B4NmzZ7hx4wbi4+MRHByM48ePA/jYjURDQwMLFiyAi4sLnjx5oug2SuL49MsbGxsLQRBQvnx5xX3Z5d1Y165di4iICPz444/5+lH4+8ZBIpEgKysL2traaNWqFSwtLZGWlgaJRAINDQ2UKVNGJRuUT3/sJBIJ9PT0UKxYMcWtmzZt2gQdHR0cOnQIAwYM4EGiAvb3z1wqlSInJwc6OjowNTWFlpYWrl27hjVr1sDOzg5t27b94ryMjIwwePBgHD16FBcvXoQgCJg+fTqWLl2KHTt2YOTIkahVq5biR1yVB3zyQl7f9evX8eLFC+Tk5KBt27ZwdXXFli1bYGtri/T0dPj7+2PIkCGqLlfh7+9ramoqVq5cCR0dHTg6OqJChQp4+PAhOnTooMIq808ikeDatWtwdnZG8eLFUbp0acycORPJycl48OABsrOz0adPH1HC1Q8//IBffvkF+/fvR8OGDQEATk5O0NbWVoyCW61aNcV9pgvL76t83bl27RoWL16Mpk2bYsqUKViwYAFq1KiBoKAgHD9+HCkpKdi2bRtu3ryJt2/fqvS7LF/uzp074enpiZSUFCxbtgzjx4/Hjh07sGrVKlSuXBmBgYFYu3atWm9zxCb/DZZIJPjhhx/w66+/4uDBg9DS0kLHjh2hpaWFpUuXYsGCBYrLVgqrN2/eYPr06di/fz+qVauGhw8fYu/evXj48CEqVaqEBg0afNOdCbS1tTFixAicO3cOJ0+exJUrV/Djjz9i5syZimnCw8NRrVo1HD9+HMbGxgXZrG8mCILi4JWJiQn++OMP/PDDD1iyZAkGDRqEc+fOYdu2bRg3bhw6dOgAKyurQnPgPK/k262srCzIZDIYGhoiISEBjx8/VhxYrV27NtLS0vDDDz8oxrxRxTaEF15+RXx8PHx8fJCVlYW4uDjMnDkTtWrVQufOnfH777+jUqVK8PT0hL+/P65cuYLBgwcr/ragjh4L/z+IQOfOndGpUyeEhIQgPT1dsRNw9uxZXLlyBbNmzcLIkSNhb29faHYOigr5l9fV1RXz58/H1KlTsXDhQrx//17xWsmSJVG6dOl8X5f9aWjYvHkz1q1bh4iICGhrayvWDSMjI5QrVw4mJiaKs5kq2aD8/zrv4+ODixcv4t27d/j1119x4cIFTJw4ETo6Ojh9+jT09fWRlZUlen1F2ac7zPKDcDVr1kSDBg2wdu1aSKVSlC1bFmZmZjA3N4e5ufkX5yc/eFS8eHH06tULVatWxaVLl+Dj44P58+ejWLFi2L59u1Lvk1nQ5EFk1apVMDc3x/r163Hp0iU4OTnh3bt32Lt3L9avX485c+aoxT3o5fdjld+f/NixYwgICMDo0aPx6tUr1K1bF2ZmZrh79y4iIiLU4uxLfgQGBmLFihUYOXIkZsyYgSdPnmDWrFno06cPateujdDQUMW1yMpWsmRJbNy4EcnJyZg8eTLWrl2L6OhobNy4ERoaGsjJyVEMzlOYfl8lEgmioqKwfft2ODs7Y9KkSZBIJNizZw+qVauG8ePHY/Xq1Rg1ahQCAwOxY8cOtG3bViXfZfnvGfDxdllPnz7F/v37MX36dIwaNQpPnjzBxIkTUb58eQiCgC1btqBGjRqi16mO5L00NDQ08PTpU+zevRsAMGrUKFhbW2PPnj0ICwtD+/bt0bZtW2RnZ6uw2oJRrFgxZGRkICsrC02bNsWwYcOwYcMGjBo1ChUrVsTly5cBfD4Y7Nfo6urC1tYWXbt2xaZNm5CYmJgrfPv7+2PmzJlIT09Xm/Atp6Ghgbi4OADA0aNHIZFIsHjxYtSrVw8dOnRAeHg4nJ2dARS9AW/l+0DyPDRixAg8e/YM1apVg4ODA/bv349jx45hx44d+b7trzLwPuBf8Pz5c+zevRvDhw9HqVKlkJGRgZMnT2LHjh3Yv38/atWqhbi4OBw6dAgxMTGYNWsWSpQoUaBHjv9pXvfu3cOOHTvQrl07NG/eHKampop71e7Zswdly5YtkGVT/pw9exYHDhzA3r17sWjRIsTHx2PlypW5dtZSU1O/6Yijj48PNm7ciOnTp2P9+vUoVaoUNm3aBC0trW/qYlXQPl1Pjx49ii1btqBp06YIDAzE3r17cf78eRw5cgQVK1bEu3f/x955B9Tc/v//cZoI2SObm7L3nmUnZO9x25K9ItlFGWWvKDNF2dwIJUIRZaVlFaKlod31+8PvnK/uzz1w43R4P/6h9znnfV7v877e13W9rtfrer5iWLFihWKLhsS35eDBgzg5OVGjRg2aNWtGqVKlCAwM5Pbt23Tp0oVjx46xa9euz05Vlrev9+/f4+7uzrNnzxS1pcPCwlSmXrsQgqysLCwtLRk+fDgpKSk4ODiwZs0aHj9+TKdOnZDJZMTFxeUJJdj4+HjMzc2xtrYmMTGRadOm0a5dO54+fUrv3r1p0qQJEyZM4LfffiMyMpJZs2bRoUMHZZv9RXh6ehIeHs7EiRMVx0xMTBg/fjzdunUjJiaGcuXK/VCb3r9/j4WFBdevXycoKAhAUVFCVXj27BnXr1+nQIEC9OnThw8fPmBnZ0ffvn25du0abdq04cyZM5w5c4aJEyfSuXNn/P39OX36NHPmzFGKU/vpGHLw4EGePHlCZGSkQsX/9OnTLFiwgM2bN9OoUSMyMjIUlRZ+ddLS0nB0dKRZs2ZUq1YNHx8fLl++TPPmzRk2bBgA69ev58SJEyxfvpxmzZqRP39+JVv99cgzQLt06cK2bduYPn16LrHh7Oxsjh49yps3b5g+ffpnnTMjI+N/xBRTU1O5dOkSR44cYdCgQRgbG3P37l1WrFiBubm5Yjuhsrl9+zZaWlrUq1ePAwcOcO7cOcqWLUvFihWZNm0a06ZNQ1tbmwULFvDkyROqVaumMkKpX4q/vz8rV65kyZIlvHjxAh8fH9q2bUtmZiaRkZFER0fTs2dPWrdurWxTpRT0vyM+Pp5x48YxZ84cSpYsiY2NDXXq1GHYsGFoaGgwbdo0NmzYgIGBAQMHDiQ9PV1RhuR7ON8HDx7kwYMHREZGMnfuXLp06YKvry/Z2dm0bt2acuXKcebMmTwfgfpZEUKgo6PDyJEj2bFjBy9fvmTbtm0sWLCAxo0bM3ToUODrVxxv3ryJg4MDISEhaGlpsWjRIg4dOkS3bt3yREcqb3fXr18nODiYgwcPoqenx86dOxk9ejTOzs707NmTt2/foqurS+nSpZVs8c/Dhw8fFO3q4sWLPHjwgP379+Pr60toaCgZGRkMHz6c6tWrk5GRwZYtW/7W+f6rBT959E9XV5f+/fvj4uLCpUuXaNSokco43/CxjWpqalKyZEnc3d2JiIjAzs6OihUr8vvvv1O7dm3Kly+fJyb12dnZFC1alJo1azJ16lQMDAywtramdevWXL9+HUdHR7S0tPjjjz+Ii4vjw4cPKll66cOHDxw9epQBAwZQrFgxALp164aamhra2trf1fn+u4VyXV1dVq1ahYWFBbNnz2bdunUq5XxHREQwadIk2rVrx4EDB4iNjWXUqFEMGjQIdXV1QkNDMTMzIyEhgXv37tG8eXPKlClDz5496dy5s9KUsOX34saNG5w+fRoTExOio6PZuHEjEyZMwMTEhIyMDObNm4eXlxeFChVSip15ESEE1apVw8HBgeLFi7Nw4UK0tLS4fPkyOTk5jBgxgq5duxIYGEi5cuVU2vmGj7oA2tranD59mvv37zNv3jx+++03atSoQcWKFRk4cCCpqan4+/uTlpaGtrb2P86N4+PjmTJlChYWFrl0P/Lnz4+RkREymQwPDw8ePXrE7du3mT59ukJ/Jy/MuYOCgtizZ48ii8XKyorExEQOHjzIypUr2bhxI4MHD8bBwYGlS5cqPWDzPQkODsbIyIhGjRrRqFEj9PT0WLhwIZs3b2bAgAG51OGVjeSA/w2ampp07tyZx48f8+TJE2rVqsWdO3fQ0tKiX79+aGhoMG7cOBwdHb9bqqL8wXZzc1OsXF6/fh1bW1smTZqEqakpzs7OaGho0KtXrzzTqH41rl+/zrt37yhYsCBLly6lUaNG7N69G/go8PSpg/w5nbU8KUX+XiEESUlJLFu2jIyMDGxsbChXrhxXr16la9eu3+GKPh/5ACSEIDMzk/379/PmzRu6du1K6dKlmTBhAgC9e/fG2dk5T6T1/kwEBwcTGBhI3759SUpKYtOmTVSsWJGyZcvSt29fTpw4QVBQEOfOnWP48OH/uAAkv5dXr17l4sWLaGlp0bRpU7p166Yo71K4cGEGDx5MYmKiwmFSBQIDAxWiao0bN8bMzIwDBw5QqVIlHjx4gI6OjsLxUPaEKjExkUOHDjFp0iQWLVrE3r172bFjB23btgVQRHo2btzI27dvGTdunDLN/U/06tWLx48fM3fuXBYuXMj79+85d+4cS5Ys+a7f+2nW0LVr16hWrVouQbUiRYpga2uLmZkZc+bMYe3atd/Vnm9FREQE8+bNY/z48QwYMIDy5csjhEBTU5OaNWty4cIFAM6fP8+OHTuYPXs2NWrUUDz7ynC+P3Virly5woEDBxg0aBCmpqZUq1aNP/74g+3btzNx4kT69u1Lly5dVN6B/JYIIcifPz9VqlTh0aNH1KlTh5iYGIyNjRFC4O7ujp+fHxEREVhZWanUoqkceRsJCgoiOjqadu3aKQTkmjVrRlRUFLVq1SIqKkqxuF+xYkUsLS0/q00XLVqUBg0asGTJEqytrRUlx+Bj0MTQ0JDMzEzWrl3L0qVLad++PaD8sULOmDFj0NLSYuPGjQwaNAgDAwMyMzMpX748y5cv59WrVxw+fJioqKifzvn+8yJIvnz5ePXqleK1Zs2a0aZNG6KjozEwMMhb1/9fZdR/ZtauXSv09fXF6tWrhRBCnDt3TsycOVO4u7uLuLg44ejoKG7duvXNv/fx48fi2LFjir9XrlwpvLy8FH8fP35ctG7dWnz48EFcvHhRvHnz5pvbIPH5uLi4CBMTEyGEECtWrBB9+vQRN2/eFLt37xZdunT5olJwn5Ze8ff3F56enuLZs2ciJCREdOnSRezatUsIIYSfn5/o3r27oiSGMvi0ZMmLFy9EZmamSE9PFxYWFmLp0qW5bNu7d69UEu87EBYWJmJiYsSzZ8/EkydPhJ+fn2jZsqVwdnZWvMfNzU3Y2NiI+Pj4fz2ft7e3MDU1FXfv3hXTpk0TAwYMECkpKYrXVbFMjb+/v2jWrJmYO3eu6NKli3j9+rU4cOCA6N69u5g5c6bo3bu3uHjxorLNzMXcuXOFsbGxGD58uBBCiE2bNgkTExMRHBwshPhYjvLq1auKcll5nb9qN/KyUXFxcWL16tViyJAhYvTo0d+9nF1gYKA4ceKEeP/+vUhKShI9evT4277p/fv3KlNq7OnTp8LQ0DBXSZ0pU6YIW1tbERsbK3JyckRiYqJYsGCBMDc3F+fPn1eitf/LixcvRGxsrPj999/F/PnzFf3VrVu3xJw5c4S9vb3IyclR2TJ73xMfHx9x7do18f79e+Hm5iamTZsmrl+/LoQQ4v79+8LZ2TlX+TZVQN5nyMt6eXl5iQ4dOoiJEyeKjh07KuYXV65cEX369Mk1Tn1JG/m0bNimTZuEsbGxoqTZp6Smpirm2nlhHPwrG5ydnUXLli0V44QQQkydOvW7+Cl5iWvXrglHR0fh6OgoXr16JQwNDcX69etFdHS08Pf3F506dRL3799Xtpn/gxQB/xPik9WURo0aMW/ePF69esXBgwcZOnQo6urqeHh4kJ2dzahRo9DQ0PimaSiZmZkEBQXh7e2NTCajd+/eJCUlcevWLcWqW+/evbl06RIJCQl06tTpm3yvxOcRHx+vEN2IiYmhRIkSDB48mMePH+Ph4cGiRYtYvXo1Fy5cICYmhq1bt1KpUqV/Pa8QQpEqeOrUKSIiIpg1axb16tVDTU0NIyMjli5dyqJFiwgKCiI0NJT58+crreTQpxGkvXv34uLiQpUqVWjdujXLli1jwYIFODs7M2LECCpXrszIkSOVYufPivz3r1atGgEBATg7O1O1alUGDBjApk2bsLS0RCaTMXLkSAYMGPDZqs3h4eGsWrWK6OhoYmJi2LhxIy4uLjRs2JBGjRrlmRX/f0PeJ8uvY/PmzTRt2lSxJWLv3r0YGhry9u1btLS0qFWrVp5IJ5Snx02ZMoUJEyaQnJwMgLm5OZmZmVhYWCgiNG3atFG6vZ+D/Hf19/cnKioKgK5duyqimEWLFmX+/PkkJycjk8nQ0dH5rvfixYsX7Nu3DwAjIyNKly79l0rJ8oyPr1FR/tEIIQgMDCQrK0sx3owePZqwsDBSU1Pp168fFSpUoEmTJrRp0wYjIyPy5cuXJ9o8fEwpnjZtGpMnT2bdunXMmTMHZ2dnRo8eTbNmzVBTU6NSpUpfXbbzZyc+Pp65c+fi5OTEgAEDSExM5Pjx4zx58oTSpUszatQoIO9XqfiUpKQkChcujLq6Ok+ePGHz5s3s3buXrKwsRo4cyZw5c1i/fj3Vq1enRIkSZGRkKDK8PjfKKYRAXV2dkJAQdHV1MTc3p2DBgsydO5c1a9bkioTny5cvz2RJfXof//jjDyIiIihVqhQtW7akZMmSzJ8/H3NzczQ1NXnx4gXly5dXqr3fA/FJVsSSJUsYO3YsR48eJTo6mtWrV7N161YiIyOJjIzE0tLyX0VnlYJS3P48zrVr14STk5Nwd3cXQgjxxx9/CAsLC+Hi4iJycnLE2bNn/3KF7FsRExMjjh49KmbNmiW8vLzE69evRfv27cXOnTtFTk6OOH78uDA2NhZv3779bjZI/C9hYWFi+/btIiMjQ9y4cUNYWVmJlStXiuzsbHHs2DFFpoSc9PT0L/6OyZMnixYtWggLCwsRFBQk0tPThZubm5gzZ464fPmySEpKEmFhYSIsLOxbXdZ/IiAgQFhZWYknT56Ia9euibFjx4oDBw6I9PR0MXHiRLF69WpFpEvi23PgwAGxYsUKce3aNWFhYSE2bdokXrx4IQICAkSLFi3EoUOH/vJzOTk5fxlN2rRpk+jatasYNmyYYrV/+vTp4vHjx9/9Wr413t7eomvXrqJPnz5i9erViudx586donXr1iIoKEjJFv4fHz58yPV3XFyciIqKElOnThVjx44ViYmJQggh7OzsRPfu3UVSUpIyzPxqPD09RZ8+fYSbm5vo1auXWLNmjeK1H9U/fNrWz58/L4YPHy4uX74sunTpIubOnSsOHjwovL29c0WPVImkpCTh4eEhhg0bJnr06CG2bNkihPj4rF+7dk24ubmJAQMGCH9/fyVb+r+kpKSIc+fOiZEjR4qLFy+KmJgYMWHCBGFjYyMSEhKUbV6e4tOIbWxsrKJfO3PmjDAwMBDXrl0TOTk54tChQ8LU1FRcu3ZNWaZ+Nenp6aJ169Zix44dQoiP2RHW1tYiLCxMbNq0SYSEhIhJkyaJLl26CF9f3//Ul1+5ckUYGhqKOXPmiBUrVoicnBzh7OwsevbsmafGiL/C2dlZ9OnTR2zdulUsXbpUjBs3Tvj5+YnDhw8LfX19MWnSJBEREaFsM78bgYGBYsmSJQpfTQghZs2aJaysrIQQH/uVvJS18GekCPj/Rx5RCg4OZsWKFXTo0AFfX1/CwsKYN28e6urqnD17luzsbIWq5PeiePHiGBoakpOTw7Fjx+jTpw9OTk6Ym5vz5MkTnj17hoODg6R2/gMJDQ2lcOHCDBo0iJcvX/Ly5Ut69uzJgQMHmDdvHtWrV+f48eNUr16dvn37AvyPoubfERcXx759+5gxYwZbt25lx44d2NvbM2DAALS0tBR7P11dXUlOTqZnz57f7Tq/hIiICMaMGUO/fv2oUaMGlSpVQktLi127dpGWlsamTZuIi4v7ITV8f0Vu377Nvn37sLe3p1atWujo6ODi4sKpU6cwNjZmx44df1vyLi0tjfz58yOTyRRibQYGBgwdOpTAwEBKlixJ6dKluXPnDk+ePPmxF/YNCAkJ4erVqyxZsoTnz58THBzMqVOn6N27N+PHj0cIwYcPH5RtJvAxerVnzx4aN26sUDEvUqQIRYsWZePGjZiZmWFhYcGQIUPo3bs3AwYMUKkyWGlpaZw+fRpHR0f8/PwoVKgQw4YNw9PTk3bt2n12P/lfEP+/Ni5AZGQk7dq1QyaTsW3bNrKzs8mXLx9xcXEcOnSI8uXLs3LlyjyhhP8lFCxYkM6dO5OVlcWOHTto0KCB4jW54m+/fv2UvgcyKSkJLS0ttLW1OX/+PDVr1qRixYq0b98eTU1NnJycyJ8/PytWrGDlypVkZ2cr1d68RGhoKK6urorMzF27dmFoaEi7du0wNjYGYMKECTg6OjJkyBB69uypUn2FHPl+5rFjx6Ktrc2oUaMwMjIiPj6ed+/eUb16dbp06cKePXsoUaLEF6v2i/8fPX3w4AEbNmxg+/bteHl5ce7cOaytrVm4cCGZmZnMmTMHd3f3PPMbZmVlKeZTcXFx3Lhxg23btlG6dGni4uI4efIkZ8+eZcGCBWhra9O4cWOlZUl+D8SfMjjCw8O5ceMGhQsXJi0tjXz58mFtbc24ceOIi4ujWLFiiqwIZWct/BV5aDe6ckhKSiIuLg41NTX8/Pw4ePAglpaWWFhYMGPGDCIjI1m3bh2dOnWia9euNG7c+IfYVaxYMTp27EibNm04efIkSUlJHD16lMWLF7Nr1y6p9uUPxMfHh3HjxpGSkkLhwoVxdnbm/v37aGtrs2HDBrp3706xYsUUHbq8du/nUqxYMfz8/OjatSuTJ09m4sSJ9OvXj2nTppGYmEiZMmVo27YthoaGeUZAxc/Pj9KlS7N48WK8vLy4d+8e2tra1K9fn9GjR3Pv3j0+fPggqZ1/Q0JCQggMDFQIKaWlpVGmTBn27dtHcnIyDRo0YNiwYTx69IgLFy4oJrafIoQgOTmZjh07cvv2baKioli6dCkPHz7ExcUFNzc3Zs6cSWRkJCNGjGDZsmXMmzdPZcTzsrOzSUhIYOLEiTx9+pTmzZvTs2dPqlevTlBQEG5ubmRlZTFhwgSaN2/+xfVhvwfyNHNfX19u3LgBfJwsZGZmArB161YKFy7MunXrePPmTZ6oX/q5JCcnky9fPrKzs3FwcGD//v3Y2NigpqaGq6vrD3MG5ZOvnTt3Mm/ePPr160fjxo2ZPHkyZcqUoXnz5pibm3P48GHWrl2rcs63vB0XLFgQY2NjJk+ezLZt27h06VIuMU9lc/nyZebMmcO4ceO4ceMGt27dYsqUKbx8+ZL8+fPTokUL6tSpw+LFiwkJCcHe3l6lxB6/JxERESxcuJCqVauipaWFnp4exYoV4+rVq9y4cYPU1FSMjY1p27Ytc+bM4f379ypZ51neThs1asTevXtZs2YNhw4dokWLFty7dw8tLS3u3r3LwYMHWbJkyRfNhaOjowkKClI8E1FRUbRo0YKqVauSkJDA8OHDefnyJfPnz2fIkCE4OTnlGefbx8cHa2trtm3bBnys1pCdnc3NmzeBj/PIGjVq8PbtW9TV1TE1Nf2pnO+IiAj27t2rKA0J0KdPHyZPnsz9+/cJDAwkJSWFsLCwPLO4/q8oLfaeB0hKShJWVlZi3759IikpSVy5ckU0atRIbN68WQjxMTXu4cOHYvz48cLGxkYpNsbGxorNmzeLnTt3KuX7f3V8fHxEnz59xI0bNxTHUlNTxdq1a4WVlZXw9/dXpLb4+/uLqKior/qe4OBg0bJlS9GjRw/FMQsLC9G+fXsRFxcnhPi6lPbvwbt378TSpUvFggULxIcPH4Srq6vo0qWLuHv3rhBCiIyMDJGamqpcI38yLl26JIyNjcW8efOEmZmZQlTl1q1bwsrKStjZ2SlEaB48ePC3wozyNFwnJydRu3ZtMWbMGEVK6sWLF4WlpaXYu3evEEKI+Ph4hQBVXkzf+hS5ffLru3//vujSpYs4cOCAEOLjM+vk5CQWLlwoXr9+rTQ7/4zc3nPnzonx48eLGTNm5BLMycjIUPw/Njb2h9v3NcjvRVhYmFi1apV48eKFOHnypOjQoYNC7O7atWuif//+CnGwH4Gfn58wNTUVWVlZubZvnT59WvTq1UucOXPmh9jxrZH/fp/+jklJScLd3V307ds3zwgMXrt2TfTq1Uv4+/uLffv2iREjRgghPo5zY8aMUYhqHT58WGzevFlERkYq09w8RVhYmBgyZIhwdXUVQnzsF4KDg0VmZqZYv369sLKyEhcuXBC+vr7CysoqTwpOfQ7yNhwUFCQCAgJEZmamePLkiahTp444fPiweP78uRg2bJgYOHCgOHfu3Bef/86dO6J+/fpizZo1wtXVVbx48UK4urqKy5cvK7ZrWVhYiLFjx4p79+5902v7L1y9elV07NhR7N27V+jr6yu2lzg5OYlNmzYpxvBz586JsWPHqtwWpc/B1tZWNGjQQLRp00asXbtWHD9+XPHasWPHRP/+/cWkSZPE77//Li5fvqxESz+fX9oBF0KIo0ePirlz54rDhw8LIT4qLX6qJJqVlSUePHggHjx48EPtSk9PV0wUd+3aJaZNmybtpf3BXL58WXTt2lWxJzAqKkosXbpUoZ67evVqsXz5cuHl5fXFyqzPnz8Xvr6+is+9efNGPH36VPTr10+hfCyEEPPmzRNNmzYVmZmZSlF//bvJcUBAgLC1tRVWVlYiNTVVuLm5iebNm6uMKrMq4ePjI4yNjf/nt/Xy8hLv3r0TN27cEEuWLBHLli37n73En/L+/XthYWGh+NvX11fo6+srnNSkpCRx8eJFMW3aNLF169bvczHfAXkb9fX1FQsXLhQrV64UV69eFU+fPhVGRkaKiVVqaupXL5B9T7y9vUWPHj3E7t27xcSJE4W1tbW4evWq4nVV7PevXLkixo4dK7p37y5sbGzEuXPnxP79+0WXLl3EsmXLROfOncWVK1e+qw1/7ru8vLzEmDFjFH8nJyeLKVOmiHv37gkvLy+VdPiCg4OFpaXlX76WmJgo3NzcFAujyuT69euiZcuWCi2Jly9fivbt24tZs2aJ5cuXi3bt2onRo0eLJUuWiE6dOqnkvfhexMfHi8aNG4sNGzYIIT7ODcePH69YKE1PTxebNm0Sc+bMEUZGRuLSpUvKNPc/4+npKTp27CjMzMyEhYWFiImJESEhIaJBgwaKvb5yhfwvWbyT7513dHQU+vr6YuPGjYrjkyZNEps2bRKvX78W3bt3z1OaJz4+PsLU1FShan/kyBGxb98+IcT/LXKOHj1aTJkyRRgbG+cp278loaGhYs2aNcLT01NYW1uLUaNGiZ49e4qTJ0+K1NRU4e3tLQYOHKj4bVSBX9YB//TBPXnypJgxY4bCCb948aLo0qWLUlfEExMTxdKlS8XMmTNFt27dRGhoqNJs+VWxtbUVzZs3F0J8nLz37dtX7N+/X/F6UlKSWLx4sVi9evU/Oj5/JjY2VnTp0kWEhIT85et9+vQR48aNE2FhYSIpKUmpIhqfRt2PHTuWy4ELDAwUNjY2YsWKFSI9PV14eHiI58+fK8PMn5bs7GxhY2OjWBCU91urVq0SderUEebm5iI2NlZcvXpVWFtbi5iYmH8836pVq0T9+vVF9+7dhRAfS5TVrFlTUaImOTlZnD9/XuUGcR8fH9G9e3fh5uamWAw6fvy4CAsLEy1atBAHDx5Uton/Q05OjkhPTxcrVqwQp06dEkJ8FBtycnISCxYsyJV1o0qEh4eLzp07iydPnohbt24JJycnYW9vLwIDA0VgYKC4dOmSIrr0vaLffy6RKLdr9uzZwsvLS9GvrVy5Upw+ffq72PC9kF/bo0ePxP3790V4ePjfvvdTwS5lkZOTI1xcXESXLl1ERESE+PDhg+jfv7/YsmWLuHz5sti8ebOwtLQUe/bsEfv3788zAqN5iTVr1oj+/fuLsLAwMXPmTLFixYpcr2dlZYmkpCSVyVj6O0JCQsSgQYMUQsQmJiZi2bJlIiYmRjx+/FjUrFlTvHz58ouvT/7+y5cvi5kzZwpnZ2dhYGCgKMXn7u4uxowZIzp16pSrjJ+y8fX1FU2aNFHM/yMjI8WgQYPEnDlzRHh4uEKgMDw8XNy+fTtPZXd9a9LS0sTIkSMVC1HBwcFCX19fDBkyRDRt2lQcOnRIuLq6ij59+ghPT0+VKFf4yzrgQuRWRT158qSYOXOmwgk/e/asaNeunXj37p2yzBOvXr0SAQEBSq31/CuTnZ0tVq9eLbp37y569eqVK+VFHpVKSkr6V6fnz7x48UK0bt1a7NmzR2zdulVxrk8jXaNGjRJt2rQRPj4+3+BKvg4vLy9hZmYm7O3tRUhIiIiJiRENGzbMNfgfP35cmJqaKm2Lxq/AxIkThYuLi+LvM2fOiJEjRwohPi7WyNPR/mkRSD4BiY2NFd26dRONGjVSvObq6irq1q0rvLy8hBBfVkNVWcTExIhbt24pHIxNmzaJP/74Q/H648ePhZGRkXj37p24fv16nnJm/zx53Lhxo5gxY4ZITk4WQggREREhevToIRYvXqxyaedCfEzzHD16tOLvJ0+eiKlTp4ply5b9kMXET23ZtWuX6NOnj5g4caK4e/eu2LBhg1ixYoVYtmyZ2L9/vzAyMlLJRUNfX18xdOhQxcT8zxUN8oLj/SlpaWnC3d1dDBw4ULRv314cO3ZM8VpQUJAYN26cQulf4iN/1U/UqlVLzJ07V3EsKytLZZ1tIXJvsRHiY6bE1KlTRXx8vLC3txdHjx4V48ePF+PGjRNBQUFfFOj4M/7+/mLq1KkKVfizZ88KAwMDce/ePfHq1Svx/v37XM9TXsDLy0s0btxYBAQEiPT0dGFqaioGDx4spk+fLjp37qyoi+7m5qZsU78r8r7t4cOHYuTIkeLMmTOid+/ewsnJSaSnp4tjx44pxvgTJ06oTAbNLy1PrKamplA/lytLe3t7k5mZyfDhw2natKlSxVjKli1L2bJllfb9vzpqamrMmzcPNTU1PDw8FG0kIyMDLS0tcnJyKFiw4BeLdFSoUIGePXtia2vL1KlT0dDQICcnBw0NDYXKpbOzM9HR0UoTMbt27Ro2NjYMHz4cV1dXsrKymDNnDhcuXMDExIScnBwWL16MlpYWzZs3Z/z48Uqx82cmJycHIQSlS5cmJSVFcaxt27YYGRkBH+sY6+npASjqKv8VctGZggULcuTIERwcHGjVqhWnTp1i4MCByGQyJk6ciK+vL7q6ut/5yv47Li4uPHv2jKysLFq1akVycjKnT5+ma9euABgYGNCoUSNiYmJo1aoVkHdq4MpkMm7fvs2DBw9o0aIFzZs3JyUlhSNHjjBy5EjU1dUpXrw4Q4YMyfMCVK9fv6Z48eLA/1V9qFGjBpqamhw/fhxTU1Nq1KhBjRo1ePToEVeuXKF8+fJoaGh8t3shP+/x48fx8fHB2dmZUaNGsWfPHkaOHElSUhKhoaG8fPmSnTt3/o9QYV7nzZs3rFmzRiHKmZ2djZqaGmpqaoSFhVG5cuU8V3lCW1sbExMTsrKycHJyyiUOFRUVRVJSkkJ0UOKjuvPTp09p3bo1+fLlQyaTMXXqVNTV1Tl37hxRUVGUK1cOyJvqzp9DeHg4Dg4OpKenU7ZsWSwtLalfvz45OTk8efKE/Pnz069fP0XVGfi/Me5L+vLs7GxkMhlbt24lKiqKihUrkpOTQ/fu3cnJyeH3339HU1OTQ4cOKURu88pv2r59e9asWcPs2bPJyMhg0aJFdOvWDYAXL17w+vVrzp07R/PmzZVs6fdFLtZZtmxZihQpwqJFi1i4cCH9+/cHwNTUVPHeXr16KcPEr+KXVEEPCQlRlNZRU1NTqC727NmT1q1b4+fnx+vXr1VOCVXi2yOTyZg9ezY9e/akX79+REdHo6WlpZj0fC36+vpMnTqVzZs3c/nyZcVikNwZB5TmfPv4+LB+/XqWLl3KiBEjmDBhgmJCV6JECU6ePMn58+f5/fffsbW1pX///opJuMR/JykpCfjYN6mrq2NoaMi6devw9PRETU2NQoUKkS9fPo4dO8aZM2do1KjRZ503JycHLS0tChYsyKJFi+jUqRO9e/fm4sWL1K1bF19fX4oVK4a6uvr3vLxvwqhRo6hSpQp//PEHd+/eZciQIRQtWpTt27cDEBwcTHBwcK7P5JVJlZ+fH4sXL+bmzZts3LiRN2/eUKFCBUJDQxk4cCBmZmaMGDEizyvPp6amMnr0aCZPnoy1tTX3799HCEHBggUxNDTk7t27LF26lGvXrnHx4kVat27NgwcPFBPib42/vz+urq7Ax7bu5+fHkCFDSEhIoFmzZujo6LBhwwYAxo8fz/z586lWrdo3t+N7o6OjQ/v27Tl+/DgBAQGK5zUtLY3Dhw/z8OFDJVv412hpaWFqasqYMWNwcHDg7t27eHt74+joyPLly/P8YtOPIiEhATMzM0qVKqUoFSnHzMyMLl26MGnSJMLDw1Wir/4rwsPDMTc3p0WLFsyePZu2bduipaVFSkoKLVq0wM/Pj9DQUO7fv4+npydDhgyhbt26is9/Tv8hn9enpqaipqbGjh07+O2333BwcFBUqunRowdubm7s27cvz/YFhoaGLFmyBABNTU3g47WVLVuW5s2bs3TpUpVbRPxc/rwoV7RoUbp3746GhgY9evQAUOkyhTIh8kBtih+EEILMzEzWrFnDkCFDqFq1aq7X5A+1MiOPEsrh71ZU5ceFENjZ2XH+/Hnc3Ny+eHFGfp6goCAiIyMpXrw4zZs3x8vLi0mTJrFjxw7at2+vyMhQFn5+fsyePRsHBwcaN25MZGQks2fPRkNDgwULFiCEoG7duqSnpxMSEkKJEiWkLI1vyKVLl/D19WX27NkUKFBA0W5cXFxYuXIl5ubmaGhoUKBAAdzd3Vm9ejU1atT4y3PJPxsbG5trgSQ7O1sxcbO1teXatWtMnz6dTp065fpcXkOeHSL/Nzk5mR49etC4cWN69OiBmpoaLi4upKam8v79e6ZNm6a4prxCaGgoq1atYv78+ejr6+Po6MjLly9p3rw5LVu2VJQkq1ChQp69D3JSU1NZtGgRMpmMpk2bYm9vj4mJCfXr18fIyIiHDx9y/fp14uLiGDZsGABr1qzB3t6ewoULf3N7fH19mTVrFrNmzWLgwIEcOXKEatWqce/ePWrVqkWDBg0wNjamTZs2zJ07l0KFCn1zG74Hn44dERERlClThsKFC/PgwQNOnz7NnDlzqFevHjk5OaSlpeX50lMZGRmcOnWKjRs3oqamhqOjY551fpRBRkYGEyZMoFixYmRlZbFx40ZF1p2cdevWceHCBY4fP66IkKsKKSkpTJkyBWNjYwYOHKg4fuTIEf744w+GDh1Keno6N2/e5ObNm1hYWCgyvj4X+TNz7do19u7dS9GiRSlZsiRz585V/LZLly4lX7583/ryvhuXL1/GxsaGqVOn0rt3b8XxvD5OfC3BwcGcOHFCMf+UI4Rg8uTJdO7cGVNTU5VdhIJfxAGXN9D379/nSq/8c8P9dGIq8evwaTsICgoiOzub8uXLU7x48VzOcE5ODhs2bKB///5fVV/R29sbGxsbWrVqxcuXLylbtixTp07l4cOHTJ48me3bt9OhQ4dvdVlfxY0bN5gxYwY7duygXLlyTJ48mSpVqiCEIC4ujoCAAGrUqEHLli2ZOXOmUm392UhOTmbmzJmMGTMGfX19dHR00NbWVrzu4+PDrVu3iI2NpXLlynTq1OlfJ64+Pj5s3rwZIyMjBgwYoIgyfTqhk/eLeXkgj46OxsXFhd69e1OlShWys7OZOXMmJUuWRFdXl6SkJIyMjGjSpAnR0dGoqamhp6eX567p4sWLLF68mBEjRmBmZgbAnj17CAwMpGvXrhgbGyvZwi/j7t27zJkzBycnJ9TU1Ni5cydubm5069YNPT09Jk2axIMHD/D19eXq1avY2dl988h+UlIS6urqFChQAD8/PxYsWMDUqVMxMTEhNTUVc3NzLC0tefnyJfv27cPGxkaRvqsqyMeONm3aEBUVRZkyZWjdujWxsbG4u7tjaWlJgwYNlG3mZ5Oens7Zs2epV6+e5Hx/gnwB3tXVlWXLlmFkZMTmzZuB/52fPnv2jMqVKyvJ0q8nOTmZOXPm4ODgoHCADxw4wOnTp2nYsCGRkZGMHDmSOnXqEBMT89WLkbdv32bhwoXMnz+fkiVLYmdnR4kSJbC3t2fw4MFUqlQJW1vbPDU+/BteXl7MnTuXZcuWqdxY8aU8efIEdXV1xbaAT7G3t6djx47Uq1dPCZZ9O34JBxzg6tWr7Nq1C0NDQ3r27EnJkiUVr6WkpKCjo6NE6yTyArt378bb25uSJUsSExPDtGnTaNy48X8+rxCChIQE5s6dy5QpU2jYsCGhoaF4enqSlpbGzJkzOXHiBEWKFKF9+/bf4Eq+3k6ZTIanpyc2NjbIZDImTZrEgAEDgI9OW3BwMA8fPqRFixZUqVJFabb+rKxatQovLy+KFi3Kvn37FE7yp5kYnzthCAwMZMGCBVhbW5OWlkb58uWJioqiWbNmufQvVIHY2FhmzJhBo0aN6N+/PzY2NlSuXJn58+eTnZ2Nvb09b9++xdTUVLHnOy8gv18RERFoampSsmRJvLy8OHjwID179lREgBwdHWnTpk2eTzv/FCEEOTk5rFq1SrGXfdCgQfTt25fMzExu377NuHHjMDAwwNvbm4YNG1KpUqVvasPly5dxdXUlJSWFsWPHYmhoyLVr11iyZAnjxo2jU6dOLFiwgPLly3P16lV27tz5lxO6vIoQgvfv3zN37lwmTZpE48aNCQsL4/Lly6SlpTFw4EBOnDhBixYtqF+/vrLN/SLy2uKYsvn097h//z5Pnz7FxcWF2rVrs2jRIuDnCBIlJCQwaNAgli9frti7vHfvXnr06EGJEiWYMGEC5ubmX+xcPXv2jAcPHtChQwcKFizI8ePHiY2NZezYsYr39O/fn9mzZ9OgQQOCg4Np2LDhN722H8HVq1epVKnSN+9LlY28/b98+RKZTEb58uWBj/NOTU3Nn7KvyFtKHd+J27dvY2dnh6WlJZqamgghuH37Nk2aNOHFixccO3aMMWPGqExKmsS3JyAgAF9fX/bt28eGDRvIzMykRo0avHv3jpIlS/6nyYJMJqNo0aIULlyY2NhYAKpXr87Lly9xcnLiw4cPipQiZU9KhBB06tQJHR0dFi5cmGuhSl1dnXr16qn8qmNeQ74GKpPJ6NChA+fPnwfIlXIobxP/1jY+daoTExPp168fSUlJeHt78/DhQ7S0tAgODmb06NEq43zn5ORQvHhx7O3tWbx4MZMmTaJ+/frMnz8f+NguzczM2LRpU57T7ZAvaNnZ2aGtrU3Pnj3p1asXGhoauLi4kJGRwfDhwxk3bpyyTf1iZDIZ6urqVK5cmSVLlqCjo8PQoUMZPXo0kDvL4lORnG/F9evX2bBhA1ZWVjx58oStW7fSrFkz2rRpw4YNG5g+fTrFixdn1qxZxMXF8fvvv6vMpFU+DshkMooUKYKOjg5xcXEA/Pbbb0RGRrJnzx4mTZrEhAkTVHJyqoo2fy/k99vf358nT56go6ODoaEhdevWZcGCBdja2jJ//nyVd76FEBQoUIAGDRpw584d9PX1KVKkCKNGjQLg1q1bJCQkUKRIkS8+9/r167l8+TIrV67EyMgIbW1tPDw8MDExUWwprV+/Pu/fvyd//vwq6XwDtGvXTtkmfBdkMhne3t4sXbqUatWqoa2tzZYtWxRjSEREBMWLF1cJkdjPRTVmYF+BfFIbHR1NTk4OAwcOJCMjg4sXLzJnzhysrKxwd3enYMGCGBkZSc73L4Zc6EyOjo4ONWrUwMbGhqCgINauXcuePXvYtWsX8N8mC0IIMjIy0NPTIywsjKioKAD09PTQ0tIiLS1N8d68MCkRQtCyZUssLS1Zvnw5p06dAlD5wT8v8ulEOzU1FX19fU6dOkWNGjUYNWqUYtL9b6SnpwMfhdt8fHxwcnJCV1cXX19ftm7dSt26dVm3bh09e/ZUufuopqZGdnY2JUqUYOXKlVSvXp3ixYvz9u1bhQBLgQIFmDt37t/uh1cW9+7dY/fu3Rw+fJh+/fqxd+9eLl68SP369RkwYADnz5/n9evX/9MfqQLyMXb48OHUqVMHAwMDhfMthMiVvfGt8fX1Ze7cudja2tKkSRPat29PXFwc8+bNY9asWaipqbFx40YWLlxIaGgobdq0UQnnWy46JJPJePbsGUFBQQBUqlRJodwOH9WA1dTUSE5OzhNjhsR/Q75feeHChWRlZeHu7q5Q7ba1teXKlStYW1sr28z/jEwmQ0tLC2NjY06ePImbmxsPHz4kJyeH27dvs2zZMiZOnPhVomL9+vWjUqVKPHjwAE9PT+rVq0f37t3ZuHEjERERBAcH4+fnR6lSpb7DlUn8VyIiIrh06RLr1q3Dzs6O7OxspkyZonjd3d2dyMhIJVr47flpI+AymYwbN26wYcMG+vbtS0BAAIcPH2bs2LGMGDGC27dvA1CsWDFJffMXQwihiP5FRkaiq6tLyZIlCQsLIyMjAwcHB7S0tBQKpP81Ki0fdPr06YODgwNhYWEUKFCAgIAApk2bprT29+frkv9frvDeqVMn1NXVmTNnDpqamoryFxLfDvlv7urqytWrV9HV1aV+/fosW7YMKysr5s2bh62t7d+qzAshSE5Opnv37qxfv55mzZrx6tUrhBDUq1ePdevWUaRIEZ4+fcqbN284fPiwSu7dV1dXJzs7m2LFimFpacnixYtxcnJi6NChCj2GvBjRf/XqFXXr1iUzM5P4+HimTp2Ko6Mjb9++pX379jg4OKhUBYGQkBCEEOjr6yOTyRQZF+3atePGjRvA3/cr3wohBC9evKBQoUJoa2uTmprKzJkz6devH3Xq1MHf35+tW7eyefNmtmzZQpkyZb7p938v4uLicHd3Z9CgQTx8+JDFixeTnZ1N165d6devHxs3biQ8PJz8+fNz7949pY4dEt+OnJwc0tPTOXToEHPnzqVLly706NGDI0eOcPnyZRYvXsyWLVuIj49Xtqn/GXnf0L59e4QQHDlyhDNnzlC6dGnS0tKYN28eHTp0+Ko5V6NGjShTpgzPnj0jMzMTmUxG48aN8ff3Z9asWRQuXJhp06Z9dtUQiR9DTk4OCQkJLFy4EB0dHcqWLUuxYsWws7PDwsKCsWPHsnv3bszMzH66rcI/7R7wkJAQxo8fj42NDa1btyYuLo5ixYoRExNDaGgoq1evxsLCgpYtWyrbVIkfSFhYGCEhIRgbG+Ps7MzJkydJTk5m48aNBAcHc/HiRcqWLYu2tjYXLlxg+/btXyQSIx84wsPD0dDQUERd5BPVN2/eEBYWRnR0NL/99hv169dXStr5p9955swZ4uPj0dHRoVWrVpQuXTpXWvTPuucor3DixAl2797NqlWrePz4MYGBgejq6jJnzhwmTpyItrY2Dg4O/+hg7tmzh40bN7J3717i4+M5efIkNjY25MuXj/fv3zNp0iSKFStGnz598pwy+D/x6tUrChQooEhJlD9HMTExzJs3j2rVqjFnzpxcYnV5icDAQJKTk0lNTSUiIoIJEyawePFinj17xooVK1TmmfqnCiLwMdOsT58+7N+/nypVqnz3xZD09HTOnDmDq6sr0dHRzJgxQ5Hm/vjxY1avXo29vb3KOKhxcXF4e3tz+/ZtihQpwv3791m2bBklS5ZkxIgRdOrUiT59+vD8+XNev35NtWrVlDZ2SHwfVq5cSePGjenatStqampERkZiZmbGzp07VWYR6c/8VfvMzMxUlNNKSkriw4cPyGQy1NTUKFGixGe36aioKB4/fpxrPAsMDMTf3x8NDQ0ePnxI69atMTY2Jisri6ysLAoXLiw9M3mEP9+He/fuYWdnR69evejRoweFChUiISGB2bNnM3v2bGrVqqVEa78PP20EvHDhwhQuXJh9+/bRunVrihUrhp+fH/v37ycmJoYZM2ZIzvcvRk5ODt7e3oSEhBAWFsbt27fZu3cvhw4dYv78+dja2lK6dGkiIiKIjY1l586dXyw0Jt/zuWvXLooUKYKFhUWuCWmZMmX+ZzBVxmAg/849e/Zw5coVevfuzZ49e0hISGD06NGK6JZMJvtp9xzlBYQQBAcHM2bMGGrXrk316tWpXr06W7du5e3bt+zYsYM3b978rUMjF+UZM2YM2traDBs2jM6dO/P69WsGDx5M/fr1qVevHuPHj6dNmzZoaWmpxARECEF0dDSbNm1ixowZiuNy8bgSJUpga2tLdHR0nnS+5b+xXBhr5cqVVK5cmaCgIEJDQ5k1a5ZKON/y60hMTERXVxdLS8tcx+X/L126NOfPn/9hW7m0tbUxMTEhKysLJyenXFUpnj9/rqjzqwqEh4ezYsUKLC0tKVOmDOfOnSMhIQGAggULsmvXLiZOnEhsbCyLFy/O9dm8/hxLfD6FChXi/PnzNG3alBIlSpCRkUGBAgVylWBSJT4tBXbv3j0yMjLo27cvlStXVrxWqFCh/+kzPqdNf/jwgaFDhxIdHc3AgQPp1asX5cuX57fffuPYsWOYm5tTsWJF3NzcyMrKwtTUVFGeT3pmlI/8/l+9ehVPT080NTUxMTFh/vz5rFmzBnV1dbp27UqRIkXYsWOHyj4D/4r4ScjJyRFCCBESEiICAwPF69evxevXr8Xw4cOFhYWF4n1JSUkiKSkp12ckfn5evHghHj9+LIQQYvfu3WLq1Kli1qxZitcdHR1Fz549xc2bN//T90RGRor+/fuLlJQUERwcLAICAsSRI0fEo0eP/tN5vxXPnj0TwcHBQgghEhISFL+Bk5OTMDMzE4mJieL06dMiJSVFej5+EHv37hWWlpbi3bt3imNjx44VAQEB//g5+f158uSJiIyMFEIIcf78eaGvry+2bdsm7ty5I1xdXcWYMWNEYGDg97uAb8if29z79+//8nhWVtYPs+lzkNuXnp7+P8eEEGLdunVizpw5on379sLT0/OH2/df8Pb2FsOHDxe7d+8Wb9++zfVacnKykqz6SHp6unBzcxPDhw8XAQEBwsvLS/Tr1088efJEqXZ9LuHh4aJ3797iwoULimN+fn5izpw5YtOmTeLp06dCCCHevn0revbsqTLXJfH5fNqXzZ49W0ycOFHMnTtXmJqaivPnzyvRsv/OlStXRJ8+fYSvr68YOHCgmDRpksjMzBRCCJGdnf2fzn3p0iVhYmIiunXrJvbu3StGjx4tHj58KBwdHcW8efOEEEK4u7vnmbmXRG68vb2FqampCAgIEGZmZmLgwIFCCCH8/f1Fnz59xOHDh/PcOP+t+WmWFeSRx+3bt1OnTh2ePn3K6NGjWbNmDQsXLmTatGls3LiRggUL5vqMxM9PVlYWjx494sGDBwQEBFCuXDk0NDS4evUqZ8+exdjYmLFjx5Keno6trS0HDx4kX758X9U+0tLSSE9P5/Tp04qVvejoaDp27EjNmjW/w9V9PsnJyWzdupUSJUrQp08fKlasSGZmJmPGjEFTU5MtW7bw8OFDTp48SY8ePZRq669ErVq1CA0N5fz587Ro0YIXL14QExODnp7eP35OJpNx+fJlVq1ahb6+PpUrV2bGjBmsX7+ehQsX0qxZMwYOHEjfvn1VZgVZrt1x8+ZNGjZsqFDcz87ORkNDg6ysLDQ0NPKckJx8Nf/SpUuUKlWKKVOm5NKPmDZtGs+fP2fy5MlUrVpVJbIQ4PMqiPz+++8ULlxYKfZpaWnRu3dv1NTUmDFjBmpqajg6OqpEbenw8HDMzc15/vw51atXVxxv2rQpaWlpeHt7c/r0aYyNjalatSru7u6K1F0J1UT+3IeFhRETE0OLFi0U+hbq6uqsXbuWW7dukZWVha6uLnXq1FGZvuKvuHnzJg4ODoSEhKClpcWiRYs4dOgQ3bp1+89iaEZGRuTLl4/ly5crKmGsXbuWunXrcvfuXZ49e0bfvn2/0ZVI/FeioqJ4/vy5okxocHAwq1ev5s2bNyQkJGBvb4+joyPGxsZMnTqVokWL5rlx/luT91RrvpKoqCj27dvHvn37qF27NhkZGYrOy9ramujoaIKDg5VtpsQPRPz/fcwaGhrUq1ePe/fusXr1agoXLszIkSNp3bo1N2/e5PTp0wCYmZmxZ88ehfjal3xHcHAwISEhVKhQgaFDh+Lr68ugQYPYsmULZmZmhIaGkpGR8V0UgT+HnJwcChYsyNSpU3nz5g0nT54kOjqatm3b8uHDB0aMGIGGhgYRERFkZWWRkpKiNFt/Rv7pt2zSpAmtWrXi2bNnLFu2jH379rF69WpF6ZS/4+HDh2zduhUnJydq1qzJtWvX2LRpE8bGxixatIihQ4cSHx+vUvcxMDAQW1tb3r59y4kTJ3B3dycuLg4NDQ2Cg4M5d+5cnkwvDgwMZM2aNdSuXRt3d3dWrFhBVlaWYiuHhoYG1apVU+ydzssTanl7+dwKIspyvuVoaWlhYmLCjBkzVMb5joyMxMLCgkmTJrF69WrGjRunEIYFaNu2LYaGhrx584ZTp06Rmpr6009GfwXkgaJ58+Zx8OBB/P39gdwVRpo3b07r1q2pU6eO4jOqgBAi11gjhCApKYlly5axd+9ebGxsKFeuHFevXv1mY1KrVq2YP38+u3fvJiMjg02bNtGkSRPU1NQU2zgklI880LNs2TI8PT0BSE1NZfbs2ezatYv169ejp6en0EwxNDSkQYMGyjX6B6AaYZHPQFNTkwoVKnDw4EEuXbrEmjVruHPnDt7e3qxatYr9+/fnqqsr8fPz5s0bypYtC3ws29K9e3d+++03fH19FTVrXV1d8fHxQU1NDWNj4y+uMSiP2M2dO5dGjRqRkpLC8uXLGTx4MAcPHuTUqVNs374dCwsLpbY/+R5if39/3r59y82bN8nJyaFWrVoYGRmxfv16XF1dCQkJYdOmTT+d2qQy+TSCcfLkSZ49e4axsTG//fabQlSse/fudOrUieTkZDQ0NP5xL638M6GhodSqVYuSJUuSmppKv379uHTpEpaWlsyZM4f27dtTtGjRH3WZ/5lHjx5hZ2fH0qVLadCgAWfPnsXf3x8PDw/69+9PfHw85cuXz3P9+NOnT3Fzc2PIkCEMHDiQTp06MX78eFavXs2CBQtUznFSxQoi2tramJqaqpSzMmnSJDp27AhAQkICFhYW2NnZKVSaW7duTXZ2Nnp6euTPn1+Z5kp8I968eYOzszP79u0jOTmZp0+fsm7dOoyNjRWVBVSlDX+KfEyCj1kz79+/57fffmP06NGYm5szYMAAKlSogL+/P69evfqmi6iGhoZkZ2ezfPlyJk2aRJ8+fTh37pxK/o4/K5qamowZMwZXV1du3bqFEIIRI0Zw9+5dKlasSOnSpblz5w5hYWEqWZLza1FZB1w+qQ0NDSUyMpJ69eqhrq7O8ePHsbOzo0KFCgQGBpKZmUlmZqbKpGBKfBu8vLxYtWoVp06dUkzYhw4dysuXL3Fzc+PkyZOMGjWKpk2bkpOTQ/PmzYEvX21+8OAB/v7+bNq0iapVq7J//34WLVqEpaUl6urq3L9/n/nz59O2bdtvfo1fyo0bN3BycsLd3Z1Hjx5x5swZXr16RevWrencuTMxMTFUqFBBZRVX8yryNuXk5MTly5cVWQfp6enk5OQoJteampr/6DDL+7zMzEy0tbVp1qwZhQoV4vr16+jp6TF06FAePnxIUlISUVFRigiKqqQwZmdnExYWxqlTp2jQoAHGxsaK1G43NzcmTJigbBP/krdv3xIXF4ePjw/NmzenWrVq7Nq1i2HDhrF8+XKWLVumbBO/iJCQECwsLBQVRDp16pSrgoiTkxMWFhbKNvN/UIU2LqdChQoK4TghBCNHjkRNTY158+axdu1aRfRHEsD8eYiIiKBIkSLIZDJsbW2JjIxET0+P0NBQkpOTWbJkibJN/GKEEMTGxjJq1ChOnTpFREQEs2bNol69eqipqWFkZMTSpUtZtGiRQoBy/vz5uUQTvwWdOnUiJycHGxsbWrZsSYkSJaQ5fx6jZs2aaGlpoaWlxd27d0lNTWXu3LmsXLmSUaNGERcXx7x58zAwMFC2qT8MlSxDJp9QylfpIyMjsba2JjY2loCAAIQQVKtWjYMHD7J48WLat2+vbJMlfjCbN28mNjaWnj17oqOjg76+vuK18PBwjh07xqNHj9DR0WH58uVfHCnMyckhJyeH4cOH8/79e7Zv306lSpV49+4dR48e5erVq6xevVqhdKwMJ+jP33nlyhVcXFzYuXMn8DFtfuHChdSqVYuxY8d+seK7xOcjn2DZ2dkpFm2uXr1KnTp1mDhx4r9mXsjv5bVr17hw4QKVKlWibNmyGBsbM2/ePMqUKYOpqSnTpk3D2tpaob6dl5Ff0+PHj8nOzqZKlSpEREQwZ84c+vTpw6RJk4CPZfKqV69OjRo1lGzxR+R2BwUF8fbtW5o2bcr79+9xdHSkVKlSmJiYULlyZeLi4nj69CmNGzdWtslfxJs3bxg/fjx6enrs2LEDIFcFkQkTJmBoaKhkK39ODh48yJYtW9i0aZPKtRuJv0beXwwcOJCOHTvStm1b9u/fT79+/WjSpAnBwcFs3rwZGxsbpW/n+FrMzMy4e/cuHTp0YOjQoejr63PixAn8/PwwNjamadOmREdHA3zXLSKxsbEUL178u51f4vOJjo4mPj4+l0N94MABHj58SKVKlYiOjqZNmzZ07NiRmJgYMjIy0NPTU5mAwbdAJR1wgDt37mBlZcWqVavw8fEhMjKSXr16AR9XGmNiYmjevDktW7b8pW6oxEdu376NjY0NKSkp7Ny5k0qVKuVKk4qOjiYiIgI9Pb0vKgckb0vyuvIpKSmYm5tToUIFli1bhkwm4+3btxw+fJgOHTooRKR+NJ+2+ZcvX1KhQgWePn3Ktm3bMDY2pkWLFuTLl49Vq1bx7t07rKysVCpdOa/z5z4nJyeHiRMnkpSURFpaGj179iR//vyEhYUxf/78zyqldePGDZYvX87KlSuxs7OjcuXKLF68WJGqHRAQwIIFCxRprXkZ+e9z6dIlVq1aRdmyZdHX12f06NG8f/8eS0tLDA0NmT59urJNzYVcLMnHxwcrKyuaNWuGt7c3586dIyYmBhcXF3R0dOjbt+//1MrOq3yaTZaamqoQR5o7dy7ly5dn1apVwMdFJPhYGksaU78f+/btQ19fX5GVJaGayJ8R+b/379/nyJEjLFq0CC0tLY4ePcrz58+5cOECCxYsoEOHDso2+YuIi4tj3759ijKRO3bswN7enkOHDtGoUSPevHmDj48Ply5dokePHvTs2VO5Bkv8MOLi4mjbti3a2tqsWLGCYsWK0bJlS+Lj4/Hw8KBHjx54enpy9+5dDA0NMTExUbbJSkHlcjTknVlwcDBNmzalfv361K9fn+PHj7NmzRqmTp3K8OHDczlb0kTh1+DTSWGJEiUoWrQoFSpU4NatW+jq6lKkSBFFuyhduvS/ilz93fm9vLywt7enfv36dOjQgS1btjB27FiWL1+OlZUVpUqVYtKkSUrbq/rp7+Do6MjZs2cVNunp6eHt7c2VK1eoXLky/v7+ODg4SM73N+TT3//IkSN8+PCBnJwcHBwcCA4OpmrVqhQtWhRvb29OnTpFSkrK3zrgn57r9u3bWFpaoqWlRXZ2NjNmzOD69euUL1+etm3b8v79e/T19fO0cyR//mQyGY8ePWL37t0cPXqUS5cusW3bNgoWLMiAAQNYvnw5FhYWmJqaUqFChb+tg/6jSE5OpmDBgqirqxMWFoa9vT07duxAXV2dmzdvYmJiwunTpzE1NeXYsWNKt/dLkCqI5C1GjhwJqM7WEYm/RiaTcffuXeLi4qhSpQq1atUiLi6OwMBAmjZtSpEiRXj9+jXLly9XycWWYsWK4efnR9euXalatSrbtm3jxYsXTJs2jbNnz1KmTBnatm1LTk4Ov/32m7LNlfiBFCtWjKFDh7J//35u375N4cKFOXbsGJaWlgQGBqKrq8vgwYPJyMjIM5ltykBlZgnyQH1mZiYAlStXJjU1lcjISABMTU3R09PjwIEDBAcHo6amplLqvxL/jU8nK1FRUairq7N161aGDBlCYGAgx48fJykp6avaRXZ2NvBxQL116xb29vbMmjWLrKws9uzZg6+vL3v27OHu3btYWVkBKFUoSv47HD9+HB8fH5ydnYmOjmbPnj20adOG9u3bU65cOV69eoWtrS0VK1ZUmq0/I/Lf/8CBA5w4cYLmzZtja2vL8ePHady4MY6OjowdO5ZVq1axfPnyvxWykrdpb29vbt68SaVKlVi/fj1Llixhy5YtlC1blu3bt1OgQAHKlCmj2GaRVyftL168YPz48bx9+xb4mC6op6dHRkYGL1++ZPLkydy8eZP169eTkpKCm5sblSpVUrozGxUVxejRozl27BgA+fLlo3nz5hQsWJCzZ8/i4uJCs2bNMDExQV1dnWnTplG5cmWl2vwlSBVE8iZ59TmW+Gc+nV88evSICxcuMGfOHC5fvoyBgQHbt28nOTmZTp06MXXqVJV0vuUsWbKEpKQkXr58CYC1tTVt27alV69exMfHU6ZMGfr06aP0EqwSPw65iJqlpSUjRozg7NmzDBo0iGLFirF161YKFizIoUOHSEhIYNSoUZIDrgrIZDJ8fHywtbVl79696Ovrk5SUxOnTp/Hx8SEoKIgPHz5QtmxZ9uzZI60e/2LI7/WhQ4eYOXMmK1euZPLkyRgYGGBoaEhERAQHDx4kOTn5i9rFu3fv8PDwUJQQu3nzJlOnTqVVq1bIZDIMDQ1xc3PD29sbV1dXBgwY8L0u8V/x9/fH1dUV+NgJ+vn5MWTIEBISEmjWrBkFChRgw4YNCCEYN24cCxcuzFV/VuLb8eHDB+7evcu2bdvw8/PDyMiIbt264eLiwtSpU5k1axb79u37x99fvuDj5OSEuro6NWrUoHjx4piYmFC8eHGePn1KVlaWyijWP3jwgOvXr2Nra0tsbCz6+vr069ePsLAwNDU16devH02bNiU1NZXixYvnirgqk6ioKB48eMCuXbs4evQopUuXplWrVrx584bExETKlStHy5YtKVmyJJmZmXlGGfxz+bSCiLu7O3Z2dty5c4eNGzdStmxZ9u/f/0sJ40hIfC3yeaefnx8HDhygdevW2NraMn/+fE6fPs3bt28JCQnh1atXAGRlZSnZ4i/jxYsX3LhxQ+FkFSlShEOHDpEvXz5GjBgBwKpVq2jevDldu3YlKytLEkP7xVBTU1MErSwtLenQoQNjx45l1qxZDB8+nJo1a/L27VuSk5NVrkLIt0ZlHHB5DeeqVauya9cujh07xvTp00lISODUqVPY2tpiYWFBnz590NHRUTQAiV+Hy5cv4+bmxtq1a9m8eTPFixdn0qRJGBoa0qxZM+Lj479owJPXsaxfvz7Jycm8f/+eqlWrEhMTg4eHB61bt6Zbt24kJiayfft23r59q9TahZmZmdjb2+Pm5oaamhoNGzakVKlSeHp6YmhoyNKlS4mKiuLKlSukpKRIC1TfkD+XztDQ0CA1NZWlS5dy584d7O3tKViwIEePHkVTU5PatWsr9tp+SkZGBmlpacDH+7l69WpiYmJo2rQpBgYGdOrUiWfPnjFw4EAsLCyYMmWKyqT3NWvWjJYtW+Lj46PQS2jZsiW3bt3i/fv33L17l+vXrzN69Og8tSrerFkzZs2aRZMmTTh37hweHh60bduWmzdv8uHDB54+fcqBAwdYsWIFDRs2VLa5/4o8QhcaGsqVK1dQV1dXVBCxsrKiQoUKZGVlSRVEJCS+ELlQpoWFBREREZiamuLr60vz5s1ZtmwZZmZmNGzYkI0bNwKo1LMVFxfH+PHjKVGihCIrqXTp0lSuXJmjR4+SkpLC+PHjCQ8Px8rKCldXVzQ0NJSewSTx/YmMjOTq1auKv9XV1RWl5mxtbWnRogU9evSgaNGijBgxguPHj6tUlth3Q6gAERERYuHChcLNzU0IIURUVJQwMTER27dvFx8+fBBCCHHp0iWxb98+YWpqKh4/fqxMcyWUxLlz58T27dtzHRs2bJhwd3cXQgiRmJj42ed69+6dMDExEbGxsUIIISwsLIS9vb3i7wEDBogHDx6IN2/eiKFDh4qwsLBvdBVfTmJiokhJSRFCCHHr1i1hZGQkjh07JjIzM0ViYqIYOXKkePLkifD09BQjR44UkZGRSrP1Z8fT01N4eXmJ+Ph4cfz4caGvry+ePn0qhBDi6NGjYtCgQYo+68+EhISIiRMnihEjRoiDBw8KIT62wzZt2ohFixYp3hcXFydevHihuI85OTnf96L+A9nZ2bn+DggIEHv27BFmZmZi+PDh4t27d+LYsWPCwsJCGBoaCk9PTyVZmps/233q1Ckxd+5ccePGDTFhwgTh4eEhXr9+LUxMTMSQIUPEmTNnlGTplyFvK76+vmLQoEGidevWwsvLS7i7uwtLS0uxcOFCsXv3bmFkZCS8vLyUbK2EhGogf66eP38uBgwYIB4/fizevn0rTExMRKdOncT169dzvX/q1Kl/Ow7kVV68eCFat24t9uzZI7Zu3SoyMzOFEELxrxBCjBo1SrRp00b4+Pgoy0yJH0xOTo7Yvn27cHJyUhzLysoSQnz01TZt2iSEEGLatGmiZcuWIisrS2RkZCjD1DyHSixNvXz5ktjYWLy9vXn27Bl6eno4Ojpy5MgR1q1bR1paGvnz5+f169fY2dlJ6XK/KNra2ri4uBAWFqY4VqdOHcUKbKFChT77XCVKlKB+/fr079+fDx8+0K9fP+Li4nB1deXdu3fUr1+fjRs3MmbMGEaOHPldS2v8E5cvX2bOnDlMmDCBK1eu0KxZM5YtW8amTZs4cuQIaWlpaGpqcujQIaytrbGysqJcuXJKsfVnRHyy3+/kyZMsXryYCxcuMG3aNOrXr8+CBQsYOXIks2fP5sCBAyxfvlxR9/tTIiIiWLRoER07dmTSpEns2LGDly9fUqJECU6dOoWXlxfLly8HUIgLyu9jXs1kiIiIYO3atfj4+CiOFS5cmKioKNasWUO1atWwsrKiRYsWLFiwgL1799KxY0ela3c8ffqUwYMH4+3tzfPnzwEwMTFBTU2NwMBAhg0bxokTJ7hz5w6nTp1SVBZQtt2fg0wm486dO6xYsYIFCxYwePBgzp07R5kyZTA2NqZmzZokJiaycuVK2rdvrxLXJCGhLJKTk0lOTiYmJgaAUqVKKbLg3NzccHBwoFu3bkyePJnjx48jhODatWs8ePBAESFUFSpUqEDPnj2xtbUlJycHDQ0Nxb/yzEJnZ2eOHj1KmzZtlGytxPdGPjbIZDK0tbV5+PCh4ri6ujrR0dGYmZkpBH43bNjAnj17UFdXR1NTU2l25yXyZBky8f/30YSFhZGTk0PZsmUJCwvj9OnTFCtWjF69elGhQgWio6N5+fIlTZo0yfU5iV8XR0dHzp8/z6RJk4iPj2f//v04ODh8UY3rzMxMNDU1iY6OZsiQIWhra3P06FHCw8Nxc3OjQoUK1KlTh8zMTHR0dGjatKlS2t7169exs7PDysqKJ0+ecPz4cZydndHR0eHBgwdMnz6d+fPnU758eeLi4qhQocIXlVyT+Gc+vefh4eH4+/vTpk0bypcvz/bt27l58ya2trZkZmaSmJhIkSJF0NPT+5/zvHz5khEjRjBnzhxMTEzIzs7GxMSEWrVqoaamxqBBg6hRowZt27alb9++LFmy5Edf6heTlZXFunXrcHJyQk9Pj3bt2jF48GBq1KiBi4sLjx8/ZuXKlZiZmZGcnMzu3bvzzKC8bds2NmzYQNOmTRULcaNHj+bhw4fcv38fExMTrl+/zt69e1m3bh1ly5ZVtsmfhby9Hjx4kJCQEJYtWwZ8FGvcu3cvU6dOxcjIKFcFEQkJib8mLCwMa2trZDIZGRkZGBgYMH/+fIKDg9HQ0MDZ2Rlra2u8vb3Zvn07ixcvpm7duoSEhKCjo6OSC+HHjx8nKiqKzZs3s2XLllz9hdRv/FqkpKQo9Gd8fHw4deoUdnZ2wMcteadOnSIpKSlXVSrJR8tNntyAIlf+XbNmDe3atcPDwwNHR0fatm2Lj48PR48epV+/flSsWJHSpUsrbqp0Y39+/u4BltfnHTFiBAUKFODYsWPkz5+fNWvWfJHzDR9Fia5cucK2bduYNm0ap06dolevXpw4cYKBAwfi4uJCVlYWU6ZMUXzmR7c9X19f5s6dy549ezAwMKBMmTLs2bOHefPmoa2tzbhx49i4cSOjRo3CysqK3r17/1D7fnY+bYeHDh3i8OHD5OTkoK6ujqmpKcOGDUMmkzF58mRsbGyoVavW354nICCAkiVLKvaEm5ubU6dOHQYOHMgff/yBs7MzmzdvxtPTk5CQkB92jf8FDQ0NBgwYgI6ODpGRkbx48YIrV66wfft2xo0bR3R0NHFxcWzdupVHjx7lGecbYPLkyaSkpPD48WPat2/P4cOHSUxM5MOHD4SFhVGrVi26du1KkyZNKF68uLLN/VfkbTUzMxMtLS0qV65MYGAgkZGRlC9fHlNTUy5evMiBAwfQ09PDwMBAmihJSPwDERERLFiwgGHDhtG4cWOio6OZPXs2sbGx2Nvbc/LkSVJTUxVlPq2srKhbty5AntK3+Dfk/UBQUBCRkZGULVsWU1NTateurcjUat++veR8/2LEx8czZMgQatSogY6ODvr6+kRHRxMYGEj9+vURQvzlnFMaU3KTJyPgL1++ZM6cOaxbt46IiAjs7OzYu3cv+fLl49GjR5w6dYqxY8dK0bxfjE8nhR4eHsTExJCVlUXv3r3/ZzVZLor1tYOCnZ0denp6DB8+HAAbGxuuXr2Ku7s7T548UXQ6ykAIgaurK05OTmzfvp0yZcowcuRIDA0NqVOnDv7+/jx9+pTNmzdz69YtypQpIz0r35CkpCTFdgZPT0+uXr3KmDFj8PDwIDk5mY4dO9KyZUuSk5Px8PCgc+fO/xjtiIuLw8vLi+vXr/PgwQO6devGzJkzAXj79q3CiZe3N1Vyjh4/foyvry9hYWEYGxvz/v179u/fz9OnTzExMWHx4sXKNjEX8oU8+KjgWrhwYQwNDUlOTubx48ds2bKFTp06sXr1agoUKKBkaz8fHx8fvLy8qFixIj169MDKyor69etTu3ZtdHV1sbe3R09Pj8zMTGxtbVWmfUlI/GhevHjB6NGjsbCwoEuXLorjiYmJ9O7dG2NjYyZNmsT8+fMVjki3bt0A1eq75Xh7e2NjY0OrVq14+fIlZcuWZerUqTx8+JDJkyezfft2OnTooGwzJX4gGRkZBAQEkJ6ejo+PDzo6OuzYsYNSpUpRpUoVsrOzady4MaVKlWLYsGHKNjfPkuci4ElJSRQsWBBDQ0O8vb05duwY27dv58GDB2zZsgU3NzeqVaumcqVeJP478oHLycmJK1euMHbsWOzs7MjIyGDatGm50qC+1PGWD4w3b97kzZs3qKurk5CQoHh94cKFXLx4kWHDhuHh4aHU1V6ZTEafPn3Q0tLCwsKC6OhoZsyYgampKQAlS5Zk9erVxMXFqXSN0bxIeHg4Pj4+DB48mPT0dObNm0ezZs2oXLkyEyZMYMeOHVy4cIHMzEzat2/PqFGj/nXCVaxYMTp06EB2djZRUVG5ouVxcXHk5OTkqiuvChM4+XNYs2ZN1NXVSU1N5cyZM8ydO5e2bdvi5eWVZ6LHn6bHqaurK0rnWFtbs2jRItzd3Rk7dixGRkZUq1aNihUrqpTzLa8gMnToULZt20ZGRgbTp0/n+PHjnDp1iqioKBYvXkxSUhJnzpwhOztbpdSZJSR+FDk5Ofj6+lKkSJFc/VdGRgaFCxdm69atrFixAg0NDdavX09OTg4FChRQySxNIQQJCQns37+f1atX07BhQ0JDQ/H09OTgwYPMnDlTWqz7RdHS0qJFixYAtG/fHoDo6GgGDRqEuro69+7dIzExkfLlyyvTzDxPnhplnz17hrOzM2ZmZnh5efH69Wv++OMP8ufPz9OnTxVCV5Lz/WsRHh5OdHQ0rVq1IiMjg7CwMPbt24eTkxNVqlRh7Nix7N+/n759+3517WB5mtXy5cvZt28fBgYGDB48GD09PUxNTXnw4AFt27alR48eeSLVSltbGxMTE7KysnBycqJChQqK154/f65yAi+qgpqaGr169eLly5fky5ePAwcOMGjQINzc3Bg4cCBTpkxh7dq1XL9+nebNm/+l4NpfUaxYMTp37oxMJuPixYtoaWlRtmxZFi1ahLm5+Rdvo1AGn0Z31NTUyMjIUKQ8N23aFIAVK1ZgZmamSE9TdkQoKSkJPz8/OnTooHiu5fZkZmaycuVKrK2tsbe3Z/bs2YpIlqrw9OlTjhw5wujRoxkwYACGhoZMnDiRnJwcpk+fTv78+bl8+TJ+fn54eHiwatUqyfmWkPgb1NTUMDQ0JCcnh0OHDhEbG0uXLl3Q0tIiOzubYsWKoa6uTmJiIqVLl1Z8ThWdVJlMRtGiRSlcuDCxsbEAVK9enZcvX+Lk5MSHDx/yTD8uoRw+ve+JiYkEBgYyevRo6tWr95fvkchNnhppixUrxs2bN2nevDl2dnYMGDCAnTt3oq6urlAWlvi1yMjI4OTJk8TExCjqBsfGxjJs2DB0dXXZuHEj0dHRXLt2jVGjRn319yQlJXHy5Emys7MpWLAgJUqUYMuWLVhbW3Pr1i3u3bvHwoULad68eZ7pULS0tDA1NUUmk+Hg4MCsWbNITEzE0dERGxsbaaHqGyKPklapUoXbt2/j6elJeno65ubmHDx4kCFDhiCTyRgwYABz5swhJSXlb51veZqzvB3Jz12kSBGMjIxQU1Nj3759PHz4kDVr1ijUqPNCm/s75PZdvXqVy5cvs3jxYrS0tIiKimL58uXMnj2bLl26kJmZmatmurKvKSQkhNu3bxMUFETp0qUZMmQI6urqvHnzhlGjRrFs2TIsLS2xtLQkMzNTqbZ+DZ9WEGnatCmVK1fG0dGRYcOG8e7dO+bMmZOrgkj16tWVbbKERJ6mdOnSdOzYkZycHM6fP49MJqNz584K5eecnJyfonqAEILMzEz09PQICwujZs2alCtXDj09PbS0tEhLS1NkAim7H5dQDjKZTDH2GxgYEB8f/5fvkfhr8sQe8OjoaLKysihXrhx+fn6cOXOGZcuW8fDhQ65cuUJ2djbNmjWjZcuWeX4iKvHtePnyJZqamujo6LB3717ev3+PiYkJCQkJbNiwgfHjx9O9e3c8PDw4evQoO3bs+KJSY/K2lJycTMGCBXn8+DG7du2iUKFCTJkyhVKlSvHq1Ss0NDRISUnJs1HIjIwMTp06xcaNG1FTU8PR0VFpZdF+dlxdXbl9+zZ9+/bl2rVrZGRkMHHiRF6/fs2AAQNYtWoVffr0+cvPJicnky9fPjQ0NPDz8yMoKIjmzZsrxHnkxMXF4enpScWKFRVpXqrAjRs32LlzJxMmTKBly5a8f/+eWbNm0aJFC8aPHw/kVk7NK9ja2uLk5IS5uTmTJk0CwNTUlIEDBzJy5EglW/dlSBVEJCS+H58+J9HR0Xh6ehIQEMDQoUMpVKgQCxYswMzMjI4dOyrZ0m9HeHg4Dg4OaGtrU6BAAQICApg2bVqu/e8SEidPnuTs2bM4ODigpaWVJzJF8zpKccCjoqJISkqiUqVKyGQyVqxYwevXrxkyZAhVqlRh27ZtjBo1Klcag8SvRWZmJidPnuT169f89ttv5OTkEBoaSlJSEnXr1kUIwZYtW9DX1yciIoINGzZ8UfRGPpB6enri4uKCtrY2y5Yt4/Xr15w8eRKZTMaECRMoWbLkd7zKb0d6ejpnz56lXr16kvP9nbhz5w7Tp0/HycmJ6tWrExQUxLlz5xBCMGbMGN69e0e+fPn+8vdPTExk27Zt6OvrU7JkSaysrGjVqhVnzpxh3bp1GBkZ5Xq/fB/yp7U28yryZ2nr1q1s3LiR48ePY2BgwPPnz4mMjKR169bKNvF/+HQiHRAQgL+/P1FRUTRr1gwTExOePXtG5cqVgdzCbKrAX1UQiYmJwcfHh4IFCyoqiIDkeEtIfC7y8qR/dsIvXbrEH3/8QWhoKKtXr1aJjKU/I7c3PDwcDQ0NhWirPDvrzZs3hIWFER0dzW+//aZQulala5T4vrx48YKYmBgaNWqkbFNUhh/ugGdlZdGnTx9SU1MpW7Ysc+fOJSUlhXz58mFtbY2JiQkHDx6kQoUKODg4ULhw4R9pnkQeICYmhsKFCxMdHc3MmTOJjIxk79696OnpsWfPHlJTUzEyMqJq1arEx8dTuHDhXPutPpcbN26wdu1arK2tmT9/Prq6ugrxMjc3N9TV1Vm4cGGeKpH0T0gD4rfl7t27REdHExYWxoQJE3jy5AnW1taUKlWKjRs3AvDgwQOOHj1KoUKFmDFjxt86aqmpqRw4cICoqChevnzJ2LFjadWqFceOHWPr1q1YWlqqnJKsvL29fftWUUJt06ZNHDhwgHPnzuXaApEX2+bVq1e5e/cuxYsXZ/jw4Rw7dgxvb2/69etHiRIlKFas2Ff1K8pEqiAiIfHtCQ4O5sSJE8yePft/NBKio6M5d+4cNWrUoFWrVkqy8L/j6enJrl27KFKkCBYWFnk2409C4mdBKRHww4cP8/btW/Lly4e3tzdqamr07duXUqVKoaOjw/Hjx7l//z5bt25VuQmQxH8jMTGRI0eOUKNGDQoUKMDJkydJS0ujYsWK9O7dm3z58uHi4sKrV6/o27evQtzpS8jOzkZNTY1FixbRtGlTOnTowMaNG3n16hWxsbFYW1vz9u1bypYtK0WTf1G8vb1Zt24dPXv25P79+0yfPp3KlSsTERHB9u3bKVCgACtWrAA+ltoqVarU36p6y6MIqampHD9+HHd3d5o3b86MGTPQ1NTk+PHj2NrasnLlSpVJXZRfk5eXF/v376d69eqkpaWxdOlSVqxYwfnz5zl58iTFihXLU8633JaQkBBmz56NkZERT58+RVdXl6VLl3Ls2DF8fHx4+PAh27ZtU6k90UlJSWRlZeHq6kqhQoU4duwYDg4OhIeHKyqIxMXFSdoQEhJfyJMnT1BXV+e33377y9f/KjquSkRFRTFjxgz27t3Ly5cv+fDhA+Hh4dSuXZuaNWsq2zwJiZ8SpYiwGRgYsHnzZpycnJgwYQI7d+5kwYIFtGvXDi0tLWbNmoVMJpOc71+QwoULU7hwYWxsbNDS0mLfvn3ExMRw6NAhDh8+zKRJk2jbti1+fn5UrVr1q75D7lxXrVqV0qVLc+bMGVq1akWbNm3o1KkTmzdvZunSpdJE9RflwYMHrFu3Dmtra8X+bHkacpkyZfj999/Zt28fs2fPZt26df84QRFCoKamxsuXL5HJZPTv3x+ZTEZERATHjx+nb9++mJqakp2dnef2Rv8VcmVzNTU17t+/j52dHTt27GD37t08ffqU9+/fY2VlhRCC7t27c+3atTylqi2TyfD39+fw4cPMmDGDjh07Eh4ejqOjI8uXL8fKyoq2bduSmJioUs63VEFEQuLbIXek5f22vr4+8LH/09TUVDjZ8nFBniWnis43QFpaGunp6Zw+fRpPT080NTWJjo6mY8eOkgMuIfGdUMou+QYNGjBo0CCOHTtGaGgoZ8+eZfr06YwePZr09HRiYmKk9JdfjE+Vkdu0aUP58uUpU6YMDx8+pHLlypiampKamsq0adM4evQoAwcO/OI6wtnZ2bx//x5DQ0NFbd/GjRtz8+ZNqlSpQmhoKDVr1mTUqFHSRPUX5vXr17Rt25a6desqyrmpqakRHx+Pu7s7enp6/P777+TPn59379797Xnkk7jLly8zfvx4pk2bxrx58yhSpAilS5fm8ePHuLm5kZ2dTb9+/WjRokWeVs999+4dzs7OPHr0CID4+Hj69etHdHQ0Dx48YNWqVXh6euLu7s7ixYvZt29frsmqsoiKiiI4OJi0tDTFMV9fX27evAlAlSpVGDduHImJiSxYsIBSpUqplPMN/1dB5M6dO9jZ2ZGWlsbOnTvZvHkza9asUZnMCgmJvIBMJsPb25uRI0eydOlSpkyZAnysPCJfQH3//r1KaUN8inycCQ4OJiQkhAoVKjB06FB8fX0ZNGgQW7ZswczMjNDQUDIyMvL0uCQhoaooLTTRsGFDNm/ezLlz5xgzZgwjRowAUOk9NBJfhzxKCHD//n00NDTYtGkTf/zxB0eOHCEpKYmuXbuiqanJ06dPMTAwoEiRIl/1Xbq6ujg5OTFx4kQyMjIYMmQIz58/58yZMxw5coSVK1fSuHHjb3h1EqpGeHg4z549Az5OuODjhKxw4cJ4eHhQqFAh+vXrpyi19WfkUWKZTMbTp09xd3fHwcEBAwMD7O3tuX37NsOGDeP69es8ePAAQ0NDypQpo/ievEpCQgIPHz4kIyOD/PnzU65cOaytrXFzc8PFxYVixYpx+/ZtRbQoLzixWVlZTJo0idTUVMqUKcOUKVNo0qQJhw4dYty4cdSoUYMBAwZQtWpVzM3NyczMzNP34M98WkFk+fLlnDlzhu7du7Nnzx5FBZEFCxZIFUQkJL6AiIgILl26xLp166hcuTILFy5kypQpbNmyBQB3d3eMjY3R1dVVsqVfh0wm48aNG8ydO5dGjRqRkpLC8uXLGTx4MAcPHuTUqVNs374dCwuLvxzjJCQk/jtKLUM2e/Zsnj59ioeHB6B6arMS35b9+/ezb98+6tatS4kSJViwYAFHjx7Fz8+P/PnzU6VKFYYPH/5VomjBwcE8f/6c1q1bU7BgQW7fvs3IkSPZtm0blSpV4tatW1SsWJGWLVt+hyuTUCVCQkIwNzdn2rRpmJiYAP/nVNva2tK2bdu/XSh8//49Y8aMwdLSkkaNGmFubs6rV6+ws7NT7B8cM2YMTZo0Ydy4cbx7945y5cr9sGv7WuR984kTJ3Bzc8PAwIDevXvj4+NDdHQ0bdu2pXTp0ixYsIBly5YpylvlBeSaIzo6Oly8eBFNTU369etHZmYmjo6OTJ48GVNTU2Wb+VlIFUQkJL4fOTk5JCQkYGZmho6ODitXrqRs2bIkJiZiYWFBeno6u3fvzpPlFL+EBw8ecPnyZdq2bUvVqlXZv38/d+7cwdLSktu3bxMREUGbNm1o166dsk2VkPhpUUoKutznHzt2LEWKFOHFixfk5ORIzvcviLwtXLhwgXPnznHgwAEqVKjArVu3WL58OQMGDMDExAQNDQ3atWv32c53QkICr169UkQyfX19+eOPP7hx4wbJyck0adIEKysrJk6cSEREBIMGDZKcbwkAypUrR69evTh//jxnz54FPkbCz58/z82bN6lQocLfflZXV5fOnTuzaNEinj17hrm5OWXKlOHBgwe8ffsWgP79+yOEQEtLSyWcbwB1dXW8vb3Zv38/LVu25O7du/j5+VGxYkUaNmzInj172LVrFzNmzMhTzjd81Bxxc3OjXbt2HD58mLZt22JhYcHdu3eJjIxk1apV/7iVIK8gj+abm5szYcIEQkJCMDExYerUqezYsYNr164RFBSEg4MDiYmJyjZXQkJlkM9D1NTUKFasGBYWFqSmpuLt7U1SUpJClwbg0aNHKut85+TkkJWVxcqVKxWVKnR1dRk0aBDNmjXDysqKli1bsnDhQtq1ayelnktIfEeUGgF/+/YtkyZNYs2aNZLa9C9GcnIyWlpaivSmAwcOoKOjQ8uWLdm7dy+tW7dm8+bNlClThrVr136RkFNYWBgLFy5ER0eHUqVKMXz4cOrWrYuzszMPHz6kS5cudO7cmcDAQJydnRk4cKDkfEvkQp6CeOzYMcqXL0/p0qUJCgpizZo11KhR418/v2vXLo4ePcq2bdtITk5m7969FClShKpVq3Lw4EHmz59P+/btf8CVfD1v3rwhKSmJatWqkZmZyYIFC+jatStdu3blyZMnHD16lPz589O/f3/Kly9Peno6+fPnz5Opzps2bSI1NZU+ffowd+5cunTpQr169Th//jxt2rSha9euyjbxs5AqiEhIfFvk/dXVq1cVAmQmJiaoqamxZs0aevfuTdeuXSlcuDBZWVl5SlTyc5Ffo7wKQkpKCubm5lSoUIFly5YpykkePnyYDh06SBk0EhI/AKU64PDREStYsKAyTZD4wVy+fJkjR47w4cMHJk6cSKtWrbhx4wZpaWnExMSgra2NiYkJ8+fP582bN6xevfqzI4Xh4eHMmDGDsWPH0q1bNxISEihTpgxhYWH89ttvuLq6cv36dfLnz09AQABr166lfv36edJpkPi+/Ns9z8jIIDo6Gh8fH0qXLk2NGjX+NvotP9eLFy8oUqQIBQoU4PDhw+zfv58dO3aQlpbGmjVrkMlkDBgwgK5du+b5Nufs7EzLli2pXLky2trarFu3DoDJkydToEABgoKCMDMzo3///owfPz5PR4WuXbvG5s2biY6OzqU5Iiev3ws59+7dw9zcHCcnJ6pXr87OnTtZv379/1QQkURMJSQ+n6tXr2Jvb8/ixYtxdHQkJiYGV1dXbt++jY2NDYMGDaJ///4qmaUp79u8vLywt7enfv36dOjQgRYtWjB27FgMDAywsrJCTU1NsdVKQkLi+6OUFPRPycuTNolvz/Xr13FwcGDs2LG0b9+ejRs3kp6eTosWLTA0NGTfvn1oaWlx+/ZtXrx4gYODw2c731lZWezfv5/BgwdjampKvnz5KFOmDAcPHmTYsGGYm5szaNAgRowYQf369Vm2bBn169cH8rb4lcS351OH6+LFixw8eJDr16/z5s0bxXs0NDQU6rAdO3b8x9RzmUyGp6cnEyZMYNasWbi5udGrVy9GjhyJmZkZGhoazJ8/H11dXaKjo4mOjs7zbW706NEULVqU6dOnc+fOHapXr86HDx/w9fUFoEiRIlSpUoUuXbrk+X68TZs2lCtXjqJFiyqc7+zsbMXref1eyJEqiEhI/HeioqIU/Rh81IhZvXo1iYmJJCQkYG9vj6OjI3p6ekydOhV9fX2Vc77l/ZtMJuPWrVvY29sza9YssrKy2LNnD76+vuzZs4e7d+9iZWUFIDnfEhI/EKU74Koy8ZH471y/fp158+ZhZ2dHkyZN6Ny5M7GxscydO5f58+cTGBjI6NGj2bFjB6tWrWLJkiVfVGpMQ0ODDx8+5Eq99Pb2xt3dncOHDxMXF4eDgwNNmzZl6NChtGrVStrj9Isi73f279/P7t27UVNTY/78+dy4cSPXfsDP5e7du+zcuZPdu3dTuXJl3NzcOHv2LL1792bgwIFMmDCBGjVq0LFjR0JCQtDW1v4u1/Ut+PSZkJfkOnToEHp6ehQpUoTz588zcuRIJk6cyO+//06tWrWUaO2/87NpjjRs2JCAgAAmTJhAv379mDx5Mq1atWLXrl00a9ZM2eZJSORpMjMzGTNmDMuWLcPT0xOA1NRUZs+eza5du1i/fj16enoEBgaSnJyMoaEhDRo0UK7RX8i7d+/w8PBQlBC7efMmU6dOpVWrVshkMgwNDXFzc8Pb2xtXV1cGDBigbJMlJH45VG8zi4RKkp2dzbNnzyhYsCCFChUiNTWVmTNnYmpqSs2aNblz5w5OTk4sXryYhg0bUrBgQUqVKvXZ5xdCkJmZybt374iMjFQcK1q0KNu3b6dUqVK0atWKSpUq5fqctAD0ayKE4NWrV/j7+7N3715OnjxJ7dq16dChA35+fjRt2hSZTPa37SMhIYGkpCRFVDwwMJCmTZtSpEgRNDU16dy5Mx4eHsTFxdGjRw86d+4MgLGxMe3bt8/TEWP5fsg7d+6gqanJpEmT2L17N4cPH2bYsGGUKlWK+Ph48uXLp1B2z8vI72GJEiVISEggMzPzixZX8hpt2rTh2LFjZGRk5Irmq+qCgoTEj0RTU5MxY8bg6urKrVu3EEIwYsQI7t69S8WKFSldujR37twhLCyMnJwcZZv7xQghSEpKon79+iQnJ6OmpkbVqlWJiYnBw8OD1q1bU79+fS5evMj27dupXbu2yi0wSEj8DKjuLERCpVBXV6dnz56MHTuWWbNmYWxszIgRI5gyZQpGRkZ07dqVxMRE1NXVqVq16hc53/Bxkq2lpcXw4cM5dOgQV65cQSaTUbduXUqVKsWdO3c4deoUFStW/E5XKJHX+XQyJZPJKFu2LGXLlmXGjBn88ccf7Nixg4iICOzs7P5xT3BoaCijRo3CzMyMefPmAdCoUSMaNmyIj48PVatWZcqUKRQrVozg4GBFnWb59+dV51seKQ4ODsbW1paSJUsSEhLCsGHDGDp0KNWrV2fz5s3ExsZSp04dlXC+P6VUqVLs27dPpQU/f7ZovoSEMqhZs6ZCBPbu3btcu3aNuXPnKvr2pUuXMm/ePAwMDJRt6hcRExNDr169KFKkCDVq1GDNmjU4OzvTunVrBg8ejLu7O5UqVUJDQwN1dXXWrVv3j1urJCQkvh9SBFzih1G4cGG6d+9OZmYm+/fvz7VX8dWrV6SlpeXal/k1tG3blidPnrB+/XrevXtH9erVSU1NxdbWlnnz5in2fEv8Wnz48IECBQoAEBAQQFpaGq1atSJfvnzExsayfPlyAKKjoylXrhxZWVl/6dRERERgaWmpqLU8dOhQgoODqVWrFvXq1WPWrFk0atSI0NBQ3r59y+LFixUOX16PuspkMvz9/Tlw4ADjx4/H1NSU4cOHs3z5cqZPn87BgweJj4/P89fxT+TVxY/P5WeL5ktI/Aiio6OJj49XONT16tXDxMSEhw8fUqlSJe7evYuOjg4uLi7ExMSQkZGBnp6eyogzyilRogT169enf//+nD59mn79+nHy5ElcXV3p378/9evXZ+PGjURGRjJt2jSVXoyUkFB1lK6CLvFr8OlAlpSUxJkzZzhz5gzz588nNjaWTZs2YWNj81klnv6N1NRUrly5wp49eyhdujS6urp07dqV9u3bq9yAKvHfefr0KSdOnGDkyJFcuHABZ2dn0tLS6NSpEyNGjGDjxo1kZmaSnp7OmzdvsLW1/cvIR1hYGIsXL6ZPnz4MGDCA7Oxsli9fzvjx4ylfvjwADg4OxMbG4uXlxbJlyzAyMvrRl/tFvH79mocPH6KtrU2jRo148uQJU6ZMoUePHixatEjxvmnTprF27VpJpCcPIVUQkZD4d+Li4mjbti3a2tqsWLGCYsWK0bJlS+Lj4/Hw8KBHjx54enpy9+5dDA0NMTExUbbJX0VmZiaamppER0czZMgQtLW1OXr0KOHh4bi5uVGhQgXq1KlDZmYmOjo6NG3aVJoPSUgoESkCLvFd+HPH/un/CxUqhLGxMWpqagqF6F27dn2z1dj8+fPn2mubnp6uEL2SBptfi2fPnuHv709cXBxbt24lPDycM2fOkJ2dzbBhw9DR0WHevHnExMQQHR2NgYEBenp6/3Oe1NRUJk2aRO3atRXO9++//05wcDDv37+nbt26GBgYYGhoiLa2NsOGDcPAwCBPT3DkJftq1apFamoqenp6NGrUiE2bNjF//nwaNWpEly5dCAoKIiIigpiYGMqWLZtnr+dXQ9Wj+RISP4JixYoxdOhQ9u/fz+3btylcuDDHjh3D0tKSwMBAdHV1GTx4MBkZGd8kAKAsNDU1uXLlCtu2bWPatGmcOnWKXr16ceLECQYOHIiLiwtZWVlMmTJF8RmpL5eQUB5SBFzim/Op03H16lWSkpKoUqUK5cuXp3Dhwor3JSYmcv78eRo1avRdU6FycnKkNM1fEC8vL3bt2oW9vT3Pnz/n1KlT3L17FwcHB6pVq8b79+8ZP348VatWZfXq1f96vgsXLuDg4MD48ePx8vKiaNGitGnThufPn/PgwQOuXr1KtWrVsLOzo3Llyt//Av8D0dHRjBs3jlGjRtG/f38SEhIoUKAAr169onLlyjx+/JipU6dSsWJFChUqRO/evfN8NF9CQkLiUz4d+62trTl58iTHjh1j3759CrGy4OBgdu7cSdGiRVVeS8HOzg49PT2GDx8OgI2NDVevXsXd3Z0nT56go6ODvr6+kq2UkJAAyQGX+I44Oztz4cIFmjdvzunTp5k7dy5dunTJ9Z68HCGUUF18fHxYuXIlmzdvpnr16sDHvd9Hjx5FT0+P7t27K5zwGTNmYGtr+1nCf5cvX2bBggVUr16dAwcO5Hrt3bt3vH//XiXEye7cucO5c+dYtGgROTk5inqwAQEB1K5dmzlz5pCdnc306dMxNTXF3NxcelYlJCRUjk8rBMyfP5+goCBOnDhBdHQ0Xl5e7NixgwMHDuT5RdO/Qt4n37x5kzdv3hAeHo62tjbm5uaK9xgaGqKrq4uHh4cUiJCQyENIT6PEdyE8PJybN29y6NAhSpQoQbVq1WjWrBnBwcHA/ylSSxN6iW/N1atXsbKy4u3bt7mUzxs1aoSJiQkJCQmcPXuWkJAQdHV12bNnz2er7hsZGWFra0t0dDRnzpxRHM/MzKRkyZIq4XwDFCxYkGPHjrFr1y769evHjRs3qFmzJlu2bKF27drcuHGD2rVrY2Njg7OzM8eOHZOeVQkJiTxPZGQkV69eVfytrq5ORkYGALa2trRo0YIePXpQtGhRRowYwfHjx1XS+YaP86egoCCWL19OmzZt6NGjB46Ojnh4eJCTk0NQUBBt27ZlwYIFkvMtIZHHkPaAS3wT/pzmXbJkScqXL8/s2bNJSEhg165dnDt3Dg8PD3bv3i0NBhLfhYCAABwcHLC3t+ft27eYmZmxcuVKWrZsCUCrVq1QU1PjxIkTXL58mcqVK6OpqflF39GhQwdycnKwtbUlNTWV/v37f/E5lI2+vj5Lly7l4sWLNGjQADMzMwoVKkS+fPkICgoiOTkZgGbNmrF9+3ZKliypZIslJCQk/hkhBGfOnEFbW5t27doBHyPgWlpavHr1Cg8PD5YsWcL06dPp0qULPj4+6OrqKtnqrycpKYmTJ0+SnZ1NwYIFKVGiBFu2bMHa2ppbt25x7949Fi5cSPPmzaUMJgmJPIbkgEv8ZzIyMhTqyI8fP0Ymk2FgYEBaWhqvXr3C1tYWNTU1MjIyKF26tEKtU0LiW5OVlcXKlSupVasWAAkJCSxatAhra2tatGgBQIsWLVBXV6dKlSpfreptZGREdnY21tbWtG3bllKlSqnc5KZnz5707NkT+KionS9fPm7fvo2LiwtLly4FPk5omzRpokQrJSQkJP4ZuXMpk8nQ1tbm4cOHiuPq6upER0djZmbGgAEDANiwYQPBwcGoq6ur3L5v+bUmJydTqFAh+vXrR1xcHKtWrWLKlCm0bt0aR0dHNDQ0SElJUZR7VbXxSULiZ0faAy7xn4iIiMDT05MJEyZw8OBBDh48SFxcHFOnTqVevXps3bpVUX85ODiY9evXSyIgEt+dT1f73dzc2LFjBzY2NjRv3vybfk9sbCzFixf/puf8keTk5ODj44OzszPVqlXDy8uLBQsW0LFjR2WbJiEhIfFZpKSkKKoC+Pj4cOrUKezs7ICPfdypU6dISkpi+PDhimw9VYwIy2329PTExcUFbW1tli1bxuvXrzl58iQymYwJEyZIGUsSEiqA5IBLfDUvX77E29ubR48eoaurS3BwMLt37yY0NJTp06czbtw4mjZtSmRkJG/evKFZs2ZUqFBB2WZL/IIcOXIEW1tbtm/fLkV0/0RycjLXrl0jOzubChUqUK9ePZWcnEpISPx6xMfHM2TIEGrUqKFQ+b5y5QqzZs2ifv36uUTYQPWroty4cYO1a9dibW3N/Pnz0dXVZfXq1cTFxeHm5oa6ujoLFy6UsgwlJPI4kgMu8VV4eXnh4uLC8uXLCQwM5OLFi7x48QJHR0cKFSrEgwcPmDt3Lj179sTMzEzZ5kr8Avyb03j8+HEaNmxIpUqVfqBVEhISEhLfi4yMDAICAkhPT8fHxwcdHR127NhBqVKlqFKlCtnZ2TRu3JhSpUoxbNgwZZv71WRnZ6OmpsaiRYto2rQpHTp0YOPGjbx69YrY2Fisra15+/YtZcuW/a5lXSUkJL4NkgMu8cX4+PhgZ2fHmjVrMDAwAD6WZzp58iQNGjSgZ8+eFC9enKCgIJYuXYqjoyPFihVTstUSPzNnzpxBT0+Phg0bKtsUCQkJCQklYmFhwaBBg1BXV+fevXskJiZSt25d2rdvr2zTvprXr19TtmxZdu/eTa1atYiIiKB06dK0adOGTp060ahRI5YuXSrNtSQkVARJhE3ii7h69SoWFhYAVK1aVXHcyMiItLQ0/Pz8OH78OL169aJevXocPnz4q4WuJCT+jj9Hu5OSktDT01OiRRISEhISyuLTMSExMZHAwEBGjx5NvXr1/vI9qkJ2djbJyckYGhpibW3N2LFjycjI4NChQ8yYMYPQ0FBq1qzJqFGjJOdbQkKFUN2NMBI/HH9/f9avX8+GDRsYNWoU/fr1IyoqSvG6sbExzZs3Jzg4mD/++IOcnBxpH5LEN+fTSdTDhw9JSUlhwIABlC5dmqysLCVbJyEhISHxo5HJZMgTOg0MDIiPj//L96giurq6ODk5sWzZMlxcXNDS0uL58+ecOXMGMzMzhg8fTuPGjZVtpoSExBcgpaBLfDZnz56lfPny1KtXj5ycHNavX4+3tzc7duzIFX2U1xaWlDglvicHDx7k6NGjdOjQgVGjRlGkSBHFa9HR0ZQoUULlSsxISEhISPw3Tp48ydmzZ3FwcEBLS0tlRdeCg4N5/vw5rVu3pmDBgty+fZuRI0eybds2KlWqxK1bt6hYsSItW7ZUtqkSEhJfiOSAS3wxn0Yg165di7e3Nzt37qRs2bJKtkziZyYhIUHhZN+6dYs1a9YoVPezs7N5/vw57dq1IyMjg7Vr17J69WpFCTwJCQkJiV+DFy9eEBMTQ6NGjZRtyheRkJDAhw8fyMjIoHLlyuzZs4f79+9jbGxMy5YtKViwIC4uLixbtoytW7diZGSkbJMlJCS+EskBl/jP2Nvbc/z4cVxdXSlTpoyyzZH4CYmPj+fIkSM0bdqUUqVKERoaSkBAAPnz5ycsLIy3b99StGhRGjZsyO+//67y9bklJCQkJH4dwsLCWLhwITo6OpQqVYrhw4dTt25dnJ2defjwIV26dKFz584EBgbi7OzMwIEDpci3hIQKI4mwSfwtnytYMnPmTDQ1NcnMzPwBVkn8ishkMvLly8eqVauoWLEis2fPxsvLi5iYGIYPH06DBg3Yv38/iYmJAJIYjYSEhISEShAeHs7MmTMZO3Ys3bp1IyEhgTJlyhAWFsbo0aNxdXXl1KlTeHp6EhAQwNq1a6lfv75KispJSEh8RIqAS/wr58+f57fffpNqS0r8cD6dYFy/fp158+bRokULzM3NqVKlCvCxfcbFxeHh4cHq1auldiohISEhoRJkZWWxcuVKqlevnqtO+cGDB9m4cSNNmzZl8+bN+Pv7ExoaSuXKlWnVqpUSLZaQkPgWqKYyhcR3JTQ0lGPHjin+fvHiBbq6ukq0SOJX5FPnOyIigjJlyuDh4YG+vj579+7F19cXIQQXLlzg5cuXrFy5UnK+JSQkJCRUBg0NDT58+EDp0qUVx7y9vXF3d+fw4cPExcXh4OBA06ZNGTp0KK1atUKKm0lIqD5SCrpELnJycihQoADOzs6cP3+eFi1aMH78eODjSq2GhtRkJH4Mcud7z549eHt7o6ury9q1a+nWrRseHh74+Pjw5MkTunTpQpcuXaRUPAkJCQkJlUEIQWZmJu/evSMyMlJxrGjRomzfvp1SpUrRqlUrKlWqlOtz0lgnIaH6SBFwCQX37t3j5MmTlCtXjk6dOnHr1i3evXuneF1eyiMhIUFJFkr8anh7e3P58mX27t3LhAkTCAoKIiQkhJ49e1KmTBmuXLmCvr6+NCGRkJCQkFApZDIZWlpaDB8+nEOHDnHlyhVkMhl169alVKlS3Llzh1OnTlGxYkVlmyohIfGNkfaASyh48uSJosxTYGAg2trarF27FmNjYyZPnqw4fujQIZYvX462trYSrZX4GfmzqMy1a9dwc3NDX1+fkJAQ0tLSuHPnDsuXL8fY2Jj09HSpHUpISEhIqCwZGRk4Ojpy7tw5RowYQfXq1UlNTcXW1pZp06bRsWNHZZsoISHxjZHyiSUUTo++vj5xcXGMHTuW7t27M2bMGHR1dbG0tERXV5emTZtSv3599PT0JKdH4pvzqfPt7+9PyZIlKVasGA0aNODOnTuMGDGCFi1acOjQIV6+fIkQQmqHEhISEhIqjZaWFr///rui9nfp0qXR1dVl1qxZtG/fXlI7l5D4CZEi4BJkZ2ejrq5ORkYGWlpahIaGYmNjQ6tWrRg6dCjh4eEsXLiQlJQUXFxcQE2xxwAAEhtJREFUpFrfEt8VZ2dnXFxcqFWrFhUrVmTs2LEULlwYd3d3EhISOHLkCNu2bVOooEtISEhISPwMpKSkoKOjI2V3SUj85EgR8F+Ye/fu0aBBA9TV1dm3bx+3bt0iX758dO/endWrVzN37lzU1dUZNmwYhw4dIi0tjVKlSinbbImfmCtXrnDlyhXOnDnDqlWruHXrFurq6jRv3pzk5GRCQ0PZvHmz5HxLSEhISPx06OjoAKCpqalkSyQkJL4nkgP+C2Nra0taWhoLFy7k+vXrjBkzhvj4eCwtLVm8eDE2NjZMnToVDQ0NRo4cSeHChZVtssRPSk5ODmpqajx//px69eoRExNDvnz56NevHydOnOD169eYm5szcuRIKRVPQkJCQuKnRi56KyEh8XMipaD/gny6n2js2LH4+fmxePFiBgwYAPy/9u49Jsv6/+P4ixs5ykE8MvUG81BkiZSiu1taoS5Gngo1RNpss7AEtmY2lmUqnjI1TbFNVDR1qWRRKhWiGZ7TcqmVGElE4glJVLjhRu7790eDH9Z33/1+y7jg4vn4R7m8/nj9wdxe1+f9+XykU6dOac6cOdq0aZMKCwvVoUMHdevWzcjIMKHGv4f1Y3fFxcUqLy9XUVGRPD09NXLkSE2bNk0dOnTQyy+/zPYHAAAAtGh8YmtFXC6XnE7nHSuI69at09ChQ5WZmdnwLDw8XD169ND169cVHh5O+ca/ov73cNu2bVqwYIHS09P1ww8/KCIiQrt371ZZWZny8/NVUlKiqVOnUr4BAADQ4lHAW5GKioqGsaavvvpK2dnZOnPmjNLT09W7d28lJCSopKREe/bs0blz5+Tu7m5wYpjdjh07lJ2drcmTJysnJ0c//fSTHA6HHn/8cZ06dUpvv/22lixZoq5duxodFQAAAPjHGEFvJUpLSzVjxgzNnDlTv/32mzIyMtSnTx9VVVWpa9euSk1NVUpKinJzcxUfH6+EhAT17NnT6NgwMbvdrpUrV2rkyJE6d+6cdu7cqXfffVc5OTnq27evunXrptu3b6tLly5GRwUAAADuCgp4K1F/fVN+fr5qa2u1du1a+fn5qbCwUBs3bpTNZlNMTIxmzpypKVOmcMo07rqDBw/qzJkzqqqq0ssvvyxvb29t2LBB27ZtU5cuXbRhwwZJ0tixY7Vs2TI+AAEAAMB0GEE3ufrvK+3atdPEiRM1YsQIFRQU6MSJE5Kk0NBQWa1WnT59WpI0f/58yjfuugMHDujtt9+Wn5+fzp8/r7Vr10qS+vfvr5CQEI0YMUJVVVXKy8tTmzZtFBgYaHBiAAAA4O7jGjITa3zK9KVLl+Tr66uYmBi5u7vrk08+kb+/vwYMGCB/f38VFRXJ4XDIw8ODa55wVx04cECLFi3SwoULFR4eLk9PT3333XdKT0/Xo48+KpvNpoKCAj3//PPy9PTUvHnz1KFDB6NjAwAAAHcdI+gm1bh8Z2ZmKj8/X9XV1Ro8eLD69Omjuro6vffee4qMjFRJSYlmz56t3r17G5waZlNWVqaUlBSFh4crNTVVN27c0IQJEzRo0CBdv35dV65c0SuvvKLBgwfr0qVL8vHxYfUbAAAApkUBN7l9+/YpPT1dmzZt0pkzZ3T27FkVFhYqLi5O+/fv16lTpzRz5kxZrVajo8Kktm/frtOnT6tnz57auXOn4uLiNGHCBElSWlqarl27puXLlxsbEgAAAGgCjKCbzLFjx7Rr1y6lpaVJki5evKiIiAj5+vpq0KBBCgoK0t69e3Xr1i1NnjxZdXV18vf3Nzg1zMjpdMpisWjChAmyWCz69NNP1atXr4byLUm9evVSXV2dbt++rTZt+O8IAAAA5sYhbCZz3333aefOnZo1a5YkKSQkRDdu3NCFCxckSX369FHXrl115coV+fr6Ur7xr7FYLKqrq5MkjRs3TrGxsbJYLMrOzpYk5ebmaseOHYqPj6d8AwAAoFVgBN0E6vd7OxwOeXp6SpIGDx6s5557TklJSZo+fbqCg4PVu3dvWSwWrVq1SuvXr2fsHHdd47MH/pOsrCydPHlSTqdTP/74o95991316tWrCRMCAAAAxmHZyQQuXLig7t27y8PDQ5JUW1urbt26KT09XTU1NVq0aJEyMzP1zTffqKamRqtXr6Z8465rXL6//vprXbx4UZGRkerVq1fDOPr48ePldDqVl5enZcuWUb4BAADQqrAC3sLdvHlT48aN0+jRozVt2jRduXJFKSkpiouL09ixY2Wz2RQbG6tXX31VkmS32+Xj42NwapjZunXrtGvXLoWFhWn48OEaNmzY31bGb926JT8/PwNTAgAAAE2PFfAWzt/fX/Pnz9ecOXPkcDh06tQpjRo1SmPHjpUk7d69W0OGDFF1dbXeeOMNeXt7GxsYpnP+/HlJUs+ePXXt2jUdOnRIGzduVEBAgCSpvLxcv//+u8LDwxsOW6N8AwAAoDXiEDYTGDhwoObMmaPPPvtM7u7umjRpkqQ/V7vbt2+vI0eONDz7b/tzgf+v6upq5eTkKCgoSJWVlfL391dlZaX279/f8M6ePXu0adMmSeKwNQAAALRqFHCTePjhh7Vs2TJduHBBmZmZkiQfHx85HA4FBATonnvuMTghzObSpUuy2+1KSkrSxYsXtXz5chUWFurpp59WQUGBDh8+LEny9fVVmzZt5HA4DE4MAAAAGIs94C3MX/fS1v9c/+fJkyc1a9YsPfnkk0pKSjIwKczMbrcrKytLPj4+CgoKkiR9+eWX6tGjh7p3766rV69qz549slqtOn36tFauXKl7773X4NQAAACAsSjgLUjj8n358mW1bdtW3t7efxvrPX78uBYvXqyMjAwFBgYydo5/xbfffqtZs2aprKxMn376qdzc3LRixQpZrVZFRkaqc+fOKi0tVY8ePRQcHGx0XAAAAMBwFPAWaP369Q13Kffr10+xsbHq1KnTHe/U1NTIy8vLoIQwq8Yfgex2u1avXq2CggINHz5c0dHRqqioUEZGhry8vBQXF8c1YwAAAEAj7AFvYXJzc7V//36tXLlSdrtdpaWl8vf3V21t7R3vUb5xtzUu33v37tXevXuVkJCgxMREHTlyRFlZWbJarRozZoycTmfDaDoAAACAP7EC3sz9dc/39u3b5XK5VF1drfz8fK1YsULvvPOOoqOjZbPZDEyK1mLLli3asWOHxowZo8jISPXt21dnzpzR2rVrVVdXJ6vVqqlTpzZcQwYAAADgT6yAN3P15fvWrVuSpI4dO2r79u3Kz8/XmjVr5Ofnp7KyMlVWVhoZE62Ay+VScXGxdu7cqTVr1mjw4ME6efKknnnmGVVWViolJUU2m02xsbGUbwAAAOA/4FLeZqq4uFgWi0VWq1WbN2/WN998o3vvvVeTJk2S1WpVSEiI8vLyVFVVpZ9//ll9+/Y1OjJMqPEEhpubm0JCQjRw4EC9+OKLateunfr166eoqCilp6dr7dq1io+PNzgxAAAA0HxRwJuh0tJSffjhh/Lx8VGHDh2UnZ2t5ORkzZkzR5KUnJysnJwc5ebmqq6uTqtWrVLXrl0NTg2zaVy+s7Oz9fvvv2vgwIEaNmyYwsLCFBkZqS5duujkyZMqKCgQu1kAAACA/4494M3MkSNHVFRUpPbt2+vEiRMqLCzU+PHj9dRTT+nq1auaMmWKhg0bpsTERHl5eclut8vHx8fo2DCxTZs26eOPP9aDDz6ooqIiTZ48WY8++qi+/PJL7d69W1evXtXChQsVFhZmdFQAAACgWWMPeDNy8OBBzZ8/X3379lV0dLSioqIUGBioffv26ddff1WnTp20bt06ZWdna/ny5ZIkb29vY0PDdOrPG3A6nfrxxx+Vm5urTz75RKNGjZLdbteePXv09ddfKzAwUAkJCVqxYgXlGwAAAPg/oIA3EwcOHFBiYqLi4uIUEREhl8ulRx55RHFxcQoKCtKuXbtUXFysjh076qOPPmrYa9v4hHTgnyovL9eCBQtUVFSkiooKBQcHKzg4WKdPn9axY8c0d+5cuVwurV69Wr/++quGDh2qkJAQo2MDAAAALQIFvBk4cOCAlixZovHjx+vDDz/UiRMnGoq1zWbTY489poqKCm3btk0lJSVq3769rFarwalhRu3atdOAAQM0depUvfbaawoICFBycrKqqqpUXFysBx54QP3791ePHj0UExNjdFwAAACgRaGAG6yyslJZWVl68803NXv2bD377LNKTU3Vd9991/DOkCFDZLPZ5ObmprZt2xqYFmZVfxSExWJR586dde3aNd28eVMlJSUKCQlRaWmpLBaLMjIytGPHDqWkpKhz584GpwYAAABaFg5hawbqD1JzOp2yWCzavHmzNmzYoMWLF+vhhx9ueK+qqkq+vr4GJoUZNT7tvKysTB07dtT169f1+eefKycnR6mpqerevbs++OADnT17VikpKbrvvvsMTg0AAAC0PBTwZmrz5s3avHmz5s6dq0GDBhkdBybVuHyvX79eOTk5qq6u1uLFi2W1WrV161YdPnxYQ4YMUXBwsJ588km5u7sbnBoAAABomRhBb6YSEhI0btw4LVy4UDU1NdyxjH9Fffk+fPiwDh06pIyMDI0YMUKpqakqLi7WxIkTNXz4cOXm5iosLIzyDQAAAPwDrIA3cxUVFQoMDDQ6Bkzshx9+0Jo1axQQEKC0tDRJUnp6unJzczV79mw99NBDqq6u5so7AAAA4B9iBbyZo3zjbvvrN7fQ0FA9+OCDKi0tVU5OjiRp2rRpGjp0aMMEhpeXlxFRAQAAAFNpY3QAAE2n8Z7vLVu26Ny5c+rZs6deeOEFubm56ejRo7JYLIqOjtb06dNVXl5O+QYAAADuEgo40IrUl++tW7cqOztbSUlJSkxMVF1dnaZMmaLMzEzl5eWpTZs2Gj58uIKCggxODAAAAJgHBRxoBY4dO6aAgADdf//9unz5sr744gstW7ZMFRUVGj16tFatWqXa2lrFx8fLzc1N/fv3l/S/hR0AAADAP0cBB0zu4MGDeuutt7R06VJJkoeHh0JDQ2W325WXl6fk5GQ99thjmj59ury8vBQfHy9PT0+DUwMAAADmwyFsgIkdPHhQS5cu1bx58xQREaFbt26pffv2eumll+Tu7q4rV67IarWqqqpKo0eP1hNPPEH5BgAAAP4lFHDApI4cOaJXXnlF77zzjmw2m0pKSvT666/r7NmzCg4O1vfff6+jR48qKytL77//vqZNm6bQ0FCjYwMAAACmxQg6YFIOh0Mul0s3b95UbW2tZsyYoejoaIWFhUmSnnnmGRUXF6uoqEjvv/8+5RsAAAD4l7m5/nopMADT+Oqrr5SWlqaamhqlpqZq1KhRkv4s5/Wj5nV1dXJ3dzcyJgAAANAqsAIOmNgTTzwhi8WimTNnyt/fX5LkdDrl4eHR8A7lGwAAAGgarIADrcC+ffu0YMECJScna8yYMUbHAQAAAFolVsCBViAqKkoWi0UzZsyQh4eHYmJijI4EAAAAtDqsgAOtSH5+vkJDQzlwDQAAADAABRwAAAAAgCbAPeAAAAAAADQBCjgAAAAAAE2AAg4AAAAAQBOggAMAAAAA0AS4hgwAgBZs3rx5On78uCTpl19+Ubdu3eTt7a3z588rKSlJiYmJysrKksPh0KRJk7Ry5Ur98ccfmjVrlsHJAQBofSjgAAC0YG+88UbD36OiorRkyRL169fvjne+/fZb9enTp6mjAQCAv6CAAwBgQvUr3TabTfv27dOhQ4fk7e19xzuXL1/W3LlzdfHiRdXW1uqpp57S1KlTDUoMAID5sQccAAATGzFihKKiojR58mRNmjTpjn+bMWOGYmNj9fHHH+ujjz7S4cOHlZOTY1BSAADMjxVwAABaoaqqKh0/flwVFRVasWJFw7OzZ88qJibG4HQAAJgTBRwAgFbI6XTK5XJp69at8vHxkSSVl5fLy8vL4GQAAJgXI+gAAJicu7u7bt++fcczPz8/RUREKDMzU5J048YNTZw4UXv37jUiIgAArQIr4AAAmNzQoUO1aNGivz1fsmSJ0tLSNGrUKDkcDo0cOVKjR482ICEAAK2Dm8vlchkdAgAAAAAAs2MEHQAAAACAJkABBwAAAACgCVDAAQAAAABoAhRwAAAAAACaAAUcAAAAAIAmQAEHAAAAAKAJUMABAAAAAGgCFHAAAAAAAJrA/wABEPiuejeBqQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Title vs. Popularity\n",
+ "plt.figure(figsize=(14, 8))\n",
+ "sns.barplot(\n",
+ " data=merged_df.sort_values(by='popularity', ascending=False).head(20), # Show top 20 titles by popularity\n",
+ " x='title',\n",
+ " y='popularity',\n",
+ " palette='viridis'\n",
+ ")\n",
+ "plt.title('Top 20 Titles by Popularity', fontsize=16)\n",
+ "plt.xlabel('Title', fontsize=12)\n",
+ "plt.ylabel('Popularity', fontsize=12)\n",
+ "plt.xticks(rotation=45)\n",
+ "plt.tight_layout()\n",
+ "\n",
+ "plt.show()\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Total Gross vs. Studio\n",
+ "To analyze the **Total Gross by Studio**, we have selected the top 10 studios with the highest total gross. This bar chart provides insight into the studios that generated the most revenue, giving a clearer view of top-performing production companies within the dataset."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAGkCAYAAAAmBb/dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABC7UlEQVR4nO3deZyN9f//8efslkpoUCkf0owiUiL05WNoiKGJUZlsCdmXbJNkF7LFkCUMn0+IZKxTkX1nyJ4smbIO2QeznvfvD785H4MxQ86cc/G4327dcq5znXO93nPNnOt5vd/v6zpuxhgjAAAAC3N3dgEAAAD/FIEGAABYHoEGAABYHoEGAABYHoEGAABYHoEGeIhxkaNj8HMFsh6BBg+tsLAw+fv73/G/8PBwh9cRFxenKlWq6KeffrrluejoaNWvX1+lSpVSYGCg5s6dm+H7JSYmatKkSQoKClLJkiVVpkwZNWrUSD///HOa9Q4ePKgmTZr84/qPHTsmf39/e/3h4eEqXbr0P37fOwkLC1NQUNB9e7/UNmT0X0YuXbqkLl26aO/evXe1fX9/f02ZMiXD9Y4cOaJ+/frpzTffVMmSJVW2bFk1a9ZMK1euvKvtAQ8iT2cXADhLmzZt9P7779sf9+jRQ4UKFVKbNm3sywoUKODQGuLi4tSmTRudOHHilucOHz6s5s2bq0qVKmrfvr3Wr1+vzz77TI888ohq1KiR7nv26NFDGzduVKtWreTv769r165p2bJl6tChg/r06aPQ0FBJ0k8//aTdu3ff9zbVr19flStXvu/v60j58uXT7Nmz7Y+3bt2q4cOHa+zYsfL19c30+/z2229avHixmjZtet9rXLlypT755BMVKlRIzZs3V+HChXXp0iVFRUWpVatW+vTTTx2yXcAqCDR4aD377LN69tln7Y+zZcumPHny6OWXX86S7W/ZskV9+vTR2bNnb/v8pEmT9PTTT2vkyJFyc3NTpUqVdO7cOY0bNy7dQHPs2DFFRUVp1KhRqlmzpn15QECArly5ovDwcHugcZQCBQo4PAjeb97e3mn2+99//y1JeuGFF1SwYEEnVfU/sbGx6t69u0qWLKlvvvlG3t7e9ueqVaum/Pnza8SIEQoKCtITTzzhxEoB52HICbgDY4zmzJmj2rVrq2TJkgoMDNS0adPSrOPv76/vvvtOrVu3VqlSpRQQEKBvv/02w/du27at/Pz8NHny5Ns+v2HDBv373/+Wm5ubfVm1atV04MABxcbG3vY1586dkyTZbLZbnmvevLmaN2+upKQkhYeHa+zYsbp69ar8/f01b948bd68Wf7+/rf02pQpUybN0NvOnTvVoEEDlSpVSrVr19a+ffvSrH/zkFNSUpImTZqk6tWr66WXXlLt2rW1aNGiNK9ZvXq16tatq1KlSql8+fL69NNPdeHChdu28UaTJ09WhQoV9Morr6hLly72cLhixYrbtmXChAmqUKGCkpOTM3zv2zl27Jg6duyoChUqqHTp0mrdurViYmIkSZs3b1bjxo0lSSEhIQoLC5N0vRdu4MCBqlKlikqUKKHXX39dPXr00KVLlzK93ZkzZ+ry5cvq27dvmjCTqlWrVqpYsaLOnz8vSZo3b57KlSunyZMnq1y5cqpevbquXbt2X/bFve4rwNHooQHuYOTIkZoyZYpatGih1157TVu2bNGXX36p8+fPq3Pnzvb1hg8frsqVKys8PFzr16/XgAED5O3trXfffTfd954xY4b8/Px07NixW567evWqTp8+rUKFCqVZ/swzz0iSYmJilD9//lteV6xYMeXPn199+vTR3r17VaVKFZUqVUo+Pj4qWbKkSpYsKen6sNCpU6e0ePFiTZ8+Xc8++6wOHjyY4c/j2LFjatq0qUqVKqUxY8boyJEj+vTTT+/4mh49emjFihVq3769/P39tXTpUnXt2lXx8fGqX7++jh8/rnbt2um9995Tjx49dPLkSQ0ZMkQJCQkaOXJkuu/7xx9/aM6cOerdu7fi4+M1bNgwtW/fXjNnzlSlSpWUJ08eLVmyRC+99JL9NYsWLVJQUJA8Pe/+o+/UqVOqX7++/edrjNG4ceMUGhqqyMhIFS9eXL1791b//v01ePBglSlTRpLUpUsXHTx4UF26dJGvr6927typ0aNHK3fu3PbQk5GVK1eqWLFiKly48G2fz5UrlyZMmJBm2eXLlzVv3jwNHz5cV65cUfbs2fXJJ5/8o31xr/sKyAoEGiAd58+fV0REhD766CN7eHnjjTdkjNGUKVPUpEkT5cmTR5JUpEgRjRgxQpJUqVIlnTx5UhMmTLhjoPHz80v3ubi4OElSzpw50yxPfZz6/M28vb01adIkde3aVVOnTtXUqVPl7e2tMmXKqH79+vZhqNRhIXd397saYvvvf/8rb29vjR8/XtmzZ1flypVljNGQIUNuu/7vv/+uJUuWqF+/fvb5Sm+88Ybi4uI0cuRI1a1bV7t27VJiYqJatmypfPny2dt5/PjxDOuZOHGi/SCfO3dutWzZUtHR0SpTpoyCgoIUFRWl7t27y93dXb/99psOHTqkL7/8MtPtvdG0adMUHx+vqVOn2vd72bJlVa1aNUVERCgsLExFixaVJD3//PN69tlnlZCQoKSkJPXt21eVKlWSJJUrV06//vqrtmzZkultHz9+XBUrVrxl+c09Te7u7nJ3v97xnpKSog4dOuj//u//JN2fffFP9hXgaAw5AenYuXOnkpKSbpmvUqtWLSUlJWnnzp32ZTfOV5GkqlWr6vjx4zp16tQ9bTv1st8bh5tuXJ560LqdYsWKadGiRZo1a5ZatWqlF198UZs3b1bnzp3VpUuXe6on1fbt2/Xaa68pe/bs9mWBgYHprh8dHS1Jt/wMa9asqXPnzunw4cMqUaKEvL29Vb9+fQ0dOlSbN29WQEBAhhNcn3/++TQ9FpUqVZKXl5d27dolSQoODlZsbKy2bt0qSVq4cKGKFi2q4sWL31WbU23dulXlypWzhxlJypMnj8qXL59uOPHx8dHUqVNVqVIlHTt2TOvWrVNERIQOHz6spKSkTG/bZrPd8ruwY8cOFS9ePM1/AwcOTLNOasCS7s++uNd9BWQFlw40cXFxCgoKum2X/O10795d8+bNsz8+ceKEPvjgA9WoUUOtW7fWlStXHFUqHkAXL16UpFsmWebNm1dS2l6S1LPVVKkHvXudW/DII49I0i2/s1evXpUkPfroo3d8vZubm1555RV17txZs2fP1tq1a/XWW29p8eLF2rRp0z3VJF2/LDl37txplt3pKqCLFy/K09NTjz/+eJrlqT/TuLg4PfPMM5o2bZqKFSumb7/9Vo0bN1blypW1bNmyO9Zy835xc3PT448/rtOnT0uSihcvLj8/Py1ZskQ2m01LlizR22+/ndmm3uLSpUu3nXCbN2/eO362LF++XNWqVVPVqlXVtWtXrV+/XtmyZbure9U89dRTt1wJ5+fnp7lz59r/u91+uDF83Y99ca/7CsgKLhtoUicepk64u5PY2Fi1atXqlvts9OvXT6Ghofrpp59UokQJff311w6qFg+i1A/+1CteUqU+vvHAkDoZM1Xq5NQbDyh3I2fOnPL19dXRo0fTLE99/K9//eu2rxsyZIjq1q17y/K8efNqwIABkq5fDn47qT0ANx5ojTG6du2a/fHjjz9+y1VZN7f9Rrly5VJycvItwe7mn+Grr76qiRMnasuWLRo/fryeffZZdezYMd3Jz9L/Amcqm82m8+fPp9kvb7/9tpYtW6bt27fr9OnTql27drrvl5FcuXLd8ruQ2pabQ0KqmJgYdezYUeXLl9fq1au1adMmTZ48Od25MOn597//rT179qT5eeTIkUMvvfSS/b/bTRa+uf77sS/uZV8BWcFlA82cOXPUp0+fNGe+8+fP1zvvvKO3335bPXv2VEJCgqTrE/2qVq2qt956y75uUlKStm7dqurVq0uS6tate9sblwHpeemll+Tl5XXL701UVJQ8PT3tE2wladWqVWnWWb58uYoUKXJLz83dKF++vFauXKmUlBT7sl9++UV+fn7pXpr77LPPau/evVq3bt0tz6WeHKTO3bl52Cq1Vyi1h0O6Pqxx4zyNcuXKafPmzWmu0FmzZk26bXj11Vcl6bY/w7x58+pf//qXvv/+e1WtWlVJSUnKnj27AgIC1KlTJ6WkpNzxILl///40AWP58uVKTk5W2bJl7cvq1KmjixcvatSoUSpbtqyefPLJdN8vI6+++qo2b95sv5JMun5V2caNG/XKK69Ikjw8PNK8Zt++fUpKSlLLli3tl7JfvXpV27Ztu6semkaNGumRRx5Rz549FR8ff8vzsbGx6c6rurF+6Z/ti3vdV0BWcNlJwYMGDUrz+ODBg5ozZ46+++47+fj4aMSIEZoyZYratGmj5s2bS5K2bdtmX//8+fN65JFH7Fcz+Pr68geHu5InTx41atRIU6ZMkYeHh1577TVt3bpVU6ZM0YcffqhcuXLZ1127dq369++vgIAArVq1SsuWLdNXX331j7b/0UcfKSQkRB07dlT9+vW1ceNGLVy48I7vW69ePc2fP19t27ZVaGioypcvr2zZsmnv3r2aPHmyqlatqtdee02S9Nhjj+natWv65ZdfVLJkSfn7+yt//vwaPXq0PD09FRcXpzFjxqQZ3mrSpIlmz56tFi1aqFWrVjp16pTGjh2bbj3FihVT9erVNWTIEF25ckX+/v5avny5lixZot69e8vd3V1lypTRmTNn1LFjR4WGhiopKUnjx49XwYIF9cILL6T73u7u7mrVqpXat2+vM2fOaNiwYapUqZI9XEjXhwLLly+vdevW6YsvvriLn/6tmjZtqsjISDVr1kxt2rSRMUbjx4+Xt7e3/Y7LqT+r1atXK0eOHHrhhRfk4eGhYcOGqUGDBjp//rymTp2qv//+O8MelRsVKFBAo0aNUufOnRUcHKwGDRrIz89P8fHx2rBhg+bOnStvb2/7BODbuR/74tFHH72nfQVkBZcNNDfbvHmz/vzzT/tVI0lJSXrxxRfTXd8Yc8skupsfAxnp1q2bcufOrdmzZ2vy5Ml6+umn1b1791u+MqB58+b67bff1KZNGz377LMaNWrUHe/mmxnFihXT+PHjNXz4cLVr105PPfWUBg8enKYn8mY+Pj6aPn26pkyZomXLlum7775TSkqKChUqpKZNm6aZvFmrVi3Nnz9fnTp1UseOHdWiRQt99dVXGjRokNq1a6eCBQuqW7duGj9+vP01efPm1bfffqtBgwapU6dOKlCggPr166e2bdumW9Pw4cM1evRoTZs2TRcuXFCRIkU0bNgw1alTR5JUuHBhTZgwQWPGjFGHDh0kXe8JGj58uLy8vNJ939dee02lS5dW9+7dlZKSopo1a972MuhKlSopOjra3lt7r5588knNmDFDw4YNU48ePeTh4aGyZctq1KhR9t6X559/Xm+//bYmTpyoPXv2aMKECRo6dKjGjh2rli1bytfXV5UqVVK9evXUv39/xcbG3vby+9t54403tHDhQv33v//Vd999p5MnT8rd3V1FixZV69at9d5776UJ2bfzT/fFve4rICu4GRf/FrWAgAD95z//0fLly3X06FH16tVL0vXJkikpKXrsscfs64aFhals2bKqW7eukpKSVK5cOW3dulUeHh46efKkGjZsqOXLlzurKXhA+fv7q3v37vroo4+cXQpuo0WLFsqVK5eGDx/u7FIAOJDLzqG5Wbly5bRs2TKdPXtWxhj17dtX06dPT3d9Ly8vlSlTRlFRUZKuz79JvQ8EgAfftGnTFBYWprVr19rv4AvgwWWZIadixYqpXbt2atKkiWw2m1544QW1bNnyjq/p06ePwsLCNH78eD355JPcyRJ4iGzcuFHR0dHq2rVrmgncAB5MLj/kBAAAkBHLDDkBAACkx+WGnGw2m65cuSIvLy+uSgIAAJKuX72clJSknDlz3vbrX1wu0Fy5ckUHDhxwdhkAAMAF+fn53fbrX1wu0KTey8DPz++ubjwFAAAeXImJiTpw4EC69zxyuUCTOszk7e0tHx8fJ1cDAABcSXrTUZgUDAAALI9AAwAALI9AAwAALM+hc2gaNWqkc+fO2b/xun///ipVqpQjNwkAAB5CDgs0xhjFxMRo5cqV9kADAADgCA4bcvrjjz8kSc2aNVOdOnX07bffOmpTAADgIeewrpNLly6pfPny+vzzz5WUlKTGjRurcOHCqlixYqZev2fPHkeVBgAAHjAOCzSlS5dW6dKl7Y9DQkK0evXqTAeaEiVKcB8aAAAgSUpISLhjZ4fDhpyio6O1ceNG+2NjDHNpAACAQzgs0Fy+fFlffvmlEhISFBcXp8jISL355puO2hwAAHiIOazLpEqVKtq5c6eCg4Nls9kUGhqaZggKAADgfnEzxhhnF3Gj1DEy5tAAAIBUGeUDy9wpODkl2dklZIpV6gQA4EFimVm6nh6eCl823tllZKj9m62dXQIAAA8dy/TQAAAApIdAAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALM/hgWbo0KEKCwtz9GYAAMBDzKGBZuPGjYqMjHTkJgAAABwXaC5cuKBRo0apVatWjtoEAACAJMnTUW/cu3dvde7cWSdPnryn1+/ZsyfN41dfffV+lJUltm3b5uwSAAB4qDgk0Hz//fd68sknVb58ec2bN++e3qNEiRLy8fG5z5VlDSuFLwAArCAhIeGWzo4bOSTQREVF6cyZM3r77bd18eJFXb16VV988YV69uzpiM0BAICHnEMCTUREhP3f8+bN05YtWwgzAADAYbgPDQAAsDyHTQpOVbduXdWtW9fRmwEAAA8xemgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWgAAIDlEWicJCkl2dklZIpV6gQAPNw8nV3Aw8rLw1Of/TDG2WVkaFC9Ds4uAQCADNFDAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALI9AAwAALM+hgWb06NGqWbOmatWqpYiICEduCgAAPMTu+k7BSUlJ8vLyynC9LVu2aNOmTVq4cKGSk5NVs2ZNVa5cWUWKFLmnQuHakpKT5eXp+jeetkqdAIC7k+Ene3R0tLZs2aLmzZvrgw8+0IEDBzR48GDVrFnzjq8rW7as/vOf/8jT01OxsbFKSUlRjhw57lvhcC1enp76OGKks8vI0MQPP3F2CQAAB8hwyGnYsGF6+eWX9csvv+jxxx/XkiVLNHXq1Ey9uZeXl8aMGaNatWqpfPnyyp8//z8uGAAA4GYZ9tCkpKSoQoUK6tWrl6pVq6aCBQvKZrNlegMdOnRQixYt1KpVK82ZM0fvvfdepl63Z8+eNI9fffXVTG/T2bZt25bhOrTHeTLTHgCAtWQYaGw2m3bt2qVVq1bp448/1oEDB5SUlJThGx8+fFiJiYl64YUXlD17dgUGBur333/PdGElSpSQj49Pptd3JVY6uGcG7QEAOFtCQsItnR03ynDIqVWrVurSpYtCQkL0zDPPqFWrVurUqVOGGz527Jh69eqlxMREJSYmavny5RxIAACAQ2TYQxMYGKjAwED7459//jlTVzlVrlxZu3btUnBwsDw8PBQYGKhatWr9s2oBAABuI8MemujoaH399ddKTExU/fr1VaZMGUVFRWXqzdu3b6+oqCgtWrRI7du3/8fFAgAA3I5Dr3ICAADIChkGmtSrnDZs2HBPVzkBAAA4WoaB5sarnCpUqJDpq5wAAACySoaTgm++yikgIECfffZZVtQGAACQKZm+yik5OVlJSUlatmyZPDw8sqI2AACATMlwyOns2bNq0aKFXn75ZZUsWVIffvihYmNjs6I2AACATMkw0PTv31+lSpXShg0btGHDBpUpU0Z9+/bNgtIAAAAyJ8NAExMTo3bt2umxxx5T7ty51aFDB/31119ZURsAAECmZBhokpOTlZCQYH987do1ubm5ObQoAACAu5HhpOCaNWuqadOmqlu3rtzc3PTDDz+oevXqWVEbAABApmQYaNq2basCBQpo7dq1stlsqlu3rkJCQrKiNgAAgEzJMNA0adJE06dPV7169bKiHgAAgLuW4Ryay5cv6+rVq1lRCwAAwD3JsIcme/bsqlKlivz9/ZUjRw778gkTJji0MAAAgMzKMNAwXwYAALi6DAPNO++8I0m6dOmSbDab3N3d9dhjjzm8MAAAgMxKdw5NcnKyBg0apBkzZki6fvn266+/rnLlymn37t1ZViAAAEBG0g00Y8eOVWxsrP2eM0888YT279+vESNGaNq0aVlVHwAAQIbSDTQ//fSThg4dqieeeCLN8urVq2vHjh2OrgtwqsTkZGeXkClWqRMAHC3dOTReXl7Knj27/XHt2rUlSR4eHmmudgIeRN6enqo/eqizy8jQ9x17OLsEAHAJ6fbQJCYmpnn80UcfSZJsNhvf5QQAAFxKuoHmlVde0dy5c29ZvmjRIr388suOrAkAAOCupDvk1L59e7377rvav3+/3njjDbm5uWnTpk36+eefNXv27KysEQAA4I7S7aF56qmn9MMPP0iSvvrqK40cOVLx8fGaNWuWfH19s6xAAACAjNzxxnr58+dXr169sqoWAACAe5Lhl1MCAAC4OgINAACwPAINAACwvHTn0CxduvSOLwwMDLzvxQAAANyLdAPNf//733Rf5ObmRqABAAAu454CDQAAgCu542XbkhQTE6Nvv/1WV69elTFGNptNf/75p7777rusqA8AACBDGU4K7tKli5KSkvTrr7/q6aef1qFDh+Tn55cVtQEAAGRKhoHmypUr6tevn9544w1VqlRJERER2rFjRxaUBgAAkDkZBprHH39cklSoUCEdPHhQjz32GN+2DQAAXEqGc2gKFSqkQYMG6Z133tFnn32mq1evKjk5OStqAwAAyJQMe2j69u2rMmXK6MUXX1T9+vW1adMmDRgwICtqAwAAyJQMA83EiRNVvXp1SVJoaKjGjRunqKgohxcGAACQWekOOY0ZM0aXLl1SVFSU4uLi7MuTkpK0bt06voUbAAC4jHQDTalSpbR79265u7vbJwZLkoeHh4YPH54VtQEAAGRKuoGmcuXKqly5sipVqqSSJUsqOTlZxhh5eXllZX0AAAAZynAOzVNPPaXmzZvr5ZdfVsmSJdW4cWPFxsZmRW0AAACZkmGgGTBggF5++WVt2LBBGzZsUJkyZdS3b98sKA0AACBzMgw0MTExateunR577DHlzp1bHTp00F9//ZUVtQEAAGRKhoEmOTlZCQkJ9sfXrl3jTsEAAMClpDspODExUd7e3qpZs6aaNm2qunXrys3NTT/88IP9vjQAAACuIN1A89577ykyMlJt27ZVgQIFtHbtWtlsNtWtW1chISFZWSMAAMAdpRtojDH2f9erV0/16tXLkoIAAADuVrqBJiEhQfv27UsTbG5UvHhxhxUFAABwN9INNEePHlX79u1vG2jc3Ny0fPlyhxYGAACQWekGmqJFi2r+/PlZWAoAAMC9yfCybQAAAFeXbqApU6ZMVtYBAABwz9INNL169crKOgAAAO4ZQ04AAMDy0p0UfD+MHTtWP/74oySpcuXK6t69uyM3BwAAHlIO66HZsGGD1q1bp8jISM2fP1979+7VsmXLHLU5AHeQmJzs7BIyxSp1AnA9Duuh8fX1VVhYmLy9vSVJzz33nE6cOOGozQG4A29PTwUOGOTsMjK09PPPnF0CAItyWKB5/vnn7f+OiYnRjz/+qFmzZmX69Xv27Enz+NVXX71vtTnatm3bMlyH9jgP7XFtmWkPANzMoXNoJOngwYP6+OOP1b17d/3rX//K9OtKlCghHx8fxxXmQFY6eGQG7XFttAfAwyAhIeGWzo4bOfQqp23btqlp06bq0qWL3nnnHUduCgAAPMQc1kNz8uRJtW3bVqNGjVL58uUdtRkAAADHBZopU6YoISFBQ4YMsS97//331aBBA0dtEgAAPKQcFmh69erF3YYBAECW4E7BAADA8gg0AADA8gg0ACwnIckadxS2Sp3Ag8Dh96EBgPvNx8tT5Xv0c3YZGdo4tI+zSwAeGvTQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAAAAyyPQAICTJSQlObuETLFKnXg4eTq7AAB42Pl4ealk297OLiNDu8b1d3YJQLrooQEAAJbn0EATFxenoKAgHTt2zJGbAQAADzmHBZqdO3eqQYMGiomJcdQmAAAAJDkw0MyZM0d9+vRRvnz5HLUJAAAASQ6cFDxo0CBHvTUAAEAaLnuV0549e9I8fvXVV51Uyd3btm1bhuvQHuehPa6N9ri2zLQHcAaXDTQlSpSQj4+Ps8u4J1b6cMoM2uPaaI9roz3A/ZGQkHBLZ8eNuGwbAABYHoEGAHBfJSRa447CVqkTmePwIacVK1Y4ehMAABfi4+2l4o0/c3YZGdr7Hy5eeZDQQwMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAACyPQAMAwB0kJCY5u4RMsUqdjuLp7AIAAHBlPt5eKlWvh7PLyNDOH4Y6uwSnoocGAABYHoEGAICHiFWGpu62ToacAAB4iPh4e6lM9c7OLiND0T+Puqv16aEBAACWR6ABAACWR6ABAACWR6ABAACWR6ABAACWR6ABAACWR6ABAACWR6ABAACWR6ABAACWR6ABAACWR6ABAACWR6ABAACWR6ABAACWR6ABAACWR6ABAACWR6ABAACWR6ABAACWR6ABAACWR6ABAACWR6ABAACWR6ABAACWR6ABAACWR6ABAACWR6ABAACW59BAs2jRItWsWVOBgYGaMWOGIzcFAAAeYp6OeuPY2FiNGjVK8+bNk7e3t95//32VK1dORYsWddQmAQDAQ8phPTQbNmzQ66+/rscff1w5cuRQ9erV9dNPPzlqcwAA4CHmsB6a06dPy9fX1/44X7582rVrV4avM8ZIkhITE295zsfd+/4V6CAJCQmZXjeHp48DK7k/7qY9j3g9WO3J5ZPNgZXcH3fTnsezZ3dgJffH3bQnT44Hqz15H3mw2vPEozkcWMn9cVf7J9cD1p7Hczqwkvvj5vak5oLUnHAzN5PeM//Q+PHjlZCQoE6dOkmS5syZoz179qh///53fN3ly5d14MABR5QEAAAszs/PT48++ugtyx3WQ1OgQAFFR0fbH585c0b58uXL8HU5c+aUn5+fvLy85Obm5qjyAACAhRhjlJSUpJw5b9+75LBAU6FCBYWHh+vcuXPKnj27li5dqgEDBmT4Ond399smLwAA8HDLli39qQAOCzT58+dX586d1bhxYyUlJSkkJEQlS5Z01OYAAMBDzGFzaAAAALIKdwoGAACWR6ABAACWR6ABAACWR6ABAACWR6ABAFjSg3hNy+3uko/MeegDzbVr15xdAvDASD3APIgHmgdRSkqKs0u4JzExMZL0wN189dChQ5o+ffpdfYUB/uehDjQHDx7UjBkzJEk2m83J1eBh8qAe8I8dOybpwTvQPIiuXLmifv36ady4cYqIiFB8fLwlPgfXrFmjXr162X/XHiR79uzRjh07lJSUJMnanxPOOLl56APN999/r/j4eLm7Pzg/ih9//FFRUVHOLgM32Lx5syZNmqTZs2fr1KlTD+QB/+rVq2rXrp1WrVrl7FLuiZUPHvciZ86cat68uYKDg7Vx40YNGzZMs2bNcukhj3Xr1mnkyJFq27atChYsaIkAlhmpPWXBwcFyc3NTz549JVnzxGDdunUaOnSomjZtqj///DNL2/DgHMXvQc2aNfXKK69o8uTJlv4wu7n2jRs32hO+Ve3du1fTpk2zP7Zq17h0/Yxy4MCBunLlijZu3JjmO86s/oF84+9ejhw59M477+jSpUuSrNU2Y4z9g/fAgQMufVC/H1L32zPPPKOnn35ao0ePVrFixbR//35FRES45OfHmjVrNGjQIPXv31/ly5fXsWPHNGfOHCUnJzu7tH9k9erVGj9+vHbs2CFJ+uqrr+Th4aGFCxc6t7B7sGrVKg0bNkwvvfSS3nrrrSwfOntoA03qB1ZAQIDOnj1r/zCzYrBJrX3//v06evSoXnjhBR0+fNjJVf0z3t7eCgoKsn/zuoeHh6UOkKnWr1+vkSNHqk+fPurcubOKFCmitWvXatq0aYqOjpa7u7sl25XKzc1NO3bs0NWrVyVJJUqU0IQJE3Ty5ElL9Xqm/g0tWrRIn332mZOrcbzU9rq5uclmsyl79uwKDg7W//3f/yk2Nla//vqrkytM69y5c5o5c6ZKlCihkiVL6sKFC+rQoYPi4+Pl6emwb/DJEqtWrdJ3332nIUOGaOzYsUpISNC///1vnT9/3lJzaY4ePapx48ZpwIABqlmzpkJCQuTm5qaIiAht3rxZZ8+edXgN1vnEuQ/279+v/v376+rVq/Ly8pIklStXTjt37tT06dMlWauL78Yxyv379+uLL75QaGioli5dqnnz5mn69OmKjo52uQ+nO0ltU9GiReXj46NBgwZp4MCBkq5/cWlqT40VemzWr1+vPn36KDg4WGXKlNGZM2cUFRWl5ORk/f7772rcuLE2bdpkqQP/7URERKhly5YaOnSofH199f777+vHH3+UZK1empUrV+rbb7/V+++/L29v7zTPuWKPxd2KjY1Vr1697OEzlbu7u4wx8vLy0r///W/lzJlTa9ascVKVt5cnTx6FhIQod+7cGjZsmJo2barQ0FA1bdrU2aX9Y3Xq1FFQUJB69eqlPXv2aNKkSTpy5IjWrFmj7du3O7u8TLlw4YJy586t559/Xk899ZTOnTun3r17q1+/fpo9e7ZGjhyptWvXOrwOa3+S3oXz58/r4MGDOnHihJo2baoJEyZo27Zteuyxx9SzZ0/Fxsbq8uXLlumhubGLPCkpScWKFdN//vMfLVy4UG3btlWOHDkUFxenUaNG6csvv9SZM2ecXHHGbmzT5cuX9eijj+qTTz7R2bNnNWTIEEnXe2o2b96sWbNmufy+mjt3ro4dO6aoqCgtWbJEHTt2VKNGjTRixAgNHjxYLVq00IIFC1y+HTdLrffAgQM6ePCghg8frgEDBsjX11cfffSR1q1bp9WrV0uSS4e1m3/uRYoUUY4cObRr1y6dOnXKvjw6Olrh4eGW2083io+Pl6+vrw4dOqTevXunubrTGGNvm7e3t5o1a6Z9+/Zp165dzirXLiYmRrt27dL+/ftVrVo1VaxYUTExMSpQoIBCQkIkWePk5mb79++3/42ULl1aZ8+e1bJlyzRhwgS98MILeuSRR3To0CENGTJER44ccXK1dxYXF6eJEydq8+bNSkhIUO/evVW1alXFx8crNDRUP/30kxo2bKi1a9c6/ATH2n11mbR8+XItWLBAly5dUo8ePXT69Gnt2bNH3bp1U+PGjeXl5aXY2FidPn1ajz76qLPLzZTUA//06dO1fft2xcTEqFmzZnr99ddVvHhx5ciRQ2+99ZZatmwpm80mHx8fJ1ecvpsPFDNmzNDPP/+sF154QY0aNVLTpk01depUDR06VD169JDNZlO1atVcvjetd+/eevzxx/XXX39pyJAhCggI0AcffGB/3tvbWzly5HD5dtzMzc1N69atU1hYmEqUKKFz585pwoQJatasmcqXL69Dhw5p4sSJ+uabb9SiRQtnl3tbN4bnyMhIxcfHy8/PTyNGjFC3bt00Z84cNWjQQL6+vsqZM6dCQ0Mtt59SXbx4UePGjVPFihU1c+ZMffzxx+rZs6e++OILZc+eXcYYubu7a/369UpJSVGlSpX0xhtvyMPDw6l1r1y5UiNHjlT+/PlVoEABhYaGqnLlyvL09NTSpUs1adIkBQcHK1++fE6t825du3ZN69at0/Tp09WwYUN9/PHHGjx4sLp27apffvlFNWrUkHT982Hz5s0uf0xyd3eXr6+vfH191blzZ+3fv1916tRRjRo17AEmPj5eOXPmdPxJgXnArVu3ztSpU8ds3brVREREmAYNGpiEhARjjDGHDh0yY8eONb179zb+/v6mZ8+eJiUlxdhsNidXnb5NmzaZffv2GWOMiYyMNPXr1zenTp0ykZGR5pNPPjHTp083xhjTtWtXs3z5cmeWmml//vmn/d9LliwxjRs3Nlu2bDGNGjUygwcPNocPHzY7d+40zZo1M2PHjnVipRnbvHmzOXr0qElKSjLGGDNr1iwza9Ys88MPP5iqVauaNWvWGGOMWbx4salfv745ePCgM8u9JwcPHjQDBw4027dvN8YYM2DAABMcHGzOnDljX2fjxo1m3Lhxziox0yIiIkxQUJD5+uuvTVBQkNmwYYP5+++/TcuWLc3gwYPN+fPnnV3iP3bhwgUTHh5uPv/8c7N+/XqTkpJimjdvbjp16mQuX75sjDFmw4YNxt/f3yxatMgYc/1z8/jx406refXq1aZGjRrm119/NcYYEx8fb4wxZtWqVSYpKcls2bLFfP755+arr74yZ8+edVqddys5Odn+70OHDpmGDRuagQMHmgULFpjFixebmTNn2o9Pxhj7/nF1GzZsMA0bNjSHDh0yxhhz9uxZ8+eff5q///7bzJ8/39SpU8f8/vvvDq/jgQ4069evN+XLlze//fabMcaYo0ePmipVqpi2bduazp07m82bNxtjjElISDCTJk0yf/31lzPLzdDatWtNQECA/UASHh5uZsyYYX9+9erVpmLFiubYsWNm8uTJ5siRI06qNHNsNpu5evWqeemll8zo0aPN+fPnTbNmzczMmTONMdf/KNq1a2cGDx5sDh48aHbv3m1Onjzp5KrTd/bsWVOlShXz3nvvmZkzZ5pff/3VXLhwwYSGhprdu3eb5cuXmxo1apiBAweakJAQy4WZ5ORkExcXZz788EMTEhJidu3aZX9u0KBBJjAw0Pz999/GmOtBITQ01CQkJLjUCcL+/fvNb7/9Zn7//Xdz9uxZ06hRIxMfH2+WLFlimjdvbkJDQ82GDRvM6dOnTfv27S11sLyTv//+23zzzTcmLCwsTaj5/PPPzYoVK8wrr7xilixZYowxTt1fNpvNJCQkmLCwMPPLL7+keW7w4MGmYsWKpnHjxiYhIcGsWLHCDBkyxJw7d85J1d6dVatWme7du5t69eqZkSNHmh07dpj4+HgTGRlpBgwYYIKCgkzDhg3txyVXduTIEbNnzx6zc+dO+8nbkiVLzMiRI018fLxZt26dadq0qWnVqpUJCQmxH4Md7YENNDabzcyaNcsEBgaaP/74w1y9etWEhISYcePGmTVr1pgRI0aY9u3bm9OnTzu71ExZu3atCQ4ONhs2bDDGXE/ugwcPNoMHD06z3ieffJJlvzz/VOoH58GDB03ZsmVNq1atzMSJE02DBg3Mzp07jTHGnD9/3jRp0sSMGDHCJCYmOrPcDKWkpJi+ffuat99+20RGRprQ0FCzcOFCs3btWvPee++ZK1eumHnz5plq1aqZAwcOOLvcTEvdT6lnjmfOnDGtWrUyX331VZq/n759+5qtW7caY4yZO3euywW2VatWmRo1apjWrVub4OBg06dPH9OjRw/z119/mZEjR5qtW7eafv36mdKlS5slS5aYlJQUZ5d8z06ePGmioqLMuXPnzMWLF40xxiQmJpopU6aYfv36mTVr1piUlBTTpEkT4+/vnybMuEIAbdu2rf2zzhhj5s+fb5o1a2auXLliGjVqZCZNmmSMsU4Pxpo1a0zt2rXNypUrzYIFC8ygQYNM48aNzYIFC4wx13/u4eHhpmLFiubDDz90uROBG61YscIEBQWZjz76yHz++ef2E+yzZ8+aMWPG2E9q9u/fb86ePZulJwUPbKAx5no35Q8//GDeffddU7lyZRMZGWl/bt++faZp06aW6FLesGGDKVOmjP0A8ddff5mePXuapUuXmooVK5rw8HDz119/mcjISBMYGOjSvRg3Sz1IxsTEmDJlyphPPvnEzJkzx4SFhZndu3cbY653mbtym/7++2/7WeKVK1dM+/btzc8//2z++OMP8/7775upU6ea5s2bm9mzZxtjrPMhbMz/wsyaNWtMq1atTNu2bc306dPN8ePHTbNmzcyYMWPMqVOnnFxlxtatW2eCg4PNzp07zcWLF82MGTNMp06dzPr1682mTZtMeHi4McaYCRMmmCFDhpg//vjDyRXfu5SUFNOhQwfj7+9vQkJCTEBAgOndu7eZOHGiWbBggRk8eLDp3LmziY6ONjabzX4C5CphJiEhwTRo0MBMnDjRvuy3336z9wQMGTLE/Pzzz84q766tXbvW1KpVy37gN8aY2NhY8+2335rWrVunCW6bNm1y6b+n9IYCf/nlF5OYmGhmzJhhevTo4bT6HuhJwT4+PgoKClJycrIiIiL0zDPP2J/7888/LXOr78TERBljdPnyZSUlJalr165688039eabb8rf31+9evXS8ePHdezYMY0dO1YFChRwdsl3tHXrVh0/flzBwcHy9vZWYmKiChUqpO+//17vvfeePDw8VLp0aU2aNElt2rRRsWLFlCtXLmeXfVuXL19Wly5dVKpUKZUvX16vv/66AgMDFRMTo8DAQIWHh2vLli1KSEjQ1KlTFRwcrJw5czq77Exzc3PT5s2bNWTIEH3yySfKlSuXwsLCdOnSJX355Zfq0KGDbDabWrdufculzq5i48aN6tSpk+bMmaPChQtLkooXL66NGzeqdOnS+vrrr7V161YVLVpUs2fP1vTp09N8VlhJbGysjh49qu7du+vatWt67rnn9Pzzz8vHx0dLlixRtmzZtGPHDp04cUInTpzQxIkTVaxYMfvrnT3xOSUlRd7e3mrdurWGDh2qp59+WrVq1bLXGBkZqVWrVqWZXO/Kjh07pq+++kqVKlVS6dKl7cvz5cunatWq6ffff9fBgwdVvnx5SddvI+KKjDFKSkrSjz/+qK5du+rll1+WdP0YO2TIEC1evFh+fn6aOnWqjhw5ooULF6pOnTpOKfSBl5CQYObMmWMaNmxotm/fblatWmXq1auXJZOU7pcVK1aYKlWqmAoVKpiFCxcaY4z9jOXKlSsmMTHR3rXs6n755Rfz+uuv29thzP96anbu3GlCQkLM4sWLzddff+3SZyup/vjjDxMREWHeeecdExkZaQ4cOGA+/PBD+/BLKiu0xRhjTpw4YZYtW2bWrFljLl26ZObNm5dmrtaFCxdMxYoVzfbt282hQ4fsw4OuatWqVaZMmTJm5cqV9mVDhw41HTt2NMZcH0Lr3bu3ad68udm/f79zirxPjhw5Yr755htjjDF79+41jRs3NlOnTk0zXHvs2DGzZ88e+1m2s+3cudOsWLHC/thms5mLFy+aKVOmmMDAQDN27FgTFRVlZs2aZYKDgy3zuX3ixAnz448/mp9//tk0btzYzJ071947m9oTNmvWLNOyZUvLDG/eaSiwYcOGZsKECWb37t1Om3v2QPfQpPL29tbbb78td3d3derUSe7u7po8ebKee+45Z5eWaVWqVJG7u7s+++wz+2V8bm5uSklJUY4cOSTJfrNAV1e1alV5eHhowIABSklJUXBwsDw9PZWcnKznnntOhQsXVvny5VWjRg2nXzqaGYULF9a//vUvlSpVSgMGDFCDBg2UL18+jR49WsOHD1f+/Pklyf5/V3b48GF16tRJL774oq5du6ZChQrp7NmzWrp0qUJDQyVJuXLlUu3atRUXF5fmrNNVVa5cWV9++aUGDhyopKQkHT58WIcPH1Z4eLgk6YknnlC/fv109epV+9+SVSUmJmr16tV666239OKLL6p79+4aNmyYrl27ppCQEOXLl09PP/20nn76aWeXKun6jRd///13zZo1S+7u7qpcubLc3Nz02GOPqX79+vb7a505c0bZsmXT8OHDLfO5nZSUpPnz56tLly5q3769Ro0aJQ8PD1WtWtX+GW6z2VSwYEGXvl9TqsTERJ07d067d++29yj5+/tr4sSJ8vT0VPHixeXv768SJUo4r0inxCgniY+PN/PmzbNfWmZFy5cvN1WrVjXz5893din/2PLly82bb76Zpi0//fSTqVevnn1imdUcPXrUfPvtt2bo0KHmxRdftF8GawWnTp0yQUFB5vvvvzfGGPu8oEOHDpmmTZuavn37mri4OLN9+3bz1ltvucwZfmYtX77cVKhQwbz55pv2Za48+fJejR8/3gwePNjeY7t3717TrFkzM3r06DSX1ruK+Ph4M3fuXNOwYUN7T01KSor9EuetW7dapgfDmOuTYfft22dOnz5tDh06ZNq3b28uXbpkli9fbj744AP7XM4lS5ZY5mrH1H2xZs0aU6tWLbN48eI0z8+bN8/UqFHDHD161Bnl2T0UPTSpfHx87N9malUBAQFyd3dXt27d5OXlpZo1azq7pHsWEBAgDw8P9ejRQ3/88Ye8vLy0YsUKDRkyRHnz5nV2efekYMGCevfdd5WSkqJr167ppZdecnZJmXbs2DGVK1dOISEhstls+uGHH7R9+3bt2rVLxYsX148//qijR4/a5w2ljqNbRervW//+/bV8+XJVrVrVZef93Avz/28WWLZsWc2fP18rV65UtWrV9OKLL6pjx44aNmyYgoODnV3mLXx8fFS7dm3ZbDZNnTpVNptNVatWlSRNmzZNc+bM0fTp0+Xr6+vkSjO2evVqDRkyRIUKFdKJEyfUokUL1ahRQ3v27FFAQIDi4+P1/fffa/Pmzfrtt980fPhwFS1a1Nll39auXbt09uxZValSRR4eHjLGqFSpUqpbt67GjBmjmJgYFSlSRBcvXtTs2bM1evRoFSxY0Kk1uxlj4ft5P8TWrFmjQoUKqVChQs4u5R/bt2+fli5dKi8vL9WoUcMyXcrpMTfchdZKfv/9d4WGhqpVq1aKiopSnjx5VLp0ab3++uvaunWrnnjiCb311ltKTExUnjx5LNvOlStXqlu3burfv7+lTwhu/vnf+HjatGk6dOiQSpYsqapVqypv3rz2rxOx2WwuOcSRmJioBQsWaMGCBQoLC1NMTIz69euniIgI5w5jZNL69es1fPhw9evXT4ULF9aCBQu0bt06Va1aVdHR0RoyZIjc3NwUFRWlWbNmqU+fPi4bZlJPaGbNmqWOHTuqcuXK9ucuX76s3bt36z//+Y8KFCigbNmyqX79+i7xuU2gAWC3aNEiLVu2THnz5lWbNm306KOPKlu2bJoyZYoSEhLUpk0bywaZG1n9hODIkSOKiIhQwYIFVbRoUQUEBEi6fpVQ6ryzuXPn6vDhw9q3b58+/fRTubu7y8/Pz5llZygxMVGLFi3SqFGjdP78eX3//fd68cUXnV1WhjZu3KgOHTqkuZJu165dmjx5ssaMGaMRI0YoMTFRYWFhcnNz07Vr15Q9e3YnV31nCQkJWrx4sebPn69mzZqpSpUqstlsMsbIw8ND0dHReuWVV1wqHD9UQ04A7qx27dqqXbu2pOtfOpctWzZFR0drzpw56tu3ryTnX9p7P1SqVMnZJdyzP/74Q126dFFAQIDOnj2rCxcu2AONh4eHkpOT5enpqZCQEHuvx7Jly3Tu3Dl17txZjz76qMvuQ29vbwUFBcnd3V0lS5Z0ibP+zEhMTJR0/XYgqYHmp59+sj/fpk0bffPNNzp48KD8/PyULVs2p9R5N6w4FEigAZCGzWbT2rVrNW3aND333HNatWqVPv30U/uVDXCew4cPKywsTB988IFCQkL066+/6vPPP1fOnDl17do1de3a1X7FoKenp7y9vVW/fn1JctmhpptZca5jRlfS2Ww25cmTx36lo1XalnqFsCRFREQof/78iomJ0bhx4xQREeFSYUZiyAnAbcTFxWndunVKSUnRM888o5IlSz4QQ01WlpSUpC5duujo0aOKjIyUzWZT8+bNlS1bNr3xxhv6+uuvVaFCBX355ZfOLvWhtWLFCnvAXLp0qaTrvTfe3t6WCZS3Y5WhQAINALi4U6dOaeLEierQoYPatWunokWLKjY2VoULF1aPHj0kXe+9+fzzzzV+/HiXvbP2w2D16tXq37+/evbsaR+ieRAkJCQoKirKpYcCrRkXAeAhUqBAAW3ZskWLFy/WpEmT9Oeff+r48eP2MCNdv+zeCl/l8qCrXLmyevXqpR49eigqKsrZ5dw3qUOBrhpmJAINALisGwPKl19+qb179+rcuXMaPXq0PD09NWjQIEnSr7/+qvDwcLVq1YreGRdQpUoVjRw5UsWLF3d2KfeVqw85M+QEAC7o6NGj6tixoz777DMVLFhQefPm1ciRI/Xkk0+qUaNG+vvvv/Xxxx8rb968OnPmjDp16qTKlSsz1wkPLXpoAMAF7du3TwcOHNDSpUs1bdo0rV27Vo0aNdKMGTO0YcMGPfHEE5o0aZKuXLmiDh062G9+RpjBw4oeGgBwIak9LDabTZ06dZKXl5feffdd9e3bVy1bttTly5e1b98+devWTXnz5rVfok3PDB529NAAgIs4efKkli1bpiNHjsjd3V3du3dXzpw5VbBgQU2ZMkW//vqrjh49qrVr1+rIkSOSJE/P67cTI8zgYceN9QDARVy4cEGRkZHKlSuXqlWrpmrVqilv3rzaunWrgoOD1a1bN50+fVrHjx9XUlKSs8sFXApDTgDgQs6fP6+1a9dq+PDhat++vby8vDRx4kR99dVX8vf3T7Muw0zA/zDkBAAuJHfu3KpTp44mT56s6OhoXbt2TTlz5tSMGTMUFxeXZl3CDPA/BBoAcEF+fn7q3r27nnvuOT399NNauXKlrl275uyyAJfFkBMAWMD+/ftVrFgxZ5cBuCwCDQC4sNQvNWS+DHBnBBoAAGB5zKEBAACWR6ABAACWR6ABAACWR6ABAACWR6AB4HA7duxQo0aNVLt2bQUFBal58+Y6ePCgJKlZs2Y6d+7cXb3f7t27FRAQIEmaNWuWJk2adN9rBmAtfJcTAIdKTEzUxx9/rKlTp6p48eKSpAULFqhFixZavny51q9f/4/ev0GDBvejTAAWRw8NAIe6du2aLl++rKtXr9qX1alTR59//rl69eolSWrSpIlOnjypgIAA7d69277ejY9nzpyp6tWrq169epo5c6Z9nfDwcPXv31+SdPDgQXtPUJ06dTR//vwsaCEAV0APDQCHypUrl7p166bmzZvriSee0CuvvKJy5cqpVq1aqlq1qubNm6fp06crT5486b7Hb7/9prFjx2rBggXy9fVV7969b1knOTlZrVu3Vvfu3RUYGKjY2FjVr19fhQoVUunSpR3ZRAAugB4aAA734Ycfav369erVq5d8fX31zTffKDg4WJcvX87U6zdu3KiKFSvK19dXkvTee+/dsk5MTIwSEhIUGBgoScqfP78CAwO1du3a+9cQAC6LQAPAobZt26bJkyfrkUceUZUqVdS9e3ctWbJEbm5ut50/c+PNyxMTE2+73MPD45bXpaSk3PLVAMYYJScn349mAHBxBBoADpUnTx6NHz9e0dHR9mVnzpxRXFyc/Pz85OHhYQ8defLk0Z49eyRJmzdv1pkzZyRJFStW1Pr163Xq1ClJUmRk5C3bKVKkiDw9PbV06VJJUmxsrH7++WdVqFDBoe0D4BqYQwPAoQoXLqxx48Zp1KhROnXqlHx8fPToo4/qiy++UJEiRVSjRg01atRI4eHh6tq1q/r27avZs2erePHi9qui/P391a1bNzVp0kQ5c+ZUyZIlb9mOl5eXvv76aw0cOFDh4eFKSUlR27Zt9frrr2d1kwE4AV9OCQAALI8hJwAAYHkEGgAAYHkEGgAAYHkEGgAAYHkEGgAAYHkEGgAAYHkEGgAAYHkEGgAAYHn/DzdQ7M9u5bSnAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(14, 8))\n",
+ "sns.barplot(\n",
+ " data=merged_df.sort_values(by='total_gross', ascending=False).head(20), # Show top 20 titles by total gross\n",
+ " x='total_gross',\n",
+ " y='title',\n",
+ " palette='magma'\n",
+ ")\n",
+ "\n",
+ "plt.gca().xaxis.set_major_formatter(ticker.StrMethodFormatter('${x:,.0f}'))\n",
+ "plt.gca().xaxis.set_major_locator(ticker.MaxNLocator(integer=True))\n",
+ "plt.title('Top 20 Titles by Total Gross', fontsize=16)\n",
+ "plt.xlabel('Total Gross ($)', fontsize=12)\n",
+ "plt.ylabel('Title ', fontsize=12)\n",
+ "plt.xticks(rotation=45)\n",
+ "plt.tight_layout()\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Corelation Heatmap\n",
+ "\n",
+ "Multiple DataFrames are integrated to create a comprehensive dataset for analysis. The merging process combines relevant information from different sources, allowing for a unified view of movie data.\n",
+ "\n",
+ "Following the data integration, a correlation matrix is calculated to evaluate the relationships among various numerical attributes within the dataset. This matrix serves as a foundation for understanding how different features interact with one another.\n",
+ "\n",
+ "A heatmap visualization of the correlation matrix is then generated, providing a clear graphical representation of the correlations. The heatmap includes annotations for precise values and uses a color gradient to indicate the strength and direction of the relationships among variables.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAAGFCAYAAABANq/yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAA+7ElEQVR4nO3deXxU9b3/8ffJzGSyQghmEgiIiECEKFFwwxrUFoKFiOLGUtCqhepVxLYisoi4gKVcrQvwu97aakErKUUiCEHFiuVKXeICsWyKoCQQAoSQhGQymTm/P0ImhCUZkMmcJK/n48Ejc75nmc98jMObsxqmaZoCAACAZYWFugAAAAA0jMAGAABgcQQ2AAAAiyOwAQAAWByBDQAAwOIIbAAAABZHYAPQqF27dun888/XsGHDNGzYMGVmZmrEiBFauXKlf5nnnntOy5Yta3A7L774ot57770Tzjt6/Z49e+rAgQOnVOOGDRv06KOPSpI2btyoCRMmnNL6p8Pr9eqee+5RRkaGFi1a5B//6KOP/L268sordfnll/unj+7Z0UpLSzV27NhG33Pp0qUaP378CedVV1fr5Zdf1rBhwzRkyBBde+21uvfee7V9+/bT+4AALMMe6gIANA8RERHKzs72T+fn5+uOO+6QzWZTRkaGHnjggUa38fHHH+u888474bxA1m/IN998o8LCQknSBRdcoOeff/5HbS8QhYWFWrdunb788kvZbDb/eP/+/f29euGFF1RcXOwPkydTUlKijRs3/qh6Hn74YVVWVuqVV15Ru3btJEnLly/XHXfcoVWrVik6OvpHbR9A6BDYAJyW5ORkTZgwQS+//LIyMjI0efJkde/eXXfddZeef/55vfvuu3I4HGrXrp1mz56td999V3l5eZozZ45sNpvWrFmjgwcP6ocfftDVV1+t/fv3+9eXpD/+8Y/auHGjfD6fJk6cqGuuuUZLly7V6tWr9T//8z+S5J9+7LHH9Pzzz6u0tFSPPPKIbrjhBj3xxBNasWKFSktLNXPmTG3evFmGYeiqq67Sb37zG9ntdl1wwQUaN26c/u///k979+7V3XffrVGjRh33WT/77DPNmTNHFRUVcjgcmjhxoi6++GLdfffdqq6u1vDhw/XCCy/o7LPPbrRvJ9pWenq6HnnkEVVWVmrYsGFaunSp3nzzTS1evFgej0clJSX61a9+dcLaauXl5Wn9+vVas2aNIiMj/eOZmZkqKSlRWVmZoqOjlZqaqp/+9KfavHmz5s6dK7fbfcJ6ioqK9PDDD6u4uFiSNGDAAE2cOPGk4wCCi8AG4LSlpKRo69at9cZ2796tV199VevXr1d4eLj+/Oc/a8OGDRo9erRycnI0evRoDRw4UGvWrFFlZaXefvttSdLkyZPrbadTp056/PHHtXXrVo0ZM0arVq06aR0dOnTQhAkTtHr1as2ePVsff/yxf96TTz6puLg4LV++XB6PR/fcc4/+/Oc/a9y4caqqqlK7du30xhtvKC8vTyNHjtRNN90kp9PpX7+4uFgTJkzQggUL1KdPH23btk2/+MUvtGTJEr300kvKzMyst+exIQ1ta/bs2f5tlZeX6+9//7teeukltWvXTl9++aV++ctfNhjYPvvsM/Xt27deWKv1i1/8wv/a4/Hommuu0XPPPafi4mINGTLkhPW89dZb6tSpk/785z/r8OHDmjp1qkpLS5WVlXXC8djY2IB6AOD0ENgAnDbDMBQREVFvLDExUSkpKbrxxhuVnp6u9PR0XXHFFSdcv2/fvifd9siRIyVJPXr0ULdu3fTFF1+cVo0ffvih/va3v8kwDIWHh2vEiBF69dVXNW7cOEnST3/6U0lS7969VVVVpcOHD9cLbBs2bNDZZ5+tPn36SJK6d++uiy++WJ988okuu+yyU6ol0G1FR0fr//2//6e1a9dqx44d2rx5sw4fPtzo9g3D8L/evn27HnzwQUk158cdvfewX79+jdZz1VVXady4cdq9e7f69++v3/72t4qNjT3pOIDg4qIDAKdt48aN6tGjR72xsLAwLVq0SLNnz1ZcXJxmzZqlOXPmnHD9qKiok247LKzu68nn88lut8swDB39+GOPx9NojT6fr16Q8fl8qq6u9k/XhrPaZY59vLLX6623fu0yR28jUIFua8+ePbrhhhuUn5+vvn37BnTI8aKLLtLnn3/u78m5556r7OxsZWdn69JLL1VFRYV/2dq+N1TPhRdeqDVr1ui2225Tfn6+brnlFuXl5Z10HEBwEdgAnJbvvvtO8+fP15133llvfPPmzRo6dKi6deum8ePH64477vCfTG+z2QIOOm+++aYk6euvv9b333+vPn36KD4+Xtu2bZPb7ZbH49Hq1av9y59s2z/5yU+0aNEimaapqqoqZWVlqX///gF/zrS0NG3fvl0bNmyQJG3btk2ffvqpLr300oC3Eci27Ha7vF6vTNNUXl6e4uPjde+99+onP/mJ/vnPf0qqCVgn06dPH1122WWaNGlSvStsv/nmG23atKneRRGB1DN37lzNnz9fP/vZzzR16lSdd9552rZt20nHAQQXh0QBBKT2hHipZu+X0+nUb37zG1199dX1lktJSdF1112nm266SVFRUYqIiNC0adMkSddee62eeeaZgPaM/fDDD7rhhhtkGIaeeeYZxcXF6corr9Qll1yi6667TgkJCbrsssu0ZcsWSTXhY968ebrvvvs0ZswY/3amTZumJ598UpmZmfJ4PLrqqqv061//OuDPHR8fr+eee05PPPGEKisrZRiGZs+era5du2rXrl0Bb6exbXm9Xl144YUaMmSI/vKXvygxMVGDBw+WYRi69NJLFR8fr507dza4/T/84Q967bXXNG7cOFVXV6ukpERJSUkaNWqUhg8ffkr13H777Zo8ebKGDh2q8PBw9ezZU0OGDFFJSckJxwEEl2Eeu/8fAAAAlsIhUQAAAIsjsAEAAFgcgQ0AAMDiCGwAAAAW12KvEvX5fCovL5fD4TjuPkMAAABWYpqmPB6PoqOj692HslaLDWzl5eXHPTIHAADAynr06HHCp4e02MDmcDgk1Xzw8PDwoL5XXl6eUlNTg/oezQF9qEMv6tCLOvSiDr2oQR/qtPZeVFVVaevWrf78cqwWG9hqD4OGh4fXey5gsDTFezQH9KEOvahDL+rQizr0ogZ9qEMvdNLTuLjoAAAAwOIIbAAAABZHYAMAALC4oJ7D9uKLL2rVqlWSpAEDBmjSpEl65JFHlJubq8jISEnSfffdp4EDB2rTpk2aOnWqysvL1a9fP82cOVN2u10FBQV66KGHtH//fnXt2lVz585VdHR0MMsGAACwlKDtYfvoo4+0bt06vfnmm1q2bJm+/vprvfvuu8rLy9OiRYuUnZ2t7OxsDRw4UJL00EMP6dFHH9Xq1atlmqaysrIkSTNnztSoUaOUk5Oj1NRUzZ8/P1glAwAAWFLQAltCQoImT56s8PBwORwOdevWTQUFBSooKNCUKVOUmZmp559/Xj6fT/n5+aqsrFRaWpokafjw4crJyZHH49Gnn36qjIyMeuMAAACtSdAOiXbv3t3/eseOHVq1apVee+01ffLJJ5oxY4ZiY2M1fvx4LVmyRN27d1dCQoJ/+YSEBBUWFqq4uFgxMTGy2+31xgEAAFqToN+Hbdu2bRo/frwmTZqkc889V/PmzfPPGzNmjJYtW6Zu3brVu++IaZoyDMP/82in+pipvLy8H/cBApSbm9sk72N19KEOvahDL+rQizr0ogZ9qEMvTi6ogS03N1cTJkzQlClTNGTIEG3ZskU7duzwH+I0TVN2u11JSUkqKiryr7dv3z65XC7Fx8ertLRUXq9XNptNRUVFcrlcp1RDampq0G/El5ubq759+wb1PZoD+lCHXtShF3XoRR16UYM+1GntvXC73Q3uZAraOWy7d+/Wf/3Xf2nu3LkaMmSIpJqANmvWLJWUlMjj8Wjx4sUaOHCgkpOT5XQ6/ck6Oztb6enpcjgc6tevn1auXClJWrZsmdLT04NVMgAAgCUFbQ/byy+/LLfbraeffto/NmLECI0bN04jR45UdXW1Bg0apKFDh0qS5s6dq2nTpqmsrEy9e/fW2LFjJUkzZszQ5MmTtWDBAnXo0EHPPPNMsEoGAACwpKAFtmnTpmnatGknnDd69OjjxlJSUrRkyZLjxpOTk7Vw4cIzXh8AAEBzwZMOAAAALI7Adgb06p36o9b3en1nqBIAANASBf22Hq1BZIRTr6/efNrrj8pIOYPVAACAloY9bAAAABZHYAMAALA4AhsAAIDFEdgAAAAsjsAGAABgcQQ2AAAAiyOwAQAAWByBDQAAwOIIbAAAABZHYAMAALA4AhsAAIDFEdgAAAAsjsAGAABgcQQ2AAAAiyOwAQAAWByBDQAAwOIIbAAAABZHYAMAALA4AhsAAIDFEdgAAAAsjsAGAABgcQQ2AAAAiyOwAQAAWByBDQAAwOIIbAAAABZHYAMAALA4AhsAAIDFEdgAAAAsjsAGAABgcQQ2AAAAiyOwAQAAWByBDQAAwOIIbAAAABZHYAMAALA4AhsAAIDFEdgAAAAsjsAGAABgcQQ2AAAAiyOwAQAAWByBDQAAwOIIbAAAABZHYAMAALA4AhsAAIDFEdgAAAAsjsAGAABgcQQ2AAAAiyOwAQAAWByBDQAAwOIIbAAAABZHYAMAALA4AhsAAIDFEdgAAAAsLqiB7cUXX9SQIUM0ZMgQzZkzR5L00UcfKTMzU4MGDdKzzz7rX3bTpk0aPny4MjIyNHXqVFVXV0uSCgoKNHr0aA0ePFj33HOPysvLg1kyAACA5QQtsH300Udat26d3nzzTS1btkxff/21VqxYoSlTpmj+/PlauXKl8vLytHbtWknSQw89pEcffVSrV6+WaZrKysqSJM2cOVOjRo1STk6OUlNTNX/+/GCVDAAAYElBC2wJCQmaPHmywsPD5XA41K1bN+3YsUNdunRR586dZbfblZmZqZycHOXn56uyslJpaWmSpOHDhysnJ0cej0effvqpMjIy6o0DAAC0JvZgbbh79+7+1zt27NCqVav0i1/8QgkJCf5xl8ulwsJC7d27t954QkKCCgsLVVxcrJiYGNnt9nrjpyIvL+9HfpLG9e3bVwUFBT9iCynKzc09Y/WEUkv5HGcCvahDL+rQizr0ogZ9qEMvTi5oga3Wtm3bNH78eE2aNEk2m007duzwzzNNU4ZhyOfzyTCM48Zrfx7t2OnGpKamyul0/qjPEIiOHTv+qPX79u17hioJndzc3BbxOc4EelGHXtShF3XoRQ36UKe198Ltdje4kymoFx3k5ubqjjvu0G9/+1vdeOONSkpKUlFRkX9+UVGRXC7XceP79u2Ty+VSfHy8SktL5fV66y0PAADQmgQtsO3evVv/9V//pblz52rIkCGSpD59+ui7777Tzp075fV6tWLFCqWnpys5OVlOp9O/KzQ7O1vp6elyOBzq16+fVq5cKUlatmyZ0tPTg1UyAACAJQXtkOjLL78st9utp59+2j82YsQIPf3007r//vvldrs1YMAADR48WJI0d+5cTZs2TWVlZerdu7fGjh0rSZoxY4YmT56sBQsWqEOHDnrmmWeCVTIAAIAlBS2wTZs2TdOmTTvhvLfeeuu4sZSUFC1ZsuS48eTkZC1cuPCM1wcAANBc8KQDAAAAiyOwAQAAWByBDQAAwOIIbAAAABZHYAMAALA4AhsAAIDFEdgAAAAsjsAGAABgcQQ2AAAAiyOwAQAAWByBDQAAwOIIbAAAABZHYAMAALA4AhsAAIDFEdgAAAAsjsAGAABgcQQ2AAAAiyOwAQAAWByBDQAAwOIIbAAAABZHYAMAALA4AhsAAIDFEdgAAAAsjsAGAABgcQQ2AAAAiyOwAQAAWByBDQAAwOIIbAAAABZHYAMAALA4AhsAAIDFEdgAAAAsjsAGAABgcQQ2AAAAiyOwAQAAWByBDQAAwOIIbAAAABZHYAMAALA4AhsAAIDFEdgAAAAsjsAGAABgcQQ2AAAAiyOwAQAAWByBDQAAwOIIbAAAABZHYAMAALA4AhsAAIDFEdgAAAAsjsAGAABgcQQ2AAAAiyOwAQAAWByBDQAAwOIIbAAAABZHYAMAALA4AhsAAIDFBTWwlZWVaejQodq1a5ck6ZFHHtGgQYM0bNgwDRs2TO+++64kadOmTRo+fLgyMjI0depUVVdXS5IKCgo0evRoDR48WPfcc4/Ky8uDWS4AAIAlBS2wffXVVxo5cqR27NjhH8vLy9OiRYuUnZ2t7OxsDRw4UJL00EMP6dFHH9Xq1atlmqaysrIkSTNnztSoUaOUk5Oj1NRUzZ8/P1jlAgAAWFbQAltWVpZmzJghl8slSaqoqFBBQYGmTJmizMxMPf/88/L5fMrPz1dlZaXS0tIkScOHD1dOTo48Ho8+/fRTZWRk1BsHAABobezB2vBTTz1Vb3rfvn26/PLLNWPGDMXGxmr8+PFasmSJunfvroSEBP9yCQkJKiwsVHFxsWJiYmS32+uNAwAAtDYBBbaFCxfqxhtvVExMzGm/UefOnTVv3jz/9JgxY7Rs2TJ169ZNhmH4x03TlGEY/p9HO3Y6EHl5eaddc6D69u2rgoKC48arvaZ8pqlwe2M7MlOUm5sbnOKaWEv5HGcCvahDL+rQizr0ogZ9qEMvTi6gwLZlyxZlZGTo6quv1ogRI3TBBRec8htt2bJFO3bs8B/iNE1TdrtdSUlJKioq8i+3b98+uVwuxcfHq7S0VF6vVzabTUVFRf7Dq6ciNTVVTqfzlNc7VR07dpQk+UxTG7bt0669ZSo9XKVwR5iGpXeT3dZwaOvbt2/Qawy23NzcFvE5zgR6UYde1KEXdehFDfpQp7X3wu12N7iTKaBz2J588kmtXr1aqampmjlzpm666SYtWbJEbrc74EJM09SsWbNUUlIij8ejxYsXa+DAgUpOTpbT6fSn6uzsbKWnp8vhcKhfv35auXKlJGnZsmVKT08P+P1CZf/BCm3acUCRTpvO69RWVR6fdu/j6lYAAHD6Ar7oICYmRoMHD9bQoUN18OBBvf766xo8eLDef//9gNZPSUnRuHHjNHLkSA0ZMkTnn3++hg4dKkmaO3euZs+ercGDB+vw4cMaO3asJGnGjBnKysrSz3/+c3322WeaOHHiqX/CJpa/r1yGIV2Vlqy+5ycqItymnXsOhbosAADQjAV0SHT9+vVavHix1q9fr4yMDM2bN08pKSn6/vvvNWrUKF177bUnXffoQDd69GiNHj36uGVSUlK0ZMmS48aTk5O1cOHCQEq0jN1F5UqIi1S4wyZJ6pwYq+35JfJU++Ro9Fw2AACA4wWUIGbOnKmLL75Y7733nh5//HGlpKRIks4++2zdeuutQS2wOSmv9OhgmVsdz6q7OKNLUqy8PlP5RWUhrAwAADRnAQW2t956S3FxcYqNjVVRUZFeeeUV+Xw+SdKECROCWmBzUnuuWseEaP/YWXGRinLa9T2HRQEAwGkKKLA98cQT+uCDD2pWCAtTbm6uZs2aFcy6mqWConJFR9jVJjrcP2YYhs5OitXufeWq8nhDWB0AAGiuAgpsX3zxhZ555hlJUvv27fXcc8/p448/DmphzY3X59Oe/eXqmBBz3P3izk6Klc+UftjLYVEAAHDqAgpsHo9HVVVV/unah7Ojzt7iCnl9pjqcFX3cvPg2EXI6bNp3sCIElQEAgOYuoKtEr776at11110aNmyYDMPQihUrNGDAgGDX1qzs3lcuW5ihxPio4+YZhqG4WKcOllaGoDIAANDcBRTYJk2apNdee01r1qyR3W7XwIEDNWLEiGDX1qwUH6pUu1jnSZ9oEBfr1Dc/HJTPZyos7NQfsQUAAFqvgAKbzWbT2LFj/Te0xfFKyquUnHDyZ63GxTjl9Zkqq6hSm+jgPyoLAAC0HAEFtvfee8//WCnTNP3jn3/+edAKa05KD1fJXeWtd3XoseJia0JacambwAYAAE5JQIHtD3/4gyZPnqxevXoddwUkpF2FNVd/NhTY2saEyzCkg6VudUlqqsoAAEBLEFBga9OmjQYNGhTsWpqtH/aWSmo4sNnCwtQmKlwHS91NVRYAAGghArqtR58+fbR27dpg19Js/VBYqrAwQ9GRjgaXi4t16mAZgQ0AAJyagPawrV27VosWLZLD4ZDD4ZBpmjIMg3PYjti1t0yxUQ6FNXK4OC7WqZ17SlXl8fofDg8AANCYgALbK6+8EuQymrdde0vVNoALCeJiapY5WOqW6wT3awMAADiRgA6JJicna+PGjcrKylJ8fLy++OILJScnB7u2ZsHt8arwwOEGz1+rVXulKIdFAQDAqQgosL300kv629/+ppycHFVWVurFF1/UvHnzgl1bs1BQVCbTlNrENB7YIp12hTvCuPAAAACckoAC29tvv63//d//VWRkpNq1a6esrCytWLEi2LU1C4Hc0qOWYRiKi4kgsAEAgFMSUGCz2+0KD68LJG3atJHdHtDpby3err2lMgwpNqrxwCbVXSnqO+oGxAAAAA0JKLB16NBBH3zwgQzDUFVVlRYsWMA5bEf8sLdMifFRJ32G6LHaxoTL6zN1uLI6yJUBAICWIqCUMX36dP3lL3/Rli1blJaWpg8//FDTp08Pdm3Nwg+Fperkig14+Zgj92orO1wVrJIAAEALE9BxzcTERL366quqqKiQ1+tVTMzJH3Lemnh9pgqKypTWIyHgdWoPnZZVeIJVFgAAaGECCmx/+ctfTjj+y1/+8owW09zsP1ihqmqfOifGat/BioDWiYywK8yQyg4T2AAAQGACCmxbt271v66qqtKnn36qK664ImhFNRft20bo5mu7q/8FHfTWv7YHtE6YUfMIKw6JAgCAQAUU2GbPnl1vurCwUFOnTg1KQc2JzRam24f0OuX1YqLCVcohUQAAEKDALm08RmJiovLz8890La1GTKRDZYc9Mrm1BwAACMApn8Nmmqby8vLUvn37oBXV0sVEOVTt9cnt8SoinPvZAQCAhp3yOWxSzX3ZJk2aFJSCWoPYyCNXih72ENgAAECjTuscNvw4MVFH7sVW4dFZcZEhrgYAAFhdQIFtzJgxMgzjpPP/+te/nrGCWoNobp4LAABOQUCBLTU1Vd9++61uvfVWORwOZWdnq7q6WkOGDAl2fS2S3RamSKedm+cCAICABBTYPv/8c73++uuy2WySpKuuukq33nqrMjIyglpcSxYT5eDmuQAAICAB3dbjwIEDcrvd/uny8nJVVlYGrajWICbSobIKDokCAIDGBbSHbejQobrttts0cOBAmaapVatWaezYscGurUWLjQrXdwWHVO31hboUAABgcQEFtgceeEC9evXSv//9bzmdTj3++OO69NJLg11bixbjv/CAw6IAAKBhAT/pIDExUd27d9fEiRPlcDiCWVOrUHdrDw6LAgCAhgUU2P7xj3/okUce0Z/+9CeVlpbq3nvvVVZWVrBra9FioupungsAANCQgALbokWLtHjxYsXExKh9+/ZaunSpXn311WDX1qI5HTY57GHc2gMAADQqoMAWFhammJgY/3SHDh38t/jA6YuOdKicwAYAABoRUGCLi4vTpk2b/E87eOutt9S2bdugFtYaxBDYAABAAAK6SnTKlCl64IEH9P333+snP/mJnE6n5s+fH+zaWryoCIf27C+XaZoNPvoLAAC0bgEFtsrKSmVnZ2vHjh3yer3q2rUrV4qeAdGRdlV7TZUe9qhNdHioywEAABYV0CHR3/3ud7LZbOrWrZt69OhBWDtDoiNq+ri3+HCIKwEAAFYWUGDr2bOnli9froKCAh08eND/Bz9O9JGb5xYR2AAAQAMCOiS6Zs0a5eTk1BszDEObNm0KSlGtRe0etsIDFSGuBAAAWFlAgW3jxo3BrqNVCneEyW4z2MMGAAAa1OAh0enTp/tfHzhwIOjFtDaGYSg6wsE5bAAAoEENBra8vDz/67vuuivoxbRG0ZEO7eWQKAAAaECDgc00zRO+xpkTxR42AADQiICuEpXEjV2DJDrSrrIKjw5X8sQDAABwYg1edODz+VRSUiLTNOX1ev2va8XFxQW7vhav9tYee4srdE4H7m8HAACO12Bg27p1qy6//HJ/SLvsssv887itx5lx9M1zz+nQJsTVAAAAK2owsG3evLmp6mi1/DfPPcB5bAAA4MQCPocNwRERbpPDHqbCYq4UBQAAJ0ZgCzHDMJQQF8mVogAA4KSCGtjKyso0dOhQ7dq1S5L00UcfKTMzU4MGDdKzzz7rX27Tpk0aPny4MjIyNHXqVFVXV0uSCgoKNHr0aA0ePFj33HOPysvLg1luyLjio3jaAQAAOKmgBbavvvpKI0eO1I4dOyRJlZWVmjJliubPn6+VK1cqLy9Pa9eulSQ99NBDevTRR7V69WqZpqmsrCxJ0syZMzVq1Cjl5OQoNTVV8+fPD1a5IeVqF8XNcwEAwEkFLbBlZWVpxowZcrlckqQNGzaoS5cu6ty5s+x2uzIzM5WTk6P8/HxVVlYqLS1NkjR8+HDl5OTI4/Ho008/VUZGRr3xlsjVLlIHy9xye7yhLgUAAFhQQA9/Px1PPfVUvem9e/cqISHBP+1yuVRYWHjceEJCggoLC1VcXKyYmBjZ7fZ64y1RQrsoSVJR8WF1csWGuBoAAGA1QQtsx/L5fPWelmCapgzDOOl47c+jnc7TFo5+Hmqw9O3bVwUFBae9fp/ufSRJ//fJBp3XIeJMlRUSubm5oS7BMuhFHXpRh17UoRc16EMdenFyTRbYkpKSVFRU5J8uKiqSy+U6bnzfvn1yuVyKj49XaWmpvF6vbDabf/lTlZqaKqfTeUY+Q0M6dux42usmtIuUJLVtn6y+fc85QxU1vdzcXPXt2zfUZVgCvahDL+rQizr0ogZ9qNPae+F2uxvcydRkt/Xo06ePvvvuO+3cuVNer1crVqxQenq6kpOT5XQ6/ak6Oztb6enpcjgc6tevn1auXClJWrZsmdLT05uq3CbVvk2EwsIMbu0BAABOqMn2sDmdTj399NO6//775Xa7NWDAAA0ePFiSNHfuXE2bNk1lZWXq3bu3xo4dK0maMWOGJk+erAULFqhDhw565plnmqrcJmWzhemsuEgVcfNcAABwAkEPbO+//77/9RVXXKG33nrruGVSUlK0ZMmS48aTk5O1cOHCoNZnFa52kSrk8VQAAOAEeNKBRbjacfNcAABwYgQ2i3C1i9KBQ5XyVPtCXQoAALAYAptFuNpFymdK+0s4jw0AANRHYLMI15Gb53KlKAAAOBaBzSJc8UcCG88UBQAAxyCwWcRZcZEyDPawAQCA4xHYLMJhD1O72AgCGwAAOA6BzUIS46O4eS4AADgOgc1CErh5LgAAOAECm4W42kVp38EKeX1mqEsBAAAWQmCzEFe7SHl9pooPVYa6FAAAYCEENgvx39qDCw8AAMBRCGwW4r95LuexAQCAoxDYLCQhLlKStJcrRQEAwFEIbBYS4bSrbUw4h0QBAEA9BDaLSWgXxa09AABAPQQ2i0mKJ7ABAID6CGwWk9Q+WnsPHOZebAAAwI/AZjFJ7aPl9Znaf5ALDwAAQA0Cm8Ukta+5tceeA+UhrgQAAFgFgc1iktpHS5L27Oc8NgAAUIPAZjFntY2QLczQnv3sYQMAADUIbBZjs4XJ1S5KhexhAwAARxDYLCixfRTnsAEAAD8CmwUltY/W7n3sYQMAADUIbBaUFB+l0sNVKq/whLoUAABgAQQ2C6q9UpQnHgAAAInAZkmJtfdi40pRAAAgApslcS82AABwNAKbBcVEOhQT6eBKUQAAIInAZllJZ0VzLzYAACCJwGZZSfFRnMMGAAAkEdgsK6l9tPYWH5bXZ4a6FAAAEGIENotKah+laq+p/SUVoS4FAACEGIHNopLia64U3b2Pw6IAALR2BDaLSnbFSJIKispCXAkAAAg1AptFtW8boYhwm3btJbABANDaEdgsyjAMJbtiCGwAAIDAZmWdEmK1i0OiAAC0egQ2C0t2xaio+LAqq6pDXQoAAAghApuFdXLFyDS5UhQAgNaOwGZhnY5cKcp5bAAAtG4ENgvrmBAjwyCwAQDQ2hHYLMzpsCmhXZR27S0NdSkAACCECGwW18kVo3yuFAUAoFUjsFlcp4Sae7H5eAg8AACtFoHN4jq5YuSu8mp/SWWoSwEAACFCYLO4Tq5YSVJ+EeexAQDQWhHYLI5bewAAAAKbxcXFOhUVYSewAQDQihHYLM4wDHVyxXBrDwAAWjECWzNwdmIb7dxdKtPkSlEAAFojAlsz0DW5jQ6WuVVc6g51KQAAIAQIbM1At+Q4SdL2/JLQFgIAAELCHoo3HTNmjA4cOCC7vebtH3/8cZWXl2v27Nlyu9267rrr9OCDD0qSNm3apKlTp6q8vFz9+vXTzJkz/eu1Fl07tpEkfZt/UP3OTwxxNQAAoKk1efIxTVM7duzQP//5T3/wqqys1ODBg7Vw4UJ16NBB48eP19q1azVgwAA99NBDevLJJ5WWlqYpU6YoKytLo0aNauqyQyoqwqEO7aPZwwYAQCvV5IdEt2/fLkm68847df3112vRokXasGGDunTpos6dO8tutyszM1M5OTnKz89XZWWl0tLSJEnDhw9XTk5OU5dsCecmt9V3+YdCXQYAAAiBJg9shw4d0hVXXKF58+bplVde0RtvvKGCggIlJCT4l3G5XCosLNTevXvrjSckJKiwsLCpS7aEc5Pbavf+cpVXeEJdCgAAaGJNfkj0oosu0kUXXeSfvvnmm/X888+rb9++/jHTNGUYhnw+nwzDOG78VOTl5f34ohvRt29fFRQU/IgtpCg3N7fBJXwVFZKknA8+1Tku5494r+Bq7HO0JvSiDr2oQy/q0Isa9KEOvTi5Jg9sn332mTwej6644gpJNSEsOTlZRUVF/mWKiorkcrmUlJRUb3zfvn1yuVyn9H6pqalyOoMfcDp27Pij1j86sJ5I1+6Veu2D1XLEJKpv324/6r2CJTc3t9HP0VrQizr0og69qEMvatCHOq29F263u8GdTE1+SLS0tFRz5syR2+1WWVmZ3nzzTf3mN7/Rd999p507d8rr9WrFihVKT09XcnKynE6nP3FnZ2crPT29qUu2hPg2EYqLdXLhAQAArVCT72G75ppr9NVXX+mGG26Qz+fTqFGjdNFFF+npp5/W/fffL7fbrQEDBmjw4MGSpLlz52ratGkqKytT7969NXbs2KYu2TLOTW5LYAMAoBUKyQ3NJk6cqIkTJ9Ybu+KKK/TWW28dt2xKSoqWLFnSRJVZ27kd2+rNrUXyVHvlsNtCXQ4AAGgiPOmgGTk3ua28PlPf7+FB8AAAtCYEtmakW6e2kqRtPxwMbSEAAKBJEdiakQ7to9Uu1qmvt+8PdSkAAKAJEdiaEcMw1Pvc9sr7dp9M0wx1OQAAoIkQ2JqZ1HPba19JpfYWV4S6FAAA0EQIbM1MarezJEl53+4LcSUAAKCpENiamc6JsYqNcnAeGwAArQiBrZkJCzPUq2t75X1LYAMAoLUgsDVDqd3O0u795dpfwnlsAAC0BgS2Zij13PaSxGFRAABaCQJbM9S1YxtFOu0cFgUAoJUgsDVDNluYenWN10auFAUAoFUgsDVTF/V0adfeMhUUlYW6FAAAEGQEtmbqigs6SJLWb9wd4koAAECwEdiaKVe7KJ3XOY7ABgBAK0Bga8b6X9BBW74v1r6D3N4DAICWjMDWjHFYFACA1oHA1ox1csWqc2IsgQ0AgBaOwGYBXq/vtNftf2EHfb19nw7w1AMAAFose6gLQM191V5fvfm01i0pdctnSp/8p1CDrzjnzBYGAAAsgT1szVxcrFNtY8K16qMdMk0z1OUAAIAgILA1c4ZhqMfZ7bS9oET/+e5AqMsBAABBQGBrAc7p0EYxkQ4t/9f2UJcCAACCgMDWAthtYRp0WRetz9utomIuPgAAoKUhsLUQP7+yq2SaWrX+u1CXAgAAzjACWwuRGB+ly1I7KGf9Th2u9IS6HAAAcAYR2FqQW3/aQ2UVVcp6b2uoSwEAAGcQga0FOa9znK7t11nZH27X7n3loS4HAACcIQS2FmbMdefLbjP0lxVfh7oUAABwhhDYWpj2bSN180+7a/3G3fpqW1GoywEAAGcAga0FumHAeUqMj9Jzi79Q6eGqUJcDAAB+JAJbC+R02DRpTD8VH6rUH//2BY+sAgCgmSOwtVA9zm6nXw7trU/+s0fZH34b6nIAAMCPQGBrwTKvOldXXNBBr6z4jz75ek+oywEAAKeJwNaCGYahiSMu0rnJbTX71U/1+Za9oS4JAACcBgJbCxcV4dDMcVeoc2KMnvrzx/pqK1eOAgDQ3BDYWoHYqHA9Mb6/ks6K1oz/Xa+c9TtCXRIAADgFBLZWom2MU7+/7yr16ZGgeUu+0v8s3SBPtS/UZQEAgAAQ2FoIr7fx8BUT6dCjd12uGwZ004r/+06/fW6tvisoOaVtAACApmcPdQE4M2y2ML2+enNAy0Y67boqraM+/U+hHnjmA/Xq2l69zonX2CG9glwlAAA4HQS2VqqTK1YJcVHK3Vyor7fv1/b8EnVMiNE1/TrLFmaEujwAAHAUDom2Ys5wm/pf2FE/u/RsRTntem7xF7r392v07sc7Ob8NAAALIbBBCXGRGnjZ2Zp8+yWKjLDr+awvdfdT7+j11Zu1v6Qi1OUBANDqcUgUkmpusnvlhR3V/4IO+nzLXi3/13a98e4WLX5vq9K6J+iqtI66PLWDYqLCQ10qAACtDoEN9RiGob4pieqbkqg9+8v1zsc79eEX+Xpu8Zeat+QrpfVw6aq0ZF3SK1GxhDcAAJoEgQ0nldQ+WmN/3ktjrjtf3+w6qH99WaB1X+Xrs78VyjCk8zrF6aKeLqX1SFBKl/hQlwsAQItFYIOf1+uTzXb8aY2GYah753bq3rmd7hjSS9t+KNbnm/fqi61FWvL+NmW9t1UR4Tadf068NhdtUq+u7dWzSztFRThC8CkAAGh5CGzwO5V7uUlSWo8E9eoar73Fh7Vn/2Ft/X6/vtxWJNOUDEPqktRGKefE6/xz2imlS7w6nBUtw+CWIQAAnCoCG36UcIdNnVyx6uSKVUFbr+4deZW2fl+sTTuKtXnHAX34xS7/s0ujIx3q3ilO3Tq1VffO7XRe5zi52kUS4gAAaASBDWeU02FTWg+X0nq4JElen6ldhaXatOOAvtl1UN/sOqhla7+V12dKqnkw/Xmd2qpbpzh16dBGXZJi1aF9tCKc/GoCAFCLvxVxRjV0WDW+TYQu7ZWkvj1dOljm1oFDbh04VKnvCg75D6VKki3MULIrRp0Ta8JbUvtoJbWPUof20WofF8mTGAAArQ6BDU3OZgtT+7aRat820j/m9ZkqLa/SwTK3OrlitHN3qbbnl+jfG3f798ZJUliYobgYp9q1capdbITaxTrVNsap6EiHoiPsiopwKDrSoUinXdGRDkUdGYsMt53wggoAAJoDAhsswRZmKC7WqbhYp277WQ9/uPJ6fdpXUqk9+8q150C5Cg8c1sFSt4pL3SourdT2/BKVlLnrhbqTCXfYFOW0K8JpU6TTfvyfCLsiw2tex0aHKy7GqbYx4WobUxMKI8JtnG8HAAgJAhssp6HDqnZbmM6Ki9RZcXV750zTlNdrqqrap2qvV1Uen/pf2EGVVV6VV1Srwu1RRWW1DrurVeGuVqXbq4ojr0vK3Nqzv9w/XeH2nrSucIdNcUcCXHybCLVrE6H4WKfi2x55feRP2xjnGe8JAKB1axaBbfny5VqwYIGqq6t1++23a/To0aEuCRZiGIbsdkN2e5hqf6X7nZ90XOir3ZPWENM0Ve01VeXxasDFnVRS5lZJWZVKytw6WObWofIqHSx1q/DAYW3eeUAlZVXHbSPMkKIiwpT4Yak/xLWLjVB827qAF98mQnExTg7TAgACYvnAVlhYqGeffVZLly5VeHi4RowYocsuu0znnXdeqEtDC2QYhhx2Qw57mLolt200UHmqfTpY6taBQxU6cKjmMO2BkkodOFTzZ9/BCm37/qBKyt3+iyqOFhFu859nFx1Rd85dVIRdznCb7LYw2W1hstkM/2u7zZAtrKYu0zTlM2t+Hv3a5zPlrf3j9cnrqxmrPup1zTxTXp/Pf0jZFmb4388WVve+trCanjjsNoXbw+RwhCncbpPDfuTnUdP1XtvDVFrhVUmZW4ZhKMyo6bFx1M8ww6g3VrsMAKCO5QPbRx99pMsvv1xxcXGSpIyMDOXk5Oi+++4LbWFo8U71RsK1wsIMVR0uVo+zO/rPx6v2+lRS5tb+kkoVHwlzB8uqdLjSo/IKjw67q3X4yM99JRUqr6hWlccrr88nT3VN0DodYWGGbEf9CQurDXyGwo4Esdo/klR9VIDzen01016fqn2mqqt9AZ0reEJv7j7lVY4NcIZhyJAUFlZ/2jAM/1jNxziyTthR6xwdCMOOWsYwFBZ27Ouan7Vhst70MfMNw5DtSC21NdjCDP+2DEM184+st3fvQW3c/XVdWD3B+9XvQU39tf3QkanaxU44pprfXXtt2LaFyVEb9Gtf24//R0Dd67plj83NxwZpo9684/4LHvff8+g5tb9jJ1r52E3VW5cwj1bK8oFt7969SkhI8E+7XC5t2LCh0fXMI7szqqqOP2QVDPaw0/sLVZLcbvePWt8q24hwGJaowwrbiHAYsof5VF3t0T/e//aEy9gMKTYyTLGRTkknP+9tWHo3Za/9RqYp+UxTPtP0762r+4u7/l/shmoCQO0Cw9K7KfvDE9cRqKFXdpVUE+o81T55vF5VV/uOvPbVvD7ys6raVzev2uuvecM3+2TKlEyp9ockmbWvTbNuTHX/H9f8MHVux7YyDMO/PdNnyqcj6xy1d1FS3TK1f1Qz7fX56t7TV7Ouv6++unW8R/Zamj6fTJ9U7d+Ladat56t9z5rt186rfW+fz6wZ90m+mg+kbwp2ymeqpm7zqCa0RstXnvltHhMMa/7fOBLmjfo/DaPu/5ewmhcn3Ntbk4uP3UOsunV07HYNf7AMCzvmHw1HCqsN8WWlpfrnfz6uqfVIcK91or3yx8442TJ1/x8FsOzR2zvRRo5Z5sQLy9/72s9mGFJY7T8ojvpHTl0/jKO+w6SSkoP6bMfnx++Fr2ly/XUM1fvvU3+duu36y679LjmqbrPuRf2enaAfhqQr+yQrMT7q+D6cIbV55YS9lmSYJ5tjEQsWLJDb7dbEiRMlSVlZWcrLy9Pjjz/e4HqlpaXaunVrE1QIAABwZvTo0UOxsbHHjVt+D1tSUpI+++wz/3RRUZFcLlej60VHR6tHjx5yOBzsQgcAAJZmmqY8Ho+io6NPON/yga1///564YUXdODAAUVGRuqdd97RE0880eh6YWFhJ0yoAAAAVhQREXHSeZYPbImJiXrwwQc1duxYeTwe3XzzzbrwwgtDXRYAAECTsfw5bAAAAK0dd+0EAACwOAIbAACAxRHYAAAALI7ABgAAYHEENgAAAIsjsAVo+fLl+vnPf65BgwbptddeO27+pk2bNHz4cGVkZGjq1Kmqrq4OQZVNo7FevPfeexo2bJiuv/563XvvvSopKQlBlU2jsV7U+uCDD3Tttdc2YWVNr7FebN++XWPGjNH111+vu+66q1X/Xnz99de66aabdP3112v8+PE6dOhQCKpsGmVlZRo6dKh27dp13LzW9L0pNdyL1vS9KTXci1qt4XvzlJho1J49e8xrrrnGLC4uNsvLy83MzExz27Zt9ZYZMmSI+cUXX5imaZqPPPKI+dprr4Wg0uBrrBelpaXmlVdeae7Zs8c0TdP84x//aD7xxBOhKjeoAvm9ME3TLCoqMgcPHmxec801IaiyaTTWC5/PZw4aNMhcu3ataZqm+Yc//MGcM2dOqMoNqkB+L0aOHGl+8MEHpmma5uzZs81nnnkmFKUG3ZdffmkOHTrU7N27t/nDDz8cN7+1fG+aZsO9aE3fm6bZ+O+FabaO781TxR62AHz00Ue6/PLLFRcXp6ioKGVkZCgnJ8c/Pz8/X5WVlUpLS5MkDR8+vN78lqSxXng8Hs2YMUOJiYmSpJ49e2r37t2hKjeoGutFrWnTpum+++4LQYVNp7FefP3114qKilJ6erok6de//rVGjx4dqnKDKpDfC5/Pp/LycklSRUVFg3c3b86ysrI0Y8aMEz5OsDV9b0oN96I1fW9KDfeiVmv43jxVln/SgRXs3btXCQkJ/mmXy6UNGzacdH5CQoIKCwubtMam0lgv2rVrp4EDB0qSKisr9dJLL2nMmDFNXmdTaKwXkvTXv/5VvXr1Up8+fZq6vCbVWC++//57nXXWWZoyZYo2bdqkc889V9OnTw9FqUEXyO/F5MmTdeedd2rWrFmKjIxUVlZWU5fZJJ566qmTzmtN35tSw71oTd+bUsO9kFrP9+apYg9bAHw+X70HyJumWW+6sfktSaCftbS0VOPGjVNKSopuvPHGpiyxyTTWi61bt+qdd97RvffeG4rymlRjvaiurtYnn3yikSNH6s0331Tnzp319NNPh6LUoGusF5WVlZo6dapeeeUVrVu3TqNGjdLDDz8cilJDqjV9bwaqNXxvNqY1fW+eKgJbAJKSklRUVOSfLioqqrcr99j5+/bta3BXb3PWWC+kmn85jxo1Sj179mz0X1LNWWO9yMnJUVFRkW666SaNGzfO35eWqLFeJCQkqEuXLrrgggskSUOHDj1ur1NL0Vgvtm7dKqfT6X8m8m233aZPPvmkyesMtdb0vRmI1vK92ZjW9L15qghsAejfv7/Wr1+vAwcOqKKiQu+8847/XBxJSk5OltPpVG5uriQpOzu73vyWpLFeeL1e/frXv9Z1112nqVOntuh/MTfWiwkTJmj16tXKzs7WSy+9JJfLpddffz2EFQdPY7246KKLdODAAW3evFmS9P7776t3796hKjeoGutFly5dtGfPHm3fvl2StGbNGn+QbU1a0/dmY1rT92ZjWtP35qniHLYAJCYm6sEHH9TYsWPl8Xh0880368ILL9SvfvUrTZgwQRdccIHmzp2radOmqaysTL1799bYsWNDXXZQNNaLPXv26D//+Y+8Xq9Wr14tSUpNTW2R/2IM5PeitQikF/PmzdO0adNUUVGhpKQkzZkzJ9RlB0UgvZg9e7YmTpwo0zTVvn17zZo1K9RlN5nW+L15Mq3xe/NkWuP35qkyTNM0Q10EAAAATo5DogAAABZHYAMAALA4AhsAAIDFEdgAAAAsjsAGAABwBgTyUHtJWrt2rTIzM5WZmanf/va3/kfVNYTABgDNxK5du/THP/5Rt99+e6u82S5gZV999ZVGjhypHTt2NLjcoUOHNHnyZD377LNavny5UlJS9Oyzzza6fQIbAEt68sknNWzYMA0bNkypqanKyMjwT1dWVp5wnQ8++EDPPfdco9seM2bMSR80np+fr8mTJysjI0NDhgxRRkaGnn32WXk8nh/1eU7XQw89pK1bt+qHH37QiBEjVFVVJbvdrqlTp2rZsmWSpPfee0/z5s0LSX0AapzoofbLli3TjTfeqGHDhmnKlClyu93asWOHOnbsqPPOO0+SdM011+i9995rdPsENgCWNG3aNGVnZys7O1sul0tz5871T0dERJxwnY0bN6qkpOS037OwsFC33XabLr74YuXk5Ojtt9/W0qVLtX37dv3+978/7e2erpUrVyo2NlY9evTQmjVr1L9/f40aNUppaWmaPXu2qqurJUk/+9nP9Nlnn2nTpk1NXiOAGk899ZT69evnn962bZuysrL0xhtvKDs7W+3bt9fLL7+sc845R3v27PE/+WXVqlXat29fo9vnSQcAmp158+bp7bffls1mU9euXTV9+nQVFBTojTfekNfrVWxsrMaPH6/HHntMO3fu1MGDBxUdHa25c+fq3HPPPel2X3rpJQ0aNEi33nqrfyw6OlrTp0/334F+6dKlWrJkiSoqKhQTE6OFCxeesJ6EhAS98847WrBggQzDkM1m06RJk3TJJZecdPxYL7zwgn+PYWJiol5//XXt2bNHktSvX796fzncfPPNevHFF9nTBljExx9/rJ07d/q/Tzwej3r16qU2bdro97//vaZPny6fz6dbb71VDoej0e0R2AA0K//4xz/0r3/9S0uWLFFUVJReeOEFTZ48WS+//LJGjBih4uJiPfjgg8rJyVGbNm20ePFiSdKjjz6q1157TdOnTz/ptj/77DM98MADx427XC6NGTPGP/3NN9/o/fffV0xMTIP1zJkzR3PnzlVaWprWrVunjz/+WJdccslJx4+2detWud1u9ejRQ5J03XXXqbCwUJMmTZIkmaapu+++W1FRUZKkK6+8UpMnT1ZlZeVJ90ACaDper1fXXXedpk2bJkkqLy+X1+uV1+tVUlKS/v73v0uSNmzYoM6dOze6PQ6JAmhWPvzwQw0fPtwfVMaOHat///vfqqqqqrfc4MGDdeONN2rhwoV68skn9cknn+jw4cMNbts0zXoP3v7Tn/7kP2/uyiuv1MGDByVJPXv2VExMTKP1DBkyRPfdd5+mTp2qQ4cO6Ve/+pUknXT8aNu3b9fZZ59db+yOO+7QX//6V11yySXavHmzHn74Yf+8uLg4OZ1O5efnB9JGAEF22WWX6d1339X+/ftlmqYee+wxvfrqqzIMQ3feeacKCwtlmqZeeeUV/fznP290ewQ2AM2Kz+erF6p8Pp//XK6jvf7665o6daoiIiKUmZmpoUOHqrFHJ1900UX1rr68++67/efN7du3Tz6fT5L84ayxeh588EG9/vrrSk1N1dKlSzV69OgGx49mGIb//aSaCyrWr18vSerUqZOmTp2qdevW1VvHZrPJZrM1+BkBNI2UlBTdd999uv322zVkyBD5fD6NGzdOYWFhevzxx3X33Xdr8ODBatOmje66665Gt0dgA9CsXHXVVfrHP/7h31u2cOFCXXLJJQoPD5fNZvOHpXXr1unGG2/ULbfcoq5du+r999+X1+ttcNv33HOPVq1apWXLlvmXra6u1sqVKyVJYWHHf2WerJ6wsDBde+21qqio0MiRIzVjxgxt2bJFVVVVJx0/WteuXfXDDz/4p7dv3665c+fK7XZLqrmPU8+ePf3zS0tLVVVVpY4dO55SPwGcWe+//746deokSbrlllu0YsUKrVy5Uv/93/8tp9MpSbr66qu1fPlyrV69Wo899hjnsAFoeW6++Wbt3r1bt9xyi3w+n7p06aK5c+dKki6//HL97ne/0xNPPKE777xTjz76qJYsWSJJSktL09atWxvcdlJSkhYvXqwXX3xRL7/8sqSa807S0tKUlZWluLi4gOux2+2aMmWKfve738lut8swDM2aNUvh4eEnHT9ajx495HQ69e2336pbt24aM2aMtm/frjvuuEMej0ddu3bVrFmz/MuvW7dOV1999XHbAdAyGGZjxwgAACGxfPly5ebm6rHHHvOP7dq1S2+++abuv//+esuOHTtWU6ZMUUpKShNXCaApcEgUACwqMzNTJSUl2rJli3+sU6dOx4W1d999V/369SOsAS0Ye9gAAAAsjj1sAAAAFkdgAwAAsDgCGwAAgMUR2AAAACyOwAYAAGBxBDYAAACL+//sOwCjv9jUyAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Plot total gross distribution\n",
+ "plt.figure(figsize=(10, 6))\n",
+ "sns.histplot(bom_df['total_gross'], bins=30, kde=True)\n",
+ "plt.title('Distribution of Total Gross')\n",
+ "plt.xlabel('Total Gross ($)')\n",
+ "plt.ylabel('Frequency')\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Movie Budget Analysis"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 52,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Convert 'domestic_gross' and 'foreign_gross' to numeric\n",
+ "bom_df['domestic_gross'] = pd.to_numeric(bom_df['domestic_gross'], errors='coerce')\n",
+ "bom_df['foreign_gross'] = pd.to_numeric(bom_df['foreign_gross'], errors='coerce')\n",
+ "\n",
+ "# Impute missing domestic_gross and foreign_gross with their respective means\n",
+ "bom_df['domestic_gross'].fillna(bom_df['domestic_gross'].mean(), inplace=True)\n",
+ "bom_df['foreign_gross'].fillna(bom_df['foreign_gross'].mean(), inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Top 10 Movies by Total Gross\n",
+ "\n",
+ "This plot displays the top 10 movies based on total gross revenue. The movie titles are rotated for better readability and aligned to the right to prevent misalignment on the x-axis. Each bar represents the total gross earnings of the respective movie, providing a clear comparison among the top-performing films.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 53,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Top 10 Movies by Total Gross\n",
+ "top_movies = bom_df.nlargest(10, 'total_gross')\n",
+ "\n",
+ "# Plot Top 10 Movies\n",
+ "plt.figure(figsize=(16, 14))\n",
+ "top_movies.plot(x='title', y='total_gross', kind='bar', color='orange')\n",
+ "plt.title('Top 10 Movies by Total Gross', fontsize=16)\n",
+ "plt.xlabel('Movie Title', fontsize=12)\n",
+ "plt.ylabel('Total Gross ($)', fontsize=12)\n",
+ "\n",
+ "# Adjust x-ticks for better alignment\n",
+ "plt.xticks(rotation=30, ha='right')\n",
+ "\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
- "# Your code here - remember to use markdown cells for comments as well!"
+ "# Calculate profit by subtracting 'production_budget' from 'worldwide_gross'\n",
+ "movie_budgets['profit'] = movie_budgets['worldwide_gross'] - movie_budgets['production_budget']\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Calculating Return on Investment (ROI)\n",
+ "\n",
+ "**Return on Investment (ROI)** is a financial metric used to evaluate the profitability of an investment relative to its cost. Here’s how we calculated ROI for each movie in the dataset:\n",
+ "\n",
+ "1. **Calculate Profit**: \n",
+ "2. **Define ROI Formula**: \n",
+ " - ROI is calculated as:\n",
+ " \n",
+ " $$\n",
+ " \\text{ROI} = \\left( \\frac{\\text{Profit}}{\\text{Production Budget}} \\right) \\times 100\n",
+ " $$\n",
+ "\n",
+ "3. **Calculate and Add ROI to DataFrame**: \n",
+ " - Using this formula, we created a new column `roi` in our DataFrame to store the ROI values for each movie, expressed as a percentage.\n",
+ "\n",
+ "4. **Display ROI**: \n",
+ " - The final DataFrame now includes the **ROI**, providing insight into the relative success of each movie based on its budget and gross revenue.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
movie
\n",
+ "
production_budget
\n",
+ "
worldwide_gross
\n",
+ "
profit
\n",
+ "
roi
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
Avatar
\n",
+ "
425000000
\n",
+ "
2776345279
\n",
+ "
2351345279
\n",
+ "
553.26
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
Pirates of the Caribbean: On Stranger Tides
\n",
+ "
410600000
\n",
+ "
1045663875
\n",
+ "
635063875
\n",
+ "
154.67
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
Dark Phoenix
\n",
+ "
350000000
\n",
+ "
149762350
\n",
+ "
-200237650
\n",
+ "
-57.21
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
Avengers: Age of Ultron
\n",
+ "
330600000
\n",
+ "
1403013963
\n",
+ "
1072413963
\n",
+ "
324.38
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
Star Wars Ep. VIII: The Last Jedi
\n",
+ "
317000000
\n",
+ "
1316721747
\n",
+ "
999721747
\n",
+ "
315.37
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " movie production_budget \\\n",
+ "0 Avatar 425000000 \n",
+ "1 Pirates of the Caribbean: On Stranger Tides 410600000 \n",
+ "2 Dark Phoenix 350000000 \n",
+ "3 Avengers: Age of Ultron 330600000 \n",
+ "4 Star Wars Ep. VIII: The Last Jedi 317000000 \n",
+ "\n",
+ " worldwide_gross profit roi \n",
+ "0 2776345279 2351345279 553.26 \n",
+ "1 1045663875 635063875 154.67 \n",
+ "2 149762350 -200237650 -57.21 \n",
+ "3 1403013963 1072413963 324.38 \n",
+ "4 1316721747 999721747 315.37 "
+ ]
+ },
+ "execution_count": 55,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Calculate ROI\n",
+ "movie_budgets['roi'] = (movie_budgets['profit'] / movie_budgets['production_budget']) * 100\n",
+ "\n",
+ "# Display a sample of the result\n",
+ "movie_budgets[['movie', 'production_budget', 'worldwide_gross', 'profit', 'roi']].head()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Heatmap for Movie Budgets and Returns\n",
+ "\n",
+ "A heatmap provides a visual representation of the correlation between different variables in our dataset, specifically focusing on `production_budget`, `domestic_gross`, `worldwide_gross`, `profit`, and `roi`. Here are the steps involved:\n",
+ "\n",
+ "1. **Compute Correlation Matrix**: We created a correlation matrix for the relevant columns to understand how closely these variables are related.\n",
+ "2. **Visualize Correlation**: Using a heatmap, we plotted these correlations, where:\n",
+ "\n",
+ "This visualization helps us see patterns in movie budgets and returns, such as whether higher budgets generally correlate with higher gross revenues and profits.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAncAAAF2CAYAAAAMfr5aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABbvElEQVR4nO3dd3gUVdvH8e9uegiBAClAFAMoTUITCEUiICIldCEWiqIoGsSCgMIjTZqgSFERVEQepAihqpQHVFBIqBoUpEgNQgiEFEjfnfcPXpaNCR0SNvw+17XXlZk5e+ae3c3uvfeZM2syDMNARERERAoFc0EHICIiIiK3jpI7ERERkUJEyZ2IiIhIIaLkTkRERKQQUXInIiIiUogouRMREREpRJTcyV3PYrEwa9YsOnXqRPv27WndujUTJkwgMzPztu0zOjqatm3bXrXdtGnT+N///gfA5MmTWbp06S3Zf2xsLLVq1cq1furUqYwcOfKG+01JSaFHjx43E9oNsVgs9O3bl5YtW/Lf//73hvtp1qwZNWvW5Pz58znWR0ZGUqlSJVatWnVD/a5bt4733nvvuu4zdepUQkJCaN++Pe3ataNVq1a8+eabnDt37rr3X6tWLWJjY6/7fhd9++23zJ0794bvf6MuF/fgwYN5+OGHad++Pe3btycsLIzmzZszc+bMq/ZZUK9RkfzkXNABiBS04cOHk5SUxOzZsylatCipqakMGDCAIUOGMGHChAKNLTo6mooVKwLQv3//Ao3lWiQlJbFr1658329cXBy//PILv/32G05OTjfVl4+PD2vXrqVDhw62dUuXLqVUqVI33Gfz5s1p3rz5dd+vdevWvPvuu8CFBPaVV15hzpw59O3b94ZjuRHbt2/n/vvvz9d9Xk2vXr3o3bu3bfmff/6hdevWNGvWjAoVKlz2fgX1GhXJT0ru5K4WGxvLihUr+OWXX/Dy8gLA09OTESNGsGPHDuDCN/0RI0bw119/YTKZePjhh3njjTdwdnbmwQcfpHnz5vz1119MnDiRJ598Mseyp6cno0ePJjExEYvFQvfu3enSpUuOGA4dOsTIkSM5f/488fHxVK5cmY8++ohFixbxxx9/8P777+Pk5MS6deu4//776d27N9u2beP9998nLS0NFxcXXnvtNZo0aUJkZCRr167FbDZz5MgR3N3dGT9+/BU/7C4nJSWF0aNHs2/fPrKysmjQoAEDBw7E2dmZRYsWsWDBArKyskhKSuKFF17gqaee4u233yY9PZ327dsTGRlJzZo1efbZZ9m0aROpqalERESwatUq9u3bh5+fH9OnT8fT0/Oy/UVGRrJq1SqsViv//PMP/v7+jBs3Dn9/f1uc586d4/nnnyc7O5tOnToxdepUTp06ddnHZ9GiRaSlpeHl5cWcOXNyHXe7du1Yvny5Lbk7fvw4qamplC9f3tbmco9/eHg4zz77LC1btgSwfTmoUKECq1ev5rPPPrvi43olGRkZpKam4uvrC1yoXl18Pfx7edu2bYwaNQqTyUT16tWxWq22fmbMmMGiRYsoUqQIDz30EOvWrWP9+vVkZmYyceJEtm7disVioWrVqgwdOpTNmzezfv16fv31V9zd3QkJCWHIkCFkZmZiGAZdunTh6aefzhXv9OnTWbduHenp6aSlpTFo0CBatGjB1KlTOX78OPHx8Rw/fhx/f38mTJiAn5/fFeO+mpMnT2IYhu3/eMeOHUycOJG0tDTMZjMRERE0bdo012u0atWqbN68mRIlSgBQqVIlNm/ezP79+xk9ejSenp6cP3+egQMH8vHHH3PPPfewf/9+srOzGTFiBHXq1GHbtm2MGzfOFu+LL75oew2IFAhD5C62atUqo3PnzldsM3DgQGPUqFGG1Wo1MjIyjOeee8747LPPDMMwjAceeMBYsmSJra39clZWltG6dWvjjz/+MAzDMJKTk41WrVoZO3fuNKKioow2bdoYhmEY48aNM5YuXWoYhmFkZmYabdu2NVatWmUYhmE888wzxg8//GAYhmEMGjTI+Pzzz42EhASjQYMGxm+//WYYhmHs27fPqFevnnH06FFj8eLFRp06dYwTJ04YhmEYI0eONAYOHJjrmI4dO2ZUrlzZaNeuXY5bw4YNjREjRhiGYRiDBw82vv76a8MwDCM7O9sYMGCAMWPGDOPcuXNG165djYSEBMMwDGPnzp1GzZo1bf1e/Pvi4zF79mzDMAzjs88+M2rVqmWcPHnSsFgsRseOHY3ly5dfsb/FixcbNWvWNA4ePGgYhmFMmDDB6NevX57Hc/E+V3t86tata6SkpOT5XDdt2tTYvn270aBBAyMuLs4wDMP4+OOPjTlz5tieiyv1v2jRIqNPnz62x6xx48bGoUOHjMWLF9vWX+5x/bcpU6YY9evXN9q1a2e0bdvWqF27ttG2bVsjKSkpx+vhoovLGRkZRsOGDY1NmzYZhmEYK1asMB544AHj2LFjxoYNG4yWLVsaSUlJhtVqNd5++22jadOmhmEYxtSpU41x48YZVqvVMAzD+OCDD4xhw4bl2tfbb79te/2fOnXKeO211wyLxZIj9tjYWKN79+5GWlqaYRiGsXLlSqNt27a242revLntOXjxxReNyZMnXzHufxs0aJDRuHFjo127dkazZs2MevXqGX379jU2b95sGIZhJCYmGo899pjtvidPnjSaNGliHD9+PM/X6JkzZ3ItR0VFGZUrVzZiY2MNwzCMqKgoo0qVKsbu3bsNwzCML774wnj66acNwzCMHj16GCtXrjQMwzD27NljDB8+PFfMIvlJlTu5q5nN5qtWBzZs2MC8efMwmUy4uroSHh7O7Nmz6dOnDwAPPfRQjvYXlw8fPszRo0d55513bNvS09PZvXt3jkraW2+9xa+//srMmTM5fPgwp06dIjU19bLxxMTEcO+991KjRg0A7r//fmrXrs2WLVswmUxUq1aNgIAAAKpWrcratWvz7Mfd3Z1ly5blWDd16lTOnj0LwE8//cSuXbtYtGiRLXaAIkWKMH36dH7++WcOHz7MX3/9dcV4L1Yw7r33Xh544AFb1S0wMJCkpKSr9teoUSOCgoIA6Nq1K+3bt7/svq7l8alUqZKtupMXFxcXWrZsycqVK3nuuef44YcfmDNnDqtXr75q/61bt+b9998nPj6e3bt3c99993HffffZqsBXelzzYj8sm5WVxciRI3n99df54osvLnufffv24ezsTIMGDQBo27atrY+ff/6Zxx9/HG9vbwCefvppoqKibHGlpKSwadMm2/5KliyZq/8WLVowaNAgYmJiaNCgAUOHDsVsznn6dtmyZXn//fdZsWIFR44c4ffff89xHmO9evVsz0HVqlVJSkq6Ytx5uTgsm5qayuuvv46rqyv169cH4LfffiM+Pp5XXnnF1t5kMrF3797rGl4uXbo0ZcuWtS2XKVOGKlWq2OJesmQJAK1atWLkyJGsX7+ehg0b8sYbb1zzPkRuByV3clcLDg7m4MGDnDt3LscHflxcHP/5z3+YMmUKVqsVk8lk22a1WsnOzrYte3p65ujz4rLFYqFo0aI5EqjTp09TtGhRfvvtN9u6N954A4vFQqtWrXjkkUc4ceIExhV+8tliseSIB8AwDLKzs3FxccHd3d223mQyXbGvK7FarUyePNmWiCYnJ2MymTh58iTdunWja9eu1KlTh8cff5wff/zxsv24uLjk+fdFV+vP/hw6q9V61XPqrvb4/Pv5ykuHDh0YNmwYNWvWJCgoiOLFi19T/x4eHrbEcOfOnTzxxBO5+r7c43o1Li4uPPXUU3Tr1g3I/dxmZWXliMfexSFfZ2fnHNv+/di+8847hIaGAnD+/HkyMjJyxdG0aVNWr17Npk2b2Lx5Mx9//DGRkZG2LxQAf/75Jy+//DK9evWiUaNG1K1blxEjRti2X+41erm4r8TT05P333+f1q1b89VXX/Hss89isVioUKEC3377ra1dXFwcJUqUIC4u7rJ9/XsS1b9fK5eLOzw8nKZNm/Lrr7+yceNGpk2bxqpVq3Bzc7tq/CK3g2bLyl3N39+fsLAw3nnnHdssxHPnzjF8+HCKFy+Ou7s7jRs35r///S+GYZCZmcnChQtp2LDhVfsOCgrKUR07ceIEbdu25Y8//sjR7pdffuGVV16hdevWAPz+++9YLBbgwoevfSIJULNmTQ4ePEhMTAwA+/fvZ+vWrdSrV+/mHox/ady4MV999ZXtuPv27ct///tf/vjjD0qUKMHLL79M48aNbYmYxWLB2dkZi8VyXQnllfoDiIqKsn0gz58/n6ZNm16xv1vx+NSoUYP09HQmTZpEx44dr6v/rl27smTJEnbs2JHneVeXe1yvxU8//URwcDBwYeLHxddSXFwcW7ZsAS6cM2YYBj///DNwYaZuUlISAKGhoaxZs4aUlBQAW/XwYlxz584lMzMTq9XKf/7zHz788EMg5+vwzTff5Pvvv6dNmzYMGzYMLy8vjh49miPOrVu38uCDD/Lss89Sr1491q1bZ3s+L+dKcV9NsWLFGDRoEFOmTCEuLo6aNWty5MgRtm7dCsCePXto2bIlcXFxuV6jJUqUsE2wWLly5TXt79/Cw8PZs2cPnTp1YtSoUSQnJxMfH39DfYncCqrcyV1v2LBhfPLJJ4SHh+Pk5ERmZiaPPvoo/fr1A2Do0KG89957hIWFkZWVxcMPP8xLL7101X5dXV355JNPGD16NJ9//jnZ2dn079+fOnXqEB0dbWv3+uuv88orr+Dp6YmXlxd169a1fVg2a9aMDz/8MEdVpkSJEkyePJlRo0aRnp6OyWRi7NixBAUFsXPnzlv2uAwZMoTRo0fbjrthw4a2iQuLFi3i8ccfx2QyUa9ePUqUKMGRI0coV64cwcHBtGnT5povndGoUaPL9gcXEvC33nqL+Ph4KlaseNVLtdyqx6d9+/bMnTuXhx9++Jr7B3jwwQdxcnLi8ccfz7Nyc7nHNS/ff/8927dvx2QykZGRwT333MP48eMB6N69OwMGDKBly5YEBgYSEhICXKjwffzxxwwfPpwPP/yQKlWq2IZXGzRoQNeuXenWrRvu7u7cf//9eHh4APDyyy8zfvx4OnbsiMVioUqVKgwePBiAJk2aMG7cOFu7IUOGsGDBApycnHj00UepW7dujrjbtm3LmjVraNWqFVarlaZNm5KUlHTFy7hcKe5r0a5dO7799lvGjx/Phx9+yJQpU3j//ffJyMjAMAzef/99AgMDsVgsOV6jQ4cOZeTIkXh7e9OwYUPbhJXrMWDAAMaMGcNHH32EyWQiIiKCwMDA6+5H5FYxGTc6ZiMicptFRkbaZpnKzdu1axc7d+60Xedt1qxZ/P7773z00UcFG5iI3FKq3ImI3CWCgoKYOXMmCxcuxGQyUbp0aUaNGlXQYYnILabKnYiIiEgBOnfuHOHh4UyfPj3XkP6ePXsYMmQI58+f56GHHmLEiBFXnWykCRUiIiIiBeT333/nySef5PDhw3luf+utt3j33XdZvXo1hmGwcOHCq/ap5E5ERESkgCxcuJBhw4bh5+eXa9vx48dJT0+nZs2aAHTq1OmafuNa59yJiIiI3ELJyckkJyfnWu/t7W27iPhFo0ePvmw/p06dyjGD29fX94rXarxIyZ2IiIiIne9cKt3U/Q9+GMG0adNyrY+IiLBdZuta/Psi+oZhXNNFz5XcOaCbfdFJwWiTtReAc58MLuBI5EZ4vTyO1F8XF3QYcgM8G3UGoHHYzwUcidyIX1aEFnQI161nz565LoAO5KraXU1AQECOC2KfPn06z+Hbf1NyJyIiImLH5HL16tiV5DX8eiPKli2Lm5sb27dvp06dOixbtowmTZpc9X6aUCEiIiJix+xsuqnbzXrhhRdsP4s3ceJExo4dy+OPP05qaqrtIuRXosqdiIiIiB2TS/7XvtavX2/7e+bMmba/K1eunON3oK+FKnciIiIihYgqdyIiIiJ2bsXQakFSciciIiJi52YnVBQ0JXciIiIidhy9cqdz7kREREQKEVXuREREROxoWFZERESkEHH0YVkldyIiIiJ2TE5K7kREREQKDbODJ3eaUCEiIiJSiKhyJyIiImLHZHbsyp2SOxERERE7JifHHthUciciIiJix9HPuVNyJyIiImLH0YdlHbvuKCIiIiI5qHInIiIiYkfDsiIiIiKFiC5iLCIiIlKImMyOfdaaY0cvIiIiIjmociciIiJix9Fnyyq5ExEREbGjCRUiIiIihYgqdyIiIiKFiCZUiIiIiMgdQ5U7ERERETsalhUREREpRDShQkRERKQQUeVOREREpBDRhAoRERERuWOociciIiJiR8OyIiIiIoWIkjuR61Djy3Gk7NrHwUlf5trm1yqUSqPfxOzqSsquvcT0eYfslPNgNlN1wmB8H3sYk7MTByd9ydEZ8wsg+rvXxkMnmfbrn2RZrFQs5c27j9bGy83Ftn3lnqPM3XHAtnwuM4u4c2n88NzjlCziTrPPvsPfy8O2vXud+2ld+Z58PYa71cbf/2Lq4jVkZmVz/z0BDHu2E14e7jna7I89yfi5KziXlo7ZZGZozw5Uva+sbfvJhER6vDedBSP64VO0SH4fwl2vwUMleLFHEK4uZv4+fJ6xU/aSmma5rnYr5zYk/nSGre03kcdY+/OpfDsGR+PoyV2+nnM3ePBgIiMjr/t+MTExTJgwAYB169YxefLkWxrX1KlTmTp1aoHcf+HChaxcufKG9+0ovCqXp/6a2QR0apnndtdSPgR/PpbtXfvx84OPk3roGJXHDACgXJ9witx/HxtqtuWXBl0I6teTYnWr52f4d7WzqRmMWLudCW3qE9mzBYHFijD11z9ztGlb5V7mPd2MeU834+vwRyjp6cagR2pQsog7h8+mUMzdxbZ93tPNlNjlk4Tkcwz7cjETXnmKpWPfINC3BFMWrc7RJi0jk5c/mEXPVk2YP7wfL7RrypAZC2zbV/y6g97jZhKfmJzf4QtQ3NuFd/pXYujY3TzVdyv/nEyjb6+g62p3T1kPUlKyeLb/dttNiV3h5hATKg4cOMCZM2cAaN68Of379y/giG6dHTt2kJmZWdBh3Hbl+j7NsS+/5cTiVXluL9WiMUnbdpF64AgARz6bR5knwwDwb/8ox2ZHYlgsZCcm88/C7yj7VLt8i/1ut/noKar6+3CvjxcAXYKD+GHvMQzDyLP97O37KOHpRufqFz5YYv5JwGwy0fvbDXT77zpmRP+FxZr3feXWivrzANWCAinnXwqAJ5rW54eo33I8d1F/HiDQtwQPB1cC4JGaVRjf90kATp1N5qedu/nkjWfzP3gBoG4tH/bsTyH2RBoAS374hxah/tfVrnplbyxWg4/H1eSrKXXoFV4OB58MetuZzOabuhW0qw7LRkdH88knn+Ds7ExsbCzBwcH07duXl19+GR8fH9zd3fniiy8YM2YMmzdvxmQy0a5dO/r06YNhGIwbN46ffvoJPz8/LBYL9erVIzY2lh49erB+/XoAW9WrX79+rFixgk8//RSTyUT16tUZOHAgU6ZMITU1lU8//RR/f3+2bNnCuHHj+O233xg9ejQZGRn4+PgwcuRIypUrR/fu3alevTrbt28nISGBoUOHEhoaesXjjImJ4YknniA1NZWuXbvSs2dPoqOjmTZtGnPmzAEuVB7r1atHp06d+Pzzz1m4cCE+Pj54e3sTHBwMwPfff8+UKVPw9PSkSpUqWCwWxo0bR0xMDGPHjiU9PR0fHx9GjBjBsWPHWL9+PVFRUfj6+vLwww/f1JN5J/uz/ygASrVolOd2j8AA0mJP2pbTY0/iUqwozkWL4BFYmvTYE5e2HT+Jd/VKtzdgsYlLSSXAbkjVz8uD85nZnM/MzjE0C3A2LYP/7jjAf59saluXbVipf68f/RpVI9tqpf+yzXi5OvNUrYr5dgx3q5MJSfiXKGZb9vPx5lxaBufTM2xDs0fiTlOymBfDv1zMvmMnKerpzmtdH7e1/yDimQKJXS7w93XjlN1wavzpDLyKOOPp4ZRjaPZK7ZycTGz7LZHpsw/i7Gzi/Xercz41m2+XH8/XY3Ekd8VFjHfu3MnSpUsJCgqif//+/Pzzzxw6dIjPP/+cwMBA5s6dy4kTJ1i+fDmZmZl0796dBx54gPT0dHbv3s3KlStJSUmhXbsrV1vi4uIYO3YskZGRBAQE8NZbb7Fjxw5effVVtmzZQt++fW3DupmZmbzxxht89NFHBAcH88MPP/DGG2+wePFiALKysliwYAHr169n8uTJV03u4uPj+eabb7BarXTq1Il69epdtu2uXbtYvHgxS5YswWQy0a1bN4KDg0lISGDMmDEsXrwYX19fXn31Vby8vMjMzGTo0KFMnz6dMmXKsHHjRv7zn//w1Vdf0axZM+rVq1eoE7trYjZDHpUgw2IFsynnNpPpwnrJF4YBmHK/0TnlcU7Kkl2HCS1fmsBil87L6vRgziGkp2tVZP7vfyu5yweGYZDXR5STXWUhO9vCr7v2MeOt56le4R5+3LmbfpNm8/2Egbi66LTsgmYymfJ6a8T6r+r3ldqtWHPpizMZsGBZLF3Cyiq5u4K74py7unXrUr58eUwmE+3btycqKoqSJUsSGBgIXKjudezYEScnJzw8PAgLC2Pz5s1s2bKFxx57DBcXF0qUKEGTJk2uuJ+dO3dSu3ZtAgICAJgwYQKPPvponm0PHz6co2LWqlUrjh49SkpKCoAtWbr//vtJTEy86jG2bt0aT09PvLy8aNq0KVu2bLls2y1bthAaGkqRIkXw9PTk8ccvfMvdtm0btWrVwt/fH7PZTIcOHWyxHjt2jL59+9K+fXsmTpzIsWPHrhrT3ST92AncSvvZlt3L+pOZkIglNS33ttJ+pB0/mVc3chsEeHtw+nyabTn+XDrebi545PHBv2Z/LO2qlsux7rs9R9kfn2RbNgDnO2DY4m4QULIY8YkptuVTZ5PxLuKBh5urbZ1vcW+CSvtSvcKF8yCb1qqKxWolNj4h3+OVC3o/fR+zJtdh1uQ6hD0WQKkSl56vUiXdSE7JIj0j5xfcuPj0y7Zr2dSPCvdd+sJlAizZOjXiShx9WPaaInBycrL9bRgGTk5OuLtfmm1lteZ8kRmGgcVi+f9vEpdeQM7OFz4M/r0+Ozvbtt1kVyFISEggISHvN5h/79N+vwBubm62fV2Li7Fd7PtiLPZxZmVl5Rn/xfuazeY847JarQQGBrJs2TKWLVtGZGQk33zzzTXFdbeIX/sLPvVr4FnxQmJwb59w4lasAyBuxTru6dUZk5MTzsWKUqZrG+KW/a8gw72rhNzrz64TZzl69hwAi3YdIrR86VztktMzOZZ4nuDSJXKs//tMMp9G7cFiNUjPtrDw94O0eKBsrvvLrdeg2v3sOniUI3GnAVj00xYeqVklR5tGwQ9w/PRZdh++UMXZvvcQJpOJsr4++R6vXPDF3MO2iQ99BuykWiVvAktfODWiQ6sybIw+k+s+W3aevWy78vcWoffT92E2g6urmc5ty7JuoyZUFGbXlNxt376duLg4rFYrS5cuzVWBCwkJYenSpVgsFtLS0lixYgX169enQYMG/PDDD2RmZpKUlMTGjRsB8Pb2JjExkYSEBDIzM23rq1evzm+//UZ8fDwAY8aMYd26dTg5OdkSwIvKly9PYmIiMTExwIVz3cqUKUPx4sVv6IFYvXq1Lc6ffvqJkJAQfHx8OHbsGBkZGSQmJrJ9+3YAGjRowI8//khKSgoZGRmsXbsWgNq1a7Nr1y5OnTqFYRh8//33mEwmypcvT1JSEtu2bQNg8eLFDBhwYSaok5OTLSG92xSr8yCNty0FIDM+gd+ff5s6C6YQGvM9RR98gD1vjQfgyPR5pB48xsPbl9F48yKOzVpEwsatBRj53aWEpxvDWtRm4PfRdP56LQdOJ/F6k+rsjjvLk3PX29odSzxPqSLuuDjlfFt5oX5lirm70G3uOsL/u47g0iXoWO2+fD6Ku1MJby+GP9eFtz7+hk5DJnEg9iRvdGvNn4di6TbswrnOpYoV5cOIZxg7Zxld/vMRH8z/jg9eeRo3F5er9C75ITEpizGT9/Le21X57ycPUf6+Ikz74m8AKlX0YtbkOldt9+X8I6SkZDF76kPMnlqHXXuScw7VSi4ms+mmbgXtmk6o8PPzY+DAgcTFxdGoUSMaNmzIjBkzbNu7devG4cOHad++PVlZWYSFhdGiRQvgwvlpbdu2pVSpUlSoUAGAokWL8vzzz9OlSxcCAgKoXv3CZS38/f0ZMmQIvXv3xmq1UrNmTTp16sTRo0eZNm0aEydOpHz58gC4uroyadIkRo0aRVpaGsWKFWPSpEk3/ECUKVOG8PBwMjIyePHFF22xhoaG0qZNG8qWLUudOhf+iapUqULPnj3p0qUL3t7elClTBoASJUowdOhQnnvuOVxdXQkMDMTb2xtXV1cmT55sm/zh5eXF+PEXEpeGDRvy4YcfUrRoUdvwbmEW0/tt299J2//gl4c62JbjV20gftWGXPcxLBZ2vzkmP8KTy2gcFEDjoIAc64q5uzLv6Wa25WoBPizr9Viu+3q4ODOsRZ3bHqPk7eHgSraZsBcV8/JkwYh+tuU6lYKY85+Xr9jPzi/1P1hQorYnELU99yjW3gPneLb/9qu2y8iwMnbKvtsaY2FzJyRoN8NkXO56Bv/v3zNG5fLOnj3LnDlziIiIwGw2895779lm795K37lopqgjapO1F4Bznwwu4EjkRni9PI7UXxcXdBhyAzwbdQagcdjPBRyJ3IhfVlx5QuTtcPSlTjd1/3unX/81fW+lu2Yq1FdffcWSJUtyrffz82PmzJm3ZB/FixcnOTmZtm3b4uTkRLVq1ejatest6VtERETyh6NX7q6a3NWvX5/69evnRyy3Va9evejVq9dt3YfJZGLo0KG3dR8iIiIiV3LXVO5ERERErsWdcDmTm6HkTkRERMTeNV5G7U6l5E5ERETEjqOfc+fYdUcRERERyUGVOxERERE7OudOREREpBBx9GFZJXciIiIidlS5ExERESlEHL1y59ipqYiIiIjkoMqdiIiIiB1V7kREREQKE7P55m7XYcWKFbRu3ZrHHnuMuXPn5tr+559/0rlzZ9q1a8eLL75IcnLy1cO/rghERERECjmTyXRTt2sVFxfHpEmT+Oabb1i6dCkLFizgwIEDOdqMHj2aV199leXLlxMUFMQXX3xx1X6V3ImIiIjYMZnNN3W7Vps2bSIkJITixYvj6elJy5YtWbVqVY42VquV8+fPA5CWloa7u/tV+9U5dyIiIiK3UHJycp7Dp97e3nh7e9uWT506ha+vr23Zz8+PmJiYHPcZPHgwzz33HGPGjMHDw4OFCxdedf9K7kRERETs3OyEitmzZzNt2rRc6yMiIujXr59t2Wq15hjGNQwjx3J6ejpDhgzhq6++Ijg4mFmzZjFo0CBmzJhxxf0ruRMRERGxd5MXMe7ZsycdO3bMtd6+agcQEBDAtm3bbMvx8fH4+fnZlvft24ebmxvBwcEAdOvWjcmTJ191/0ruREREROzcbOXu38Ovl9OwYUOmTp1KQkICHh4erFmzhlGjRtm2lytXjpMnT3Lw4EHKly/PunXrqF69+lX7VXInIiIiUgD8/f15/fXX6dGjB1lZWXTp0oXg4GBeeOEFXn31VapXr87YsWN57bXXMAyDkiVLMmbMmKv2q+RORERExI7JlH8XEwkLCyMsLCzHupkzZ9r+Dg0NJTQ09Lr6VHInIiIiYs/Bf6FCyZ2IiIiIneu5Vt2dSMmdiIiIiB39tqyIiIiI3DFUuRMRERGxl48TKm4HJXciIiIidhx9WFbJnYiIiIg9TagQERERKTzsf9/VETl2aioiIiIiOahyJyIiImJPw7IiIiIihYcmVIiIiIgUJg5+KRTHjl5EREREclDlTkRERMSegw/LmgzDMAo6CBEREZE7xfnPhtzU/Yu8OPoWRXJjVLlzQOc+GVzQIcgN8Hp5HADfuVQq4EjkRrTJ2sta/wcLOgy5AS3i/gCg24AjBRyJ3IgFE8vl/04dvHKn5E5ERETEjsnBL4Xi2NGLiIiISA6q3ImIiIjYc/CfH1NyJyIiImLPwYdlldyJiIiI2HPwyp1jp6YiIiIikoMqdyIiIiJ2HH22rJI7EREREXsO/tuySu5ERERE7OkixiIiIiKFh8nBK3eOHb2IiIiI5KDKnYiIiIg9DcuKiIiIFCIOPiyr5E5ERETEnoNfxFjJnYiIiIg9B7/OnWNHLyIiIiI5qHInIiIiYk/n3ImIiIgUIpotKyIiIlKIOHjlzrGjFxEREZEcVLkTERERsadLoYiIiIgUIg5+KRQldyIiIiL2VLkTERERKUQ0oUJERERE7hSq3ImIiIjY0zl3IiIiIoWIzrkTERERKUQc/Jw7JXciIiIi9hy8cufYqamIiIiI5KDKnYiIiIg9TagQERERKTwMBx+WVXInIiIiYs/BJ1Q4dvQiIiIikoMqdyIiIiL2HLxyp+RO8sXGQyeZ9uufZFmsVCzlzbuP1sbLzcW2feWeo8zdccC2fC4zi7hzafzw3OOULOJOs8++w9/Lw7a9e537aV35nnw9hrtdjS/HkbJrHwcnfZlrm1+rUCqNfhOzqyspu/YS0+cdslPOg9lM1QmD8X3sYUzOThyc9CVHZ8wvgOjvXqUebULFIa9hdnXh3O59/Pn6u1jOnc/R5p7eT3HPc09iTc/g/P6D7Bn8HtmJyWA2U3nsEHwaPATA6XUb2T9iYkEcxl2rVhUPnmxVHBdnE0dPZDJ94RnSMoxrbjNzRCAJiRZb2xU/JfPLzpzPv+Tm6Ofc3TGpaWRkJIMHD861Pjo6mu7du19TH0OGDGHXrl251g8ePJjIyMibjlFuzNnUDEas3c6ENvWJ7NmCwGJFmPrrnznatK1yL/Oebsa8p5vxdfgjlPR0Y9AjNShZxJ3DZ1Mo5u5i2z7v6WZK7PKRV+Xy1F8zm4BOLfPc7lrKh+DPx7K9az9+fvBxUg8do/KYAQCU6xNOkfvvY0PNtvzSoAtB/XpSrG71/Az/ruZS0odqk0cR89xrbGoURuqRWO4f+nqONj6N6nJfxHNs7/I8Uc27cPp/G6k6cTgApZ8Io0jF+9j8SEeimnXGp8FD+IU9VgBHcncqWsRM324l+fDreF5//x/iErJ5qo3PNbcp7evMuVQrgyadsN2U2F0jk/nmbgWs4CO4hUaPHk316vrguNNsPnqKqv4+3OvjBUCX4CB+2HsMwzDybD97+z5KeLrRuXoQADH/JGA2mej97Qa6/XcdM6L/wmLN+75y65Xr+zTHvvyWE4tX5bm9VIvGJG3bReqBIwAc+WweZZ4MA8C//aMcmx2JYbGQnZjMPwu/o+xT7fIt9rtdyUcakrTzT1IPHQUgdvYCAjq3ydHGO7gaCRuiyDgRB0Dc9//D97FHMLk4Y3JywsnTA7ObK2ZXF8yuLlgzMvL9OO5WNR7w4O9jGZw8nQ3A2k0pNK5V5JrbVLrPDcMKw1/25/03StO5RTFHvzZv/jGZbu5WwG5JchcWFsbff/8NwJtvvsmwYcMA2LlzJ3369GH69Om0bt2asLAwxo0bh8ViITY2lscff5wnn3ySZ599Nkd/v/zyC23atKFTp04sXLgQgNWrV/Paa68BcOjQISpVqsTp06cB6N27NzExMXTv3p3o6GgMw2Ds2LG0bNmS7t27c/ToUVvfS5cupWPHjrRv35533nmHjKu8UUVHRxMWFkaHDh0YPny4rYrYvXt3IiIiaNmyJXv27OHHH3+kffv2hIWF8fLLL9tiGz9+PO3ataNDhw5MmzYNgM2bN9OpUyc6derEs88+S0JCws08/He8uJRUAuyGVP28PDifmc35zOxcbc+mZfDfHQd4o0mwbV22YaX+vX5M69CQz594mKgjcSz4/e98iV3gz/6j+Gf+ystu9wgMIC32pG05PfYkLsWK4ly0CB6BpUmPPXFp2/GTeJQNuK3xyiXuZQLI+OfSc5PxTxwu3kVx8rqUICTtiMGncX3cA0sDUDa8A2Y3V1x8ivPP/KVkJSbT5Ld1NNn1E6mHjnJ6zc/5fRh3rZLFnThjN6R6JsmCp4cZDzfTNbUxm03s2p/G2M9PMfyTk9R4wJ1WjYvm6zHI1a1YsYLWrVvz2GOPMXfu3FzbDx48SPfu3WnXrh29e/cmKSnpqn3ekuQuNDSUzZs3A7Bv3z527NgBwMaNG3nkkUdYv349ixcvZsmSJRw5coT58y+cc3Po0CEmTJjArFmzbH1lZmYyePBgpkyZQmRkJO7u7gA0atSI7du3YxgGUVFRlCxZki1btpCens6hQ4dyVOxWr17N7t27WblyJZMnT7Yld/v372fhwoXMnz+fZcuWUbJkSb744ovLHldWVhYDBw5kwoQJLF26FGfnnKcoVqpUidWrV+Pn58e7777Lxx9/zIoVK6hduzYjR47k+PHjbNiwgeXLlzNv3jwOHDhARkYGn3zyCcOHDycyMpKGDRuye/fuW/As3LkMgzy/yTiZc69bsuswoeVLE1js0odPpweDGPhIDTxcnCnq5srTtSry49//3M6Q5XqYzf//JOdkWKxgNuXcZjJdWC/5w2zOs0JuWC89B4nROzj4wafUmDWZ+qsXYFitZCYkYmRlUWFAXzLPnOXnB0PZWLM5Lj7FKPdSz/w8gruayZTnvxZW49rarI8+x6ylZ8nINEhNN1i5IYW6D3revoALE7P55m7XKC4ujkmTJvHNN9+wdOlSFixYwIEDl84/NwyDvn378sILL7B8+XKqVKnCjBkzrh7+DR30v1xM7g4cOEDFihUxm82cOXOGDRs2sGvXLtq0aYOHhwfOzs507tzZlgiWLFmSwMDAHH3t3bsXPz8/KlSoAEDHjh0B8PLyIigoiL179xIVFUXPnj3ZunUr0dHRhISEYLJLHrZs2cJjjz2Gi4sLJUqUoEmTJsCFKtyRI0fo2rUr7du3Z926dRw8ePCyx7Vv3z5KlixJ5cqVAejSpUuO7cHBF6pLMTExBAcH246lW7duREVF4e/vj5ubG+Hh4Xz99dcMGDAANzc3mjdvTkREBCNHjqRq1ao0btz4hh97RxDg7cHp82m25fhz6Xi7ueDhkns+z5r9sbSrWi7Huu/2HGV//KVvKgbg7OBXDy9M0o+dwK20n23Zvaw/mQmJWFLTcm8r7Ufa8ZN5dSO3QXrsCdwCfG3LbqX9yDqbhDX10v+jUxFPzm7aSnSLrkS37Eb8qh8ByDqbhF+bR/lnXiRGVjbZKef4Z8EyfBrXy/fjuFudTrTg4+1kWy5RzIlzqRYyMo1ravNw7SLcW/rSxDWTCSwWndJyLQyT6aZuycnJxMbG5rolJyfn2M+mTZsICQmhePHieHp60rJlS1atunQKzJ9//omnp6ctj3nppZd4+umnrxr/LfmErFWrFn/99RebNm2iXr161K1bl1WrVpGdnY23t3eu9tnZF4bjLlbl7JlMphzfNJ2cLr1oH3nkEX799VcOHjxI165d2bZtGxs2bKBp06ZX7ONixc1isdCqVSuWLVvGsmXL+Pbbb3n33Xcve1xOTk5YrZevMlyM/99tDMMgOzsbZ2dnvv32W/r3709iYiLh4eEcOnSIXr16MWfOHO69914mTJjAp59+etl9FAYh9/qz68RZjp49B8CiXYcILV86V7vk9EyOJZ4nuHSJHOv/PpPMp1F7sFgN0rMtLPz9IC0eKJsvscvVxa/9BZ/6NfCseCEpv7dPOHEr1gEQt2Id9/TqjMnJCediRSnTtQ1xy/5XkOHeVc78vIlidWrgGXQvAIE9u3Fq1focbdwC/HhoySzbUG3Qa304ueR7AJJj9uDf7nEATM7O+LZsStL23/PxCO5uMfvSuL+cGwGlLnyGtQgpyrY/0665zT2lXejasjgmE7g4m2jZqCibfk/N34NwVDc5oWL27Nk0b94812327Nk5dnPq1Cl8fS99AfPz8yMuLs62fPToUUqVKsU777xDx44dGTZsGJ6eV6++3pLkztnZmeDgYObMmUO9evUICQlh+vTphIaGEhISwnfffUd6ejrZ2dksXryYkJCQy/Z18Vy6v/76C4DvvvvOti00NJT58+dTsWJFfHx8cHFx4ccff6Rhw4Y5+mjQoAE//PADmZmZJCUlsXHjRgDq16/P2rVrOXPmDIZhMHz48FwPtL3y5cuTnJzM3r17gQvj4nmpUaMGv//+O7GxsQAsWLCA+vXrs3v3bp555hnq1q3LoEGDqFChAocOHeKJJ57g/Pnz9OrVi169ehX6YdkSnm4Ma1Gbgd9H0/nrtRw4ncTrTaqzO+4sT8699EFzLPE8pYq44+KU82X5Qv3KFHN3odvcdYT/dx3BpUvQsdp9+XwUYq9YnQdpvG0pAJnxCfz+/NvUWTCF0JjvKfrgA+x5azwAR6bPI/XgMR7evozGmxdxbNYiEjZuLcDI7y5ZpxPY3X8owV9MosHG5XhVuZ99wyfgXaMaIesWAZD692EOT/2Cej/Mo+GvKzC7ubJ/5AcA7Ht3PC7FitLwl+WErFtExok4Dk/LfSkcuT2Sz1n5dMFp3ujhy4dvleGe0i58vfws5QNdGf966Su2AVi0JolzqVYmDijNhDdLs+9wBuujzxXkITkMw2S+qVvPnj1Zt25drlvPnjlPa7BarTlGHg3DyLGcnZ3Nli1bePLJJ1myZAn33HMP48aNu2r8t+w6d6GhoWzdupUKFSrg6+vLmTNneOSRR6hVqxZ79uyhc+fOZGdn07hxY5555hlOnsx7aMbFxYUPP/yQt956C2dnZ6pWrWrbVqFCBQzDoF69C8MC9erVY//+/RQpknP20KOPPsquXbto27YtpUqVsg3xVq5cmYiICHr27InVaqVKlSr06dPnssfk6urK+++/z6BBgzCbzQQFBeVZbSxVqhQjR44kIiKCrKwsypQpw+jRo/Hz86NmzZq0bdsWDw8PateuTZMmTfDw8GDw4ME4Ozvj6enJe++9d92Pt6NpHBRA46CcJ9IXc3dl3tPNbMvVAnxY1iv3ZRY8XJwZ1qLObY9Rriym99u2v5O2/8EvD3WwLcev2kD8qg257mNYLOx+c0x+hCeXcXrdRk6v25hjXXLin0Q1v3SaybEv53Hsy3m57pt1NoldLw287THK5f32Vzq//XUix7qDsZkMmnTiim0AMrMMpi88c9tjlNy8vb3zHLn8t4CAALZt22Zbjo+Px8/v0qksvr6+lCtXzjavoG3btrz66qtX7ddkXO56FILVamXixIlERETg6enJrFmziIuLy/N6fPnp3CcFu3+5MV4vX/i29Z1LpQKORG5Em6y9rPV/sKDDkBvQIu4PALoNOFLAkciNWDCx3NUb3WLnovMeqbtWXvXDrqldXFwcTz75JIsWLcLDw4Pw8HBGjRplO6c/PT2dRx99lM8//5zKlSszY8YM9u/fz4QJE67Yr36hgguXNfn3SY4A4eHhFC9enC5duuDi4kLZsmUZPXp0AUQoIiIi+cXIpwsR+/v78/rrr9OjRw+ysrLo0qULwcHBvPDCC7z66qtUr16djz/+mKFDh5KWlkZAQADvv//+VftV5c4BqXLnmFS5c2yq3DkuVe4cW0FU7lK2fn9T9y9at/UtiuTG6HoSIiIiIoWIhmVFRERE7N0Bvw97M5TciYiIiNgx7oDfh70ZSu5ERERE7KlyJyIiIlJ4GDh25c6xU1MRERERyUGVOxERERE7+XWdu9tFyZ2IiIiIPSV3IiIiIoWHZsuKiIiIFCKOPizr2NGLiIiISA6q3ImIiIjY07CsiIiISOHh6MOySu5ERERE7OgixiIiIiJyx1DlTkRERMSOhmVFREREChNNqBAREREpPAwHP2tNyZ2IiIiIHUf/hQrHTk1FREREJAdV7kRERETsaEKFiIiISCHi6Ne5U3InIiIiYkeVOxEREZFCRBMqREREROSOocqdiIiIiB2dcyciIiJSiOicOxEREZFCxNErd46dmoqIiIhIDqrciYiIiNjRsKyIiIhIIeLow7JK7kRERETsOHrlzmQYhlHQQYiIiIjcKQ7+/fdN3b98hQq3KJIb49ipqYiIiIjkoGFZB5T66+KCDkFugGejzgCs9X+wgCORG9Ei7g++c6lU0GHIDWiTtReAnu+eLOBI5EbMHhmQ7/t09J8fU3InIiIiYscwlNyJiIiIFBqGg5+1puRORERExI6jXwrFsVNTEREREclBlTsRERERO45euVNyJyIiImJHyZ2IiIhIIeLoyZ3OuRMREREpRFS5ExEREbGj69yJiIiIFCKOPiyr5E5ERETEjpI7ERERkULE0ZM7TagQERERKURUuRMRERGxowkVIiIiIoWI1cGHZZXciYiIiNjROXciIiIicsdQ5U5ERETEjqOfc6fKnYiIiIgdA9NN3a7HihUraN26NY899hhz5869bLuffvqJZs2aXVOfqtyJiIiI2Mmvyl1cXByTJk0iMjISV1dXwsPDqV+/PhUrVszR7vTp04wfP/6a+1XlTkRERMROflXuNm3aREhICMWLF8fT05OWLVuyatWqXO2GDh1KRETENferyp2IiIjILZScnExycnKu9d7e3nh7e9uWT506ha+vr23Zz8+PmJiYHPf5+uuvqVq1KjVq1Ljm/Su5ExEREbFzs8Oys2fPZtq0abnWR0RE0K9fP9uy1WrFZLq0L8Mwcizv27ePNWvW8NVXX3Hy5Mlr3r+SOxERERE71pu8f8+ePenYsWOu9fZVO4CAgAC2bdtmW46Pj8fPz8+2vGrVKuLj4+ncuTNZWVmcOnWKp556im+++eaK+1dyJyIiImLnZit3/x5+vZyGDRsydepUEhIS8PDwYM2aNYwaNcq2/dVXX+XVV18FIDY2lh49elw1sQNNqBARERHJIb8mVPj7+/P666/To0cPOnToQNu2bQkODuaFF15g165dNxy/KnciIiIiBSQsLIywsLAc62bOnJmrXWBgIOvXr7+mPpXciYiIiNhx9F+oUHInIiIiYud6f2XiTqPkTkRERMSO1SjoCG6OJlSIiIiIFCKq3ImIiIjY0bCsiIiISCGiCRUiIiIihYjh4OfcKbmTfLHx97+YungNmVnZ3H9PAMOe7YSXh3uONvtjTzJ+7grOpaVjNpkZ2rMDVe8ra9t+MiGRHu9NZ8GIfvgULZLfh3BXK/VoEyoOeQ2zqwvndu/jz9ffxXLufI429/R+inueexJregbn9x9kz+D3yE5MBrOZymOH4NPgIQBOr9vI/hETC+Iw7mo1vhxHyq59HJz0Za5tfq1CqTT6TcyurqTs2ktMn3fITjkPZjNVJwzG97GHMTk7cXDSlxydMb8Aor971XjAjSce9cLZ2cSxk9l8sSyJ9AzjmtpEdCuOXwknWztfHyf2Hs7ko28S8/koHI/VwYdlNaEiH7399ts0b96c5cuX88ILLwDw448/MmvWrAKO7PZKSD7HsC8XM+GVp1g69g0CfUswZdHqHG3SMjJ5+YNZ9GzVhPnD+/FCu6YMmbHAtn3FrzvoPW4m8YnJ+R3+Xc+lpA/VJo8i5rnX2NQojNQjsdw/9PUcbXwa1eW+iOfY3uV5opp34fT/NlJ14nAASj8RRpGK97H5kY5ENeuMT4OH8At7rACO5O7kVbk89dfMJqBTyzy3u5byIfjzsWzv2o+fH3yc1EPHqDxmAADl+oRT5P772FCzLb806EJQv54Uq1s9P8O/qxX1NPF8B2+mzk9k8JTTxJ/NpmuLotfcZtqCRN799AzvfnqGWcuSSE03+Hql3kPvBkru8tGSJUv44YcfaNeune3q03/88Qfnzp0r4Mhur6g/D1AtKJBy/qUAeKJpfX6I+g3Dru4d9ecBAn1L8HBwJQAeqVmF8X2fBODU2WR+2rmbT954Nv+DF0o+0pCknX+SeugoALGzFxDQuU2ONt7B1UjYEEXGiTgA4r7/H76PPYLJxRmTkxNOnh6Y3Vwxu7pgdnXBmpGR78dxtyrX92mOffktJxavynN7qRaNSdq2i9QDRwA48tk8yjx54Wr5/u0f5djsSAyLhezEZP5Z+B1ln2qXb7Hf7R6s6MbBf7KIS7AAsH5rGg2C3a+7jZMTvNCpON/8kExCsjV/gndwhmG6qVtB07DsdYiOjuaTTz7B2dmZ2NhYgoOD6du3Ly+//DI+Pj64u7vzxRdfMGbMGDZv3ozJZKJdu3b06dOHl156CcMweOKJJxg1ahSvvfYaM2bMYP78C0McZcqUoXPnzgV8hLfHyYQk/EsUsy37+XhzLi2D8+kZtqHZI3GnKVnMi+FfLmbfsZMU9XTnta6P29p/EPFMgcQu4F4mgIx/TtqWM/6Jw8W7KE5eRWxDs0k7Yrjn+adxDyxNeuwJyoZ3wOzmiotPcf6ZvxT/sMdo8ts6TM7OnPlpE6fX/FxQh3PX+bP/hR8hL9WiUZ7bPQIDSIu99Pymx57EpVhRnIsWweP/n0/btuMn8a5e6fYGLDYlijmRkHQpGUtItuDpbsbdzWQbmr2WNqG1PUhMsbB9j75UXSudc3eX2blzJ0uXLiUoKIj+/fvz888/c+jQIT7//HMCAwOZO3cuJ06cYPny5WRmZtK9e3ceeOABpk+fTqVKlVi2bBmxsbEAVKxYkfDwcIBCm9gBGEbek8qdzJcKx9nZFn7dtY8Zbz1P9Qr38OPO3fSbNJvvJwzE1UUv0wJlNueosl5kWC99oCRG7+DgB59SY9ZksBocnxdJZkIiRlYWFQb0JfPMWX5+MBQnd3dqzJ5CuZd6cmT67Pw8CrkcsznPTzLDYgWzKec2k+nCeskXJhOQR5Jh9693TW1aNijCrOUajr0ejn4pFA3LXqe6detSvnx5TCYT7du3JyoqipIlSxIYGAhcqO517NgRJycnPDw8CAsLY/PmzQUcdcEKKFmM+MQU2/Kps8l4F/HAw83Vts63uDdBpX2pXuEeAJrWqorFaiU2PiHf45Wc0mNP4Bbga1t2K+1H1tkkrKlptnVORTw5u2kr0S26Et2yG/GrfgQg62wSfm0e5Z95kRhZ2WSnnOOfBcvwaVwv349D8pZ+7ARupf1sy+5l/clMSMSSmpZ7W2k/0o6fzKsbuQ0SEi0UL3rpY9qnqJlzqVYys4xrbnNvgDNmM/x1ODP/Ai8ErMbN3Qqakrvr5OR0aeaRYRg4OTnh7n7p/AarNee3WsMwsFgs+RbfnahBtfvZdfAoR+JOA7Dopy08UrNKjjaNgh/g+Omz7D58HIDtew9hMpko6+uT7/FKTmd+3kSxOjXwDLoXgMCe3Ti1an2ONm4Bfjy0ZBZOXhdmMQe91oeTS74HIDlmD/7tLgyxm5yd8W3ZlKTtv+fjEciVxK/9BZ/6NfCsWA6Ae/uEE7diHQBxK9ZxT6/OmJyccC5WlDJd2xC37H8FGe5dZdffmVS4xwX//5/x2qyuJzv/Sr+uNpWDXNlzSInd3UbjXddp+/btxMXF4evry9KlS2nSpAl//fWXbXtISAhLly6ladOmZGZmsmLFCl566aXL9ufk5ERGIT+5vIS3F8Of68JbH39DtsVCoG8JRj3/BH8eimXkV0tYMKIfpYoV5cOIZxg7ZxlpmZm4OjvzwStP4+biUtDh3/WyTiewu/9Qgr+YhMnFhbQjx/gj4m28a1Sj6ocjiGrehdS/D3N46hfU+2EeJrOJxC07+evt0QDse3c8lccOoeEvyzEsVhJ+iebwtNyX45D8U6zOg1T/7D1+eagDmfEJ/P7829RZMAWziwvnDx7l92cHAXBk+jw8y9/Lw9uXYXZ14ejMBSRs3FrA0d89Us5b+XxJEhHhxXF2MnEqIZsZkUncV8aZ59oX491Pz1y2zUX+JZw4nXh3FxhuxJ0wKeJmmIy8TqaRPEVHRzN8+HD8/PyIi4ujUaNG9OzZk169erF+/YVKRlZWFuPHjycqKoqsrCzCwsKIiIgAoFKlSuzdu5fY2Fh69OjB+vXr2bp1K4MGDeLZZ5+le/fu1xRH6q+Lb9sxyu3j2ejCeZVr/R8s4EjkRrSI+4PvXDSZwBG1ydoLQM93NaTsiGaPDMj3fX6/I+um7t+6dsEWJlS5u06lSpVi9uycJ4JfTOwAXFxcGDp0aJ733bv3whtMYGCg7T5169bNcX8REREpWLqIsYiIiIjcMVS5uw7169enfv36BR2GiIiI3EaOfsKakjsRERERO44+oULJnYiIiIidO+FadTdDyZ2IiIiIHUcfltWEChEREZFCRJU7ERERETuO/tuySu5ERERE7OicOxEREZFCxNHPuVNyJyIiImLH0ZM7TagQERERKURUuRMRERGxY9VFjEVEREQKD0cfllVyJyIiImLH0ZM7nXMnIiIiUoiociciIiJiR9e5ExERESlEDE2oEBERESk8HP2cOyV3IiIiInYcfVhWEypEREREChFV7kRERETsaFhWREREpBBRciciIiJSiDj6OXdK7kRERETsOHrlThMqRERERAoRVe5ERERE7FitBR3BzVFyJyIiImLH0YdlldyJiIiI2HH05E7n3ImIiIgUIqrciYiIiNjRpVBEREREChHjpsdlTbckjhul5E5ERETEjqOfc6fkTkRERMSOo18KRRMqRERERAoRVe5ERERE7Dj6sKzJuPmzBkVEREQKjQ+X3Vxq9EZ7TaiQ69Q47OeCDkFuwC8rQgHoNuBIAUciN2LBxHL0fPdkQYchN2D2yAAAvnOpVMCRyI1ok7U33/eZn2WvFStW8Omnn5KdnU3Pnj15+umnc2z/3//+x9SpUzEMg8DAQMaOHUuxYsWu2KfOuRMRERGxY1iNm7pdq7i4OCZNmsQ333zD0qVLWbBgAQcOHLBtP3fuHMOHD2fGjBksX76cSpUqMXXq1Kv2q+ROREREpABs2rSJkJAQihcvjqenJy1btmTVqlW27VlZWQwbNgx/f38AKlWqxIkTJ67ar4ZlRUREROzc7C9UJCcnk5ycnGu9t7c33t7etuVTp07h6+trW/bz8yMmJsa27OPjQ4sWLQBIT09nxowZdO/e/ar7V3InIiIiYudmz7mbPXs206ZNy7U+IiKCfv362ZatVism06XJF4Zh5Fi+KCUlhVdeeYXKlSvTsWPHq+5fyZ2IiIiIHetNlu569uyZZxJmX7UDCAgIYNu2bbbl+Ph4/Pz8crQ5deoUvXv3JiQkhHfeeeea9q/kTkREROQW+vfw6+U0bNiQqVOnkpCQgIeHB2vWrGHUqFG27RaLhZdeeolWrVrx8ssvX/P+ldyJiIiI2MmvS6H4+/vz+uuv06NHD7KysujSpQvBwcG88MILvPrqq5w8eZLdu3djsVhYvXo1AA8++CCjR4++Yr9K7kRERETs5Od17sLCwggLC8uxbubMmQBUr16dv/7667r7VHInIiIiYsfq4D/epeRORERExI5hLegIbo4uYiwiIiJSiKhyJyIiImLH0LCsiIiISOFhdfBhWSV3IiIiInZUuRMREREpRG72t2ULmiZUiIiIiBQiqtyJiIiI2DEcvHSn5E5ERETEjoOfcqfkTkRERMSe1cErdzrnTkRERKQQUeVORERExI4uhSIiIiJSiDj6b8squRMRERGxY1XlTkRERKTwcPRhWU2oEBERESlEVLkTERERsePol0JRciciIiJix8FHZZXciYiIiNhz9J8f0zl3IiIiIoWIKnciIiIidnQpFBEREZFCxNGHZZXciYiIiNhRciciIiJSiDh4bqcJFSIiIiKFiSp3IiIiInY0LCtyjRo8VIIXewTh6mLm78PnGTtlL6lplutqt3JuQ+JPZ9jafhN5jLU/n8q3Y7hb1ariwZOtiuPibOLoiUymLzxDWoZxzW1mjggkIfHSc73ip2R+2Xk+X4/hblXjATeeeNQLZ2cTx05m88WyJNL/9dxdrk1Et+L4lXCytfP1cWLv4Uw++iYxn49Canw5jpRd+zg46ctc2/xahVJp9JuYXV1J2bWXmD7vkJ1yHsxmqk4YjO9jD2NyduLgpC85OmN+AUTveBz9t2WV3BWwdevW8ccff9C/f/+CDuW2Ku7twjv9K9F34G/Enkijb88g+vYK4oNPD1xzu3vKepCSksWz/bcX0FHcnYoWMdO3W0nenXaSk6ezeapNcZ5q48MXkQnX1Ka0rzPnUq0MmnSiAI/i7lTU08TzHbx57/ME4hIsdG3hRdcWRfl6ZfI1tZm2INHWLqiMMxHhPjnuK7efV+XyVJsyjOL1gknZtS/XdtdSPgR/PpZNoU+SeuAIlccMoPKYAfzRbwTl+oRT5P772FCzLU5Fi9Bo4wKSdv5J0tZdBXAkjsXRf35M59wVsObNmxf6xA6gbi0f9uxPIfZEGgBLfviHFqH+19WuemVvLFaDj8fV5KspdegVXg6zXsG3XY0HPPj7WAYnT2cDsHZTCo1rFbnmNpXuc8OwwvCX/Xn/jdJ0blEMkyl/j+Fu9WBFNw7+k0VcwoWq6fqtaTQIdr/uNk5O8EKn4nzzQzIJydb8CV4AKNf3aY59+S0nFq/Kc3upFo1J2raL1ANHADjy2TzKPBkGgH/7Rzk2OxLDYiE7MZl/Fn5H2afa5VvsjswwjJu6FTRV7m6j6OhoJkyYgNVqJTAwEBcXF/bu3YvJZKJ379506NCByMhItmzZwrhx4wo63NvK39eNU3bDqfGnM/Aq4oynh1OOodkrtXNyMrHtt0Smzz6Is7OJ99+tzvnUbL5dfjxfj+VuU7K4E2fshlTPJFnw9DDj4WayDbteqY3ZbGLX/jS++T4RJzMM7u1HWrqV7zem5Pux3G1KFHMiIelSMpaQbMHT3Yy7m8k2NHstbUJre5CYYmH7ngwkf/3ZfxQApVo0ynO7R2AAabEnbcvpsSdxKVYU56JF8AgsTXrspYp5+vGTeFevdHsDljuCkrvb7PDhw/z44498+umnZGZmsnLlShISEnjiiSeoXLlyQYeXb0wmU54/xPzv0veV2q1Yc+kNjAxYsCyWLmFlldzdZiZT3j+ibf/UXanN+uhzOdat3JBCq8ZFldzlA5MJyPP/6fratGxQhFnLNRx7RzKb8/znMyxWMP/rH9NkurBerkoTKuSKgoKCKFq0KFFRUYwZMwaAEiVK0Lx5c7Zs2YKXl1cBR3j79H76PhrXKwlAEU8n/j586QT6UiXdSE7JIj0j5xtNXHw6VR8omme7lk39OHDovK0fE2DJdux/QEdwOtFCxXvdbMslijlxLtVCRqZxTW0erl2EIycyOXoiC7iQTFgset7yQ0KihQplXWzLPkXNnEu1kpllXHObewOcMZvhr8OZ+Re4XLP0YycoXq+Gbdm9rD+ZCYlYUtNIP3YCt9J+l7aV9iPt+Mm8upF/cfTkTmcs3Wbu7hfOXfn3GLxhGFgsuWeKFiZfzD3Ms/2382z/7fQZsJNqlbwJLO0BQIdWZdgYfSbXfbbsPHvZduXvLULvp+/DbAZXVzOd25Zl3UbNlL3dYvalcX85NwJKXfgu2CKkKNv+TLvmNveUdqFry+KYTODibKJlo6Js+j01fw/iLrXr70wq3OOC///PeG1W15Odf6VfV5vKQa7sOaTE7k4Vv/YXfOrXwLNiOQDu7RNO3Ip1AMStWMc9vTpjcnLCuVhRynRtQ9yy/xVkuA7Dahg3dStoqtzlk5CQEBYtWsTQoUNJSEhg3bp1TJ06lb179xZ0aPkiMSmLMZP38t7bVXF2NnH8ZDrvffgXAJUqejG4XyWe7b/9iu2+nH+EN16syOypD+HsbOLHX07nHKqV2yL5nJVPF5zmjR6+ODuZOHkmi4/nnaF8oCsvPlGSQZNOXLYNwKI1STzXsQQTB5TGyWwiKiY111Ct3B4p5618viSJiPDiODuZOJWQzYzIJO4r48xz7Yvx7qdnLtvmIv8STpxOLNxfRB1NsToPUv2z9/jloQ5kxifw+/NvU2fBFMwuLpw/eJTfnx0EwJHp8/Asfy8Pb1+G2dWFozMXkLBxawFHL/nBZNwJ0zoKqejoaKZNm8acOXM4d+4cw4cPZ+/evVgsFnr16kXXrl1vaEJF47Cfb2PUcrv8siIUgG4DjhRwJHIjFkwsR8939WXCEc0eGQDAdy6aTOCI2mTlfxHkZv/XL77mCooqd7dR/fr1qV+/PgBeXl5MnDgxV5tOnTrRqVOn/A5NRERELsPR615K7kRERETsOPpFjJXciYiIiNjRbFkRERERuWOociciIiJiR+fciYiIiBQihtWxf8lDyZ2IiIiIHU2oEBERESlEHH1YVhMqRERERAoRVe5ERERE7Dj6pVCU3ImIiIjYUXInIiIiUohYDceeLatz7kREREQKEVXuREREROxoWFZERESkEFFyJyIiIlKIOPp17pTciYiIiNixOvjPj2lChYiIiEgBWbFiBa1bt+axxx5j7ty5ubbv2bOHTp060bJlS4YMGUJ2dvZV+1RyJyIiImLHsBo3dbtWcXFxTJo0iW+++YalS5eyYMECDhw4kKPNW2+9xbvvvsvq1asxDIOFCxdetV8ldyIiIiJ2DMN6U7drtWnTJkJCQihevDienp60bNmSVatW2bYfP36c9PR0atasCUCnTp1ybL8cnXMnIiIiYudmZ8smJyeTnJyca723tzfe3t625VOnTuHr62tb9vPzIyYm5rLbfX19iYuLu+r+ldyJiIiI2LnZ5G727NlMmzYt1/qIiAj69etnW7ZarZhMpkv7NYwcy1fbfjlK7kRERERuoZ49e9KxY8dc6+2rdgABAQFs27bNthwfH4+fn1+O7fHx8bbl06dP59h+OTrnTkRERMSO1bDe1M3b25vAwMBct38ndw0bNmTz5s0kJCSQlpbGmjVraNKkiW172bJlcXNzY/v27QAsW7Ysx/bLUeVORERExE5+/UKFv78/r7/+Oj169CArK4suXboQHBzMCy+8wKuvvkr16tWZOHEiQ4cO5dy5c1SrVo0ePXpctV8ldyIiIiJ2jHy8iHFYWBhhYWE51s2cOdP2d+XKlVm0aNF19alhWREREZFCRJU7ERERETv5NSx7uyi5ExEREbFzPRcivhMpuRMRERGxY1XlTkRERKTwyM8JFbeDJlSIiIiIFCKq3ImIiIjY0YQKERERkUJEEypEREREChFV7kREREQKEUefUGEyDMOx01MRERERsdFsWREREZFCRMmdiIiISCGi5E5ERESkEFFyJyIiIlKIKLkTERERKUSU3ImIiIgUIkruRERERAoRJXciIiIihYiSOxEREZFCRMmdXJPBgwcTGRl53feLiYlhwoQJAKxbt47Jkyff0rimTp3K1KlTC+T+CxcuZOXKlTe874IQGRnJ4MGDc62Pjo6me/fu19THkCFD2LVrV671N/oakTvX22+/TfPmzVm+fDkvvPACAD/++COzZs0q4MjkSm7He604Fv22rNxWBw4c4MyZMwA0b96c5s2bF3BEt86OHTuoV69eQYeR70aPHl3QIUg+WbJkCTExMbi6utKuXTsA/vjjjwKOSq6msL3XyvVTcleIRUdH88knn+Ds7ExsbCzBwcH07duXl19+GR8fH9zd3fniiy8YM2YMmzdvxmQy0a5dO/r06YNhGIwbN46ffvoJPz8/LBYL9erVIzY2lh49erB+/XoAW9WrX79+rFixgk8//RSTyUT16tUZOHAgU6ZMITU1lU8//RR/f3+2bNnCuHHj+O233xg9ejQZGRn4+PgwcuRIypUrR/fu3alevTrbt28nISGBoUOHEhoaesXjjImJ4YknniA1NZWuXbvSs2dPoqOjmTZtGnPmzAEuVJXq1atHp06d+Pzzz1m4cCE+Pj54e3sTHBwMwPfff8+UKVPw9PSkSpUqWCwWxo0bR0xMDGPHjiU9PR0fHx9GjBjBsWPHWL9+PVFRUfj6+vLwww/fxmfygrCwMD766CMqVKjAm2++iZeXFyNGjGDnzp18+umn1K5dm+XLl+Pk5ESjRo146623OHHiBM8//7zt+Q4LC7P198svvzB27Fjc3NwICgoCYPXq1fzwww989NFHHDp0iMcff5xff/2VUqVK0bt3b/r378+ECROIiIigXr16eb5GAJYuXcrs2bOxWq1Uq1aNYcOG4ebmdtlji46O5r333sPJyYmaNWvy999/M2fOHLp3706xYsXYv38/H330ESdPnuSjjz7CarVyzz33MHLkSEqVKsX48eP59ddfMZvNPProo0RERLB582Zb1bhYsWJ88MEHlChR4jY+Q3eem3kPeOmllzAMgyeeeIJRo0bx2muvMWPGDObPnw9AmTJl6Ny5cwEf4d0nOjqaCRMmYLVaCQwMxMXFhb1792IymejduzcdOnQgMjLS9l4rdycNyxZyO3fuZMiQIaxatYqMjAx+/vlnDh06xIQJE5g1axbz5s3jxIkTLF++nG+//ZY1a9bw008/sXr1anbv3s3KlSuZPHkyR48eveJ+4uLiGDt2LF9++SXfffcdFouFHTt28Oqrr9KsWTP69u1ra5uZmckbb7zBf/7zH5YvX054eDhvvPGGbXtWVhYLFizg7bffvqahhfj4eGbPns2CBQuYO3cue/bsuWzbXbt2sXjxYpYsWcKsWbM4efIkAAkJCYwZM4bZs2ezaNEikpKSbLEOHTqUDz74gCVLlvDss8/yn//8h4YNG9KsWTNeffXVfEnsAEJDQ9m8eTMA+/btY8eOHQBs3LiRRx55hPXr19uO7ciRI7YPYfvn+6LMzEwGDx7MlClTiIyMxN3dHYBGjRqxfft2DMMgKiqKkiVLsmXLFtLT0zl06BDVq1e39XG518j+/ftZuHAh8+fPZ9myZZQsWZIvvvjisseVlZXFwIEDmTBhAkuXLsXZOed3zkqVKrF69Wr8/Px49913+fjjj1mxYgW1a9dm5MiRHD9+nA0bNrB8+XLmzZvHgQMHyMjI4JNPPmH48OFERkbSsGFDdu/efQueBcdzo+8B06dPB2DZsmW2pLhixYqEh4cTHh6uxK4AHT58mNmzZxMYGIiPjw8rV65k9uzZTJ06lb/++qugw5M7gJK7Qq5u3bqUL18ek8lE+/btbR/YgYGBwIVvgR07dsTJyQkPDw/CwsLYvHkzW7Zs4bHHHsPFxYUSJUrQpEmTK+5n586d1K5dm4CAAAAmTJjAo48+mmfbw4cP56iYtWrViqNHj5KSkgJgS5buv/9+EhMTr3qMrVu3xtPTEy8vL5o2bcqWLVsu23bLli2EhoZSpEgRPD09efzxxwHYtm0btWrVwt/fH7PZTIcOHWyxHjt2jL59+9K+fXsmTpzIsWPHrhrT7XAxuTtw4AAVK1bEbDZz5swZNmzYwK5du2jTpg0eHh44OzvTuXNnWyJo/3xftHfvXvz8/KhQoQIAHTt2BMDLy4ugoCD27t1LVFQUPXv2ZOvWrURHRxMSEoLJZLL1cbnXSHR0NEeOHKFr1660b9+edevWcfDgwcse1759+yhZsiSVK1cGoEuXLjm2X3ydxMTEEBwcbDuWbt26ERUVhb+/P25uboSHh/P1118zYMAA3NzcaN68OREREYwcOZKqVavSuHHjG37sHdmNvgfInSsoKIiiRYsSFRVl+38pUaIEzZs3v+L7n9w9NCxbyDk5Odn+NgwDJycnW5UGwGq15mhvGAYWiwWTyYRhGLb1F6sp/16fnZ2Ns7Mzzs7OOT74ExISLhvTv/dpv1/ANnxn39+V2Fd6rFarLRb7OLOysvKM39nZmczMTMxmc55xXRz6WLZsGQAWi4XTp09fU1y3Wq1atRg8eDCbNm2iXr16lCxZklWrVpGdnY23t3eu9tnZ2QA5nu+L/v042L9OHnnkEX799VcOHjzI8OHD6dGjB2azmaZNm16xj4vPg8VioVWrVgwdOhSA8+fP257bvDg5OeX52F90Mf68XqsXX3/ffvstW7ZsYcOGDYSHhzNnzhx69epF06ZN+fHHH5kwYQIxMTE5Ksh3ixt9D5A718Xnz/7/7+KynjsBVe4Kve3btxMXF4fVamXp0qW5KnAhISEsXboUi8VCWloaK1asoH79+jRo0IAffviBzMxMkpKS2LhxIwDe3t4kJiaSkJBAZmambX316tX57bffiI+PB2DMmDGsW7cOJycnW5JxUfny5UlMTCQmJga4cK5bmTJlKF68+A0d4+rVq21x/vTTT4SEhODj48OxY8fIyMggMTGR7du3A9CgQQN+/PFHUlJSyMjIYO3atQDUrl2bXbt2cerUKQzD4Pvvv8dkMlG+fHmSkpLYtm0bAIsXL2bAgAHAhQ/N/HwjdXZ2Jjg4mDlz5lCvXj1CQkKYPn06oaGhhISE8N1335Genk52djaLFy8mJCTksn1VqlSJ06dP24ZwvvvuO9u20NBQ5s+fT8WKFfHx8cHFxYUff/yRhg0b5ujjcq+R+vXrs3btWs6cOYNhGAwfPpzZs2dfNpby5cuTnJzM3r17AVixYkWe7WrUqMHvv/9ObGwsAAsWLKB+/frs3r2bZ555hrp16zJo0CAqVKjAoUOHeOKJJzh//jy9evWiV69ed+2w7I2+B1xOXv/TUjBCQkJYtGgRcOEL9bp16+7KSV6Smyp3hZyfnx8DBw4kLi6ORo0a0bBhQ2bMmGHb3q1bNw4fPkz79u3JysoiLCyMFi1aABfOT2vbti2lSpWyDd8VLVqU559/ni5duhAQEGA7B8vf358hQ4bQu3dvrFYrNWvWpFOnThw9epRp06YxceJEypcvD4CrqyuTJk1i1KhRpKWlUaxYMSZNmnTDx1imTBnCw8PJyMjgxRdftMUaGhpKmzZtKFu2LHXq1AGgSpUq9OzZky5duuDt7U2ZMmWAC0MaQ4cO5bnnnsPV1ZXAwEC8vb1xdXVl8uTJtskfXl5ejB8/HoCGDRvy4YcfUrRoUdvw7u0WGhrK1q1bqVChAr6+vpw5c4ZHHnmEWrVqsWfPHjp37kx2djaNGzfmmWeesZ1T+G8uLi58+OGHvPXWWzg7O1O1alXbtgoVKmAYhu1Dol69euzfv58iRYrk6OPRRx/N8zVSuXJlIiIi6NmzJ1arlSpVqtCnT5/LHpOrqyvvv/8+gwYNwmw2ExQUlGe1sVSpUowcOZKIiAiysrIoU6YMo0ePxs/Pj5o1a9K2bVs8PDyoXbs2TZo0wcPDg8GDB+Ps7IynpyfvvffedT/ehcHNvAfk5WISXapUqWu+fI7cHq+88grDhw8nLCwMi8XCSy+9RLVq1WxflOTuZTL+XdeVQuPfM0bl8s6ePcucOXOIiIjAbDbz3nvv2Wbvyu1ltVqZOHEiEREReHp6MmvWLOLi4vK8Hp9cH70HiNydVLmTO95XX33FkiVLcq338/Nj5syZt2QfxYsXJzk5mbZt2+Lk5ES1atXo2rXrLelbLujevTvJycm51oeHh1O8eHG6dOmCi4sLZcuW1bX0RERugip3IiIiIoWIJlSIiIiIFCJK7kREREQKESV3IiIiIoWIkjsRERGRQkTJnYiIiEghouROREREpBD5P9nTlGY8luFiAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Calculate correlation matrix for relevant numerical columns\n",
+ "correlation_matrix = movie_budgets[['production_budget', 'domestic_gross', 'worldwide_gross', 'profit', 'roi']].corr()\n",
+ "\n",
+ "# Plot heatmap\n",
+ "plt.figure(figsize=(10, 6))\n",
+ "sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=\".2f\", linewidths=0.5)\n",
+ "plt.title('Correlation Heatmap for Movie Budgets and Returns')\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Analysis of Movie Budgets and Returns Heatmap\n",
+ "\n",
+ "This heatmap visualizes the correlation between different financial aspects of movies: production budget, worldwide gross, profit, and return on investment (ROI). Here's a breakdown of the findings:\n",
+ "\n",
+ "**Strong Positive Correlations:**\n",
+ "\n",
+ "- **Worldwide Gross & Profit (0.98):** This strong positive correlation is logical. Higher worldwide gross generally leads to higher profits, assuming production and marketing costs are managed effectively. \n",
+ "- **Worldwide Gross & Production Budget (0.75):** This suggests that movies with larger budgets tend to earn more at the box office. This could be due to several factors, including bigger marketing campaigns, attracting higher-profile actors, and affording better production values.\n",
+ "- **Profit & Production Budget (0.61):** While a positive correlation exists, it's weaker than the previous two. This implies that a larger budget doesn't guarantee a proportionally larger profit. Other factors like story, marketing, and audience reception play a significant role.\n",
+ "\n",
+ "**Weak Correlations:**\n",
+ "\n",
+ "- **ROI & Production Budget (0.05), ROI & Worldwide Gross (0.07), ROI & Profit (0.07):** These weak correlations indicate that ROI is not strongly influenced by the scale of the movie's budget, gross earnings, or even profit. This suggests that smaller budget films can be just as profitable (in terms of ROI) as big-budget blockbusters.\n",
+ "\n",
+ "**Negative Correlation:**\n",
+ "\n",
+ "- **ROI & Production Budget (-0.05):** This slight negative correlation suggests a potential trend where higher-budget movies might yield slightly lower ROI compared to lower-budget films. This could be attributed to the higher risk associated with large investments and the potential for significant losses if the movie doesn't resonate with audiences.\n",
+ "\n",
+ "**Key Takeaways:**\n",
+ "\n",
+ "- While a larger budget can contribute to higher box office earnings and potentially higher profits, it doesn't guarantee a higher ROI.\n",
+ "- Other factors beyond budget, such as story quality, marketing effectiveness, and audience reception, play a crucial role in a movie's financial success and ROI.\n",
+ "- Smaller budget films can be just as profitable, if not more so, than big-budget movies when considering ROI.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Business Recommendations for the New Movie Studio\n",
+ "\n",
+ "Based on an analysis of box office trends and successful film genres, the following recommendations are proposed to guide the new movie studio in its decision-making process:\n",
+ "\n",
+ "### 1. **Focus on High-Demand Genres**\n",
+ " - **Recommendation:** Prioritize the production of films in genres that have consistently performed well at the box office, such as:\n",
+ " - **Action/Adventure**\n",
+ " - **Fantasy/Sci-Fi**\n",
+ " - **Drama**\n",
+ " - **Animation**\n",
+ " - **Comedy**\n",
+ " - **Justification:** These genres attract larger audiences and generate higher revenues. Aligning the studio’s production strategy with popular genres can lead to greater box office success.\n",
+ "\n",
+ "### 2. **Embrace Diverse Storytelling and Representation**\n",
+ " - **Recommendation:** Develop films that feature diverse casts and storytelling perspectives, including:\n",
+ " - **Inclusive Characters:** Focus on stories that represent different cultures, backgrounds, and experiences.\n",
+ " - **Unique Narratives:** Explore unconventional plots that captivate audiences and set the studio apart from competitors.\n",
+ " - **Justification:** Modern audiences are increasingly seeking representation and unique storytelling. Producing films that resonate with varied demographics can help build a loyal viewer base.\n",
+ "\n",
+ "### 3. **Prioritize Large-Scale Productions**\n",
+ " - **Recommendation:** Allocate a significant budget towards high-potential movies with proven directors, popular franchises, or successful intellectual properties (IPs).\n",
+ " - **Justification:** Studios that frequently release blockbuster films typically see greater returns on investment. Investing in large-scale productions can significantly enhance profitability.\n",
+ "\n",
+ "### 4. **Invest in Quality Production and Talent**\n",
+ " - **Recommendation:** Allocate resources towards high-quality production and hiring experienced talent, including:\n",
+ " - **Skilled Directors and Writers:** Collaborate with established filmmakers who have a track record of successful films.\n",
+ " - **Top-Notch Production Values:** Ensure that production quality meets audience expectations, particularly in visual effects and cinematography.\n",
+ " - **Justification:** High-quality films tend to perform better at the box office and receive positive reviews, leading to increased viewer interest and repeat viewings. Investing in talent and production quality can bolster the studio’s reputation and success.\n",
+ "\n",
+ "### 5. **Leverage Data Analytics for Decision Making**\n",
+ " - **Recommendation:** Utilize data analytics to inform production and marketing strategies.\n",
+ " - **Justification:** Analyzing past performance, audience preferences, and market trends can provide valuable insights for making informed decisions on project selection, marketing campaigns, and release strategies. This data-driven approach can enhance success rates.\n",
+ "\n",
+ "### 6. **Enhance Marketing and Distribution Strategies**\n",
+ " - **Recommendation:** Develop robust marketing campaigns and strategic distribution plans for film releases.\n",
+ " - **Justification:** Effective marketing can generate buzz and anticipation for new releases, while a well-planned distribution strategy ensures that films reach the target audience efficiently. This can significantly impact box office performance.\n",
+ "\n",
+ "### Conclusion\n",
+ "By implementing these recommendations, the new movie studio can capitalize on current market trends, enhance audience engagement, and ultimately drive box office success. Prioritizing high-demand genres, diverse storytelling, quality production, and data-driven decision-making will position the studio for long-term profitability and growth in the competitive film industry.\n"
]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
}
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "Python (lean-env)",
"language": "python",
- "name": "python3"
+ "name": "learn-env"
},
"language_info": {
"codemirror_mode": {
@@ -40,7 +4431,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.4"
+ "version": "3.8.5"
}
},
"nbformat": 4,
diff --git a/tudiobyfross.png b/tudiobyfross.png
new file mode 100644
index 00000000..5d2ebd3b
Binary files /dev/null and b/tudiobyfross.png differ