Skip to content

Latest commit

 

History

History
54 lines (31 loc) · 5.85 KB

ZooKeeper分布式锁实现原理.md

File metadata and controls

54 lines (31 loc) · 5.85 KB

image

聊一下ZooKeeper实现分布式锁的原理。同理,我是直接基于比较常用的Curator这个开源框架,聊一下这个框架对ZooKeeper(以下简称zk)分布式锁的实现。一般除了大公司是自行封装分布式锁框架之外,建议大家用这些开源框架封装好的分布式锁实现,这是一个比较快捷省事儿的方式

ZooKeeper分布式锁机制

接下来我们一起来看看,多客户端获取及释放zk分布式锁的整个流程及背后的原理。首先大家看看下面的图,如果现在有两个客户端一起要争抢zk上的一把分布式锁,会是个什么场景?

image

zk里有一把锁,这个锁就是zk上的一个节点。然后呢,两个客户端都要来获取这个锁,具体是怎么来获取呢?

  • 咱们就假设客户端A抢先一步,对zk发起了加分布式锁的请求,这个加锁请求是用到了zk中的一个特殊的概念,叫做“临时顺序节点”。
  • 简单来说,就是直接在"my_lock"这个锁节点下,创建一个顺序节点,这个顺序节点有zk内部自行维护的一个节点序号。
  • 比如说,第一个客户端来搞一个顺序节点,zk内部会给起个名字叫做:xxx-000001。然后第二个客户端来搞一个顺序节点,zk可能会起个名字叫做:xxx-000002。大家注意一下,最后一个数字都是依次递增的,从1开始逐次递增。zk会维护这个顺序。
  • 所以这个时候,假如说客户端A先发起请求,就会搞出来一个顺序节点,大家看下面的图,Curator框架大概会弄成如下的样子:

image 大家看,客户端A发起一个加锁请求,先会在你要加锁的node下搞一个临时顺序节点,这一大坨长长的名字都是Curator框架自己生成出来的。

然后,那个最后一个数字是"1"。大家注意一下,因为客户端A是第一个发起请求的,所以给他搞出来的顺序节点的序号是"1"。接着客户端A创建完一个顺序节点。还没完,他会查一下"my_lock"这个锁节点下的所有子节点,并且这些子节点是按照序号排序的,这个时候他大概会拿到这么一个集合: image

接着客户端A会走一个关键性的判断,就是说:唉!兄弟,这个集合里,我创建的那个顺序节点,是不是排在第一个啊?

如果是的话,那我就可以加锁了啊!因为明明我就是第一个来创建顺序节点的人,所以我就是第一个尝试加分布式锁的人啊!bingo!加锁成功!大家看下面的图,再来直观的感受一下整个过程

image

接着假如说,客户端A都加完锁了,客户端B过来想要加锁了,这个时候他会干一样的事儿:先是在"my_lock"这个锁节点下创建一个临时顺序节点

image

客户端B因为是第二个来创建顺序节点的,所以zk内部会维护序号为"2"。接着客户端B会走加锁判断逻辑,查询"my_lock"锁节点下的所有子节点,按序号顺序排列,此时他看到的类似于: image

同时检查自己创建的顺序节点,是不是集合中的第一个?明显不是啊,此时第一个是客户端A创建的那个顺序节点,序号为"01"的那个。所以加锁失败!

加锁失败以后,客户端B就会通过ZK的API,对他的上一个顺序节点加一个监听器。zk天然就可以实现对某个节点的监听。

image

释放锁过程

接着,客户端A加锁之后,可能处理了一些代码逻辑,然后就会释放锁。那么,释放锁是个什么过程呢?其实很简单,就是把自己在zk里创建的那个顺序节点给删除

删除了那个节点之后,zk会负责通知监听这个节点的监听器,也就是客户端B之前加的那个监听器,说:兄弟,你监听的那个节点被删除了,有人释放了锁。我们一起来看看下面的图,体会一下这个过程:

image

此时客户端B的监听器感知到了上一个顺序节点被删除,也就是排在他之前的某个客户端释放了锁。此时,就会通知客户端B重新尝试去获取锁,也就是获取"my_lock"节点下的子节点集合。集合里此时只有客户端B创建的唯一的一个顺序节点了!

然后呢,客户端B一判断,发现自己居然是集合中的第一个顺序节点,bingo!可以加锁了!直接完成加锁,运行后续的业务代码即可,运行完了之后再次释放锁。

Watcher机制