1xx :类状态码属于提示信息,是协议处理中的一种中间状态,实际用到的比较少。
- 2xx:类状态码表示服务器成功处理了客户端的请求,也是我们最愿意看到的状态。
- 「200 OK」是最常见的成功状态码,表示一切正常。如果是非 HEAD 请求,服务器返回的响应头都会有 body 数据。
- 「204 No Content」也是常见的成功状态码,与 200 OK 基本相同,但响应头没有 body 数据。
- 「206 Partial Content」是应用于 HTTP 分块下载或断电续传,表示响应返回的 body 数据并不是资源的全部,而是其中的一部分,也是服务器处理成功的状态。
- 3xx:类状态码表示客户端请求的资源发送了变动,需要客户端用新的URL重新发送请求获取资源,也就是重定向。
- 「301 Moved Permanently」表示永久重定向,说明请求的资源已经不存在了,需改用新的 URL 再次访问。
- 「302 Moved Permanently」表示临时重定向,说明请求的资源还在,但暂时需要用另一个 URL 来访问。
- 301 和 302 都会在响应头里使用字段Location,指明后续要跳转的URL,浏览器会自动重定向新的 URL。
- 「304 Not Modified」不具有跳转的含义,表示资源未修改,重定向已存在的缓冲文件,也称缓存重定向,用于缓存控制。
- 4xx类:状态码表示客户端发送的报文有误,服务器无法处理,也就是错误码的含义。
- 「400 Bad Request」表示客户端请求的报文有错误,但只是个笼统的错误。
- 「403 Forbidden」表示服务器禁止访问资源,并不是客户端的请求出错。
- 「404 Not Found」表示请求的资源在服务器上不存在或未找到,所以无法提供给客户端。
- 5xx类:状态码表示客户端请求报文正确,但是服务器处理时内部发生了错误,属于服务器端的错误码。
- 「500 Internal Server Error」与 400 类型,是个笼统通用的错误码,服务器发生了什么错误,我们并不知道。
- 「501 Not Implemented」表示客户端请求的功能还不支持,类似“即将开业,敬请期待”的意思。
- 「502 Bad Gateway」通常是服务器作为网关或代理时返回的错误码,表示服务器自身工作正常,访问后端服务器发生了错误。
- 「503 Service Unavailable」表示服务器当前很忙,暂时无法响应服务器,类似“网络服务正忙,请稍后重试”的意思。
Host: www.A.com
有了 Host 字段,就可以将请求发往「同一台」服务器上的不同网站。
服务器在返回数据时,会有Content-Length字段,表明本次回应的数据长度。
Content-Length: 1000
如上面则是告诉浏览器,本次服务器回应的数据长度是 1000 个字节,后面的字节就属于下一个回应了。
Connection 字段最常用于客户端要求服务器使用 TCP 持久连接,以便其他请求复用。
HTTP/1.1 版本的默认连接都是持久连接,但为了兼容老版本的 HTTP,需要指定 Connection 首部字段的值为 Keep-Alive。
Connection: keep-alive
一个可以复用的TCP连接就建立了,直到客户端或服务器主动关闭连接。但是,这不是标准字段。
Content-Type 字段用于服务器回应时,告诉客户端,本次数据是什么格式。
Content-Type: text/html; charset=utf-8
上面的类型表明,发送的是网页,而且编码是UTF-8。
客户端请求的时候,可以使用Accept字段声明自己可以接受哪些数据格式。
Accept: */*
上面代码中,客户端声明自己可以接受任何格式的数据。
- Get 方法的含义是请求从服务器获取资源,这个资源可以是静态的文本、页面、图片视频等。
- 而POST 方法则是相反操作,它向 URI 指定的资源提交数据,数据就放在报文的 body 里。
先说明下安全和幂等的概念:
- 在 HTTP 协议里,所谓的「安全」是指请求方法不会「破坏」服务器上的资源。
- 所谓的「幂等」,意思是多次执行相同的操作,结果都是「相同」的。
那么很明显 GET方法就是安全且幂等的,因为它是「只读」操作,无论操作多少次,服务器上的数据都是安全的,且每次的结果都是相同的。
POST 因为是「新增或提交数据」的操作,会修改服务器上的资源,所以是不安全的,且多次提交数据就会创建多个资源,所以不是幂等的。
- 简单:HTTP 基本的报文格式就是 header + body,头部信息也是key-value简单文本的形式,易于理解,降低了学习和使用的门槛
- 灵活和易于扩展:HTTP协议里的各类请求方法、URI/URL、状态码、头字段等每个组成要求都没有被固定死,都允许开发人员自定义和扩充。
1.无状态双刃剑
无状态的好处:因为服务器不会去记忆 HTTP 的状态,所以不需要额外的资源来记录状态信息,这能减轻服务器的负担,能够把更多的 CPU 和内存用来对外提供服务。
无状态的坏处:既然服务器没有记忆能力,它在完成有关联性的操作时会非常麻烦。
例如登录->添加购物车->下单->结算->支付,这系列操作都要知道用户的身份才行。但服务器不知道这些请求是有关联的,每次都要问一遍身份信息。
这样每操作一次,都要验证信息,这样的购物体验还能愉快吗?别问,问就是酸爽!
对于无状态的问题,解法方案有很多种,其中比较简单的方式用 Cookie 技术。【jwt也能解决】
Cookie 通过在请求和响应报文中写入 Cookie 信息来控制客户端的状态。
2.明文传输双刃剑
明文意味着在传输过程中的信息,是可方便阅读的,通过浏览器的 F12 控制台或 Wireshark 抓包都可以直接肉眼查看,为我们调试工作带了极大的便利性。
但是这正是这样,HTTP 的所有信息都暴露在了光天化日下,相当于信息裸奔。在传输的漫长的过程中,信息的内容都毫无隐私可言,很容易就能被窃取,如果里面有你的账号密码信息,那你号没了。
3.不安全
HTTP 比较严重的缺点就是不安全:
- 通信使用明文(不加密),内容可能会被窃听。比如,账号信息容易泄漏,那你号没了。
- 不验证通信方的身份,因此有可能遭遇伪装。比如,访问假的淘宝、拼多多,那你钱没了。
- 无法证明报文的完整性,所以有可能已遭篡改。比如,网页上植入垃圾广告,视觉污染,眼没了。
HTTP 的安全问题,可以用HTTPS的方式解决,也就是通过引入 SSL/TLS 层,使得在安全上达到了极致
HTTP 协议是基于 TCP/IP,并且使用了「请求 - 应答」的通信模式,所以性能的关键就在这两点里。
1. 长连接
早期 HTTP/1.0 性能上的一个很大的问题,那就是每发起一个请求,都要新建一次 TCP 连接(三次握手),而且是串行请求,做了无畏的 TCP 连接建立和断开,增加了通信开销。
为了解决上述 TCP 连接问题,HTTP/1.1 提出了长连接的通信方式,也叫持久连接。这种方式的好处在于减少了 TCP 连接的重复建立和断开所造成的额外开销,减轻了服务器端的负载。
持久连接的特点是,只要任意一端没有明确提出断开连接,则保持 TCP 连接状态。
2. 管道网络传输
HTTP/1.1 采用了长连接的方式,这使得管道(pipeline)网络传输成为了可能。
即可在同一个 TCP 连接里面,客户端可以发起多个请求,只要第一个请求发出去了,不必等其回来,就可以发第二个请求出去,可以减少整体的响应时间。
举例来说,客户端需要请求两个资源。以前的做法是,在同一个TCP连接里面,先发送 A 请求,然后等待服务器做出回应,收到后再发出 B 请求。管道机制则是允许浏览器同时发出 A 请求和 B 请求。
但是服务器还是按照顺序,先回应 A 请求,完成后再回应B请求。要是前面的回应特别慢,后面就会有许多请求排队等着。这称为「队头堵塞」。
3. 队头阻塞
「请求 - 应答」的模式加剧了 HTTP 的性能问题。
因为当顺序发送的请求序列中的一个请求因为某种原因被阻塞时,在后面排队的所有请求也一同被阻塞了,会招致客户端一直请求不到数据,这也就是「队头阻塞」。好比上班的路上塞车。
- HTTP 是超文本传输协议,信息是明文传输,存在安全风险的问题。HTTPS 则解决 HTTP 不安全的缺陷,在 TCP 和 HTTP 网络层之间加入了SSL/TLS安全协议,使得报文能够加密传输。
- HTTP 连接建立相对简单, TCP三次握手之后便可进行 HTTP 的报文传输。而HTTPS在TCP三次握手之后,还需进行 SSL/TLS 的握手过程,才可进入加密报文传输。
- HTTP 的端口号是 80,HTTPS 的端口号是 443。
- HTTPS 协议需要向CA(证书权威机构)申请数字证书,来保证服务器的身份是可信的。
HTTP 由于是明文传输,所以安全上存在以下三个风险:
- 窃听风险,比如通信链路上可以获取通信内容,用户号容易没。
- 篡改风险,比如强制入垃圾广告,视觉污染,用户眼容易瞎。
- 冒充风险,比如冒充淘宝网站,用户钱容易没。
HTTPS 在 HTTP 与 TCP 层之间加入了 SSL/TLS 协议。
可以很好的解决了上述的风险:
- 信息加密:交互信息无法被窃取,但你的号会因为「自身忘记」账号而没。
- 校验机制:无法篡改通信内容,篡改了就不能正常显示,但百度「竞价排名」依然可以搜索垃圾广告。
- 身份证书:证明淘宝是真的淘宝网,但你的钱还是会因为「剁手」而没。
- 混合加密的方式实现信息的机密性,解决了窃听的风险。
- 摘要算法的方式来实现完整性,它能够为数据生成独一无二的「指纹」,指纹用于校验数据的完整性,解决了篡改的风险。
- 将服务器公钥放入到数字证书中,解决了冒充的风险。
HTTP/1.1 相比 HTTP/1.0 性能上的改进:
- 使用TCP长连接的方式改善了HTTP/1.0短连接造成的性能开销。
- 支持管道(pipeline)网络传输,只要第一个请求发出去了,不必等其回来,就可以发第二个请求出去,可以减少整体的响应时间。
但 HTTP/1.1 还是有性能瓶颈:
- 请求 / 响应头部(Header)未经压缩就发送,首部信息越多延迟越大。只能压缩 Body 的部分;
- 发送冗长的首部。每次互相发送相同的首部造成的浪费较多;
- 服务器是按请求的顺序响应的,如果服务器响应慢,会招致客户端一直请求不到数据,也就是队头阻塞;
- 没有请求优先级控制;
- 请求只能从客户端开始,服务器只能被动响应。
HTTP/2 协议是基于 HTTPS 的,所以 HTTP/2 的安全性也是有保障的。
那 HTTP/2 相比 HTTP/1.1 性能上的改进:
1. 头部压缩
HTTP/2 会压缩头(Header)如果你同时发出多个请求,他们的头是一样的或是相似的,那么,协议会帮你消除重复的分。
这就是所谓的 HPACK算法:在客户端和服务器同时维护一张头信息表,所有字段都会存入这个表,生成一个索引号,以后就不发送同样字段了,只发送索引号,这样就提高速度了。
2. 二进制格式
HTTP/2 不再像HTTP/1.1里的纯文本形式的报文,而是全面采用了二进制格式。
头信息和数据体都是二进制,并且统称为帧(frame):头信息帧和数据帧。
这样虽然对人不友好,但是对计算机非常友好,因为计算机只懂二进制,那么收到报文后,无需再将明文的报文转成二进制,而是直接解析二进制报文,这增加了数据传输的效率。
3. 数据流
HTTP/2 的数据包不是按顺序发送的,同一个连接里面连续的数据包,可能属于不同的回应。因此,必须要对数据包做标记,指出它属于哪个回应。
每个请求或回应的所有数据包,称为一个数据流(Stream)。
每个数据流都标记着一个独一无二的编号,其中规定客户端发出的数据流编号为奇数, 服务器发出的数据流编号为偶数
客户端还可以指定数据流的优先级。优先级高的请求,服务器就先响应该请求。
4. 多路复用
HTTP/2 是可以在一个连接中并发多个请求或回应,而不用按照顺序一一对应。
移除了 HTTP/1.1 中的串行请求,不需要排队等待,也就不会再出现「队头阻塞」问题,降低了延迟,大幅度提高了连接的利用率。
举例来说,在一个 TCP 连接里,服务器收到了客户端 A 和 B 的两个请求,如果发现A处理过程非常耗时,于是就回应 A 请求已经处理好的部分,接着回应B请求,完成后,再回应 A 请求剩下的部分。
5. 服务器推送 HTTP/2 还在一定程度上改善了传统的「请求 - 应答」工作模式,服务不再是被动地响应,也可以主动向客户端发送消息。
举例来说,在浏览器刚请求 HTML 的时候,就提前把可能会用到的 JS、CSS 文件等静态资源主动发给客户端,减少延时的等待,也就是服务器推送(Server Push,也叫 Cache Push)。
HTTP/2 主要的问题在于:多个 HTTP 请求在复用一个 TCP 连接,下层的 TCP 协议是不知道有多少个 HTTP 请求的。
所以一旦发生了丢包现象,就会触发 TCP 的重传机制,这样在一个 TCP 连接中的所有的 HTTP 请求都必须等待这个丢了的包被重传回来。
HTTP/1.1 中的管道( pipeline)传输中如果有一个请求阻塞了,那么队列后请求也统统被阻塞住了 HTTP/2 多请求复用一个TCP连接,一旦发生丢包,就会阻塞住所有的 HTTP 请求。 这都是基于 TCP 传输层的问题,所以 HTTP/3 把 HTTP 下层的 TCP 协议改成了 UDP!
UDP 发生是不管顺序,也不管丢包的,所以不会出现 HTTP/1.1 的队头阻塞 和 HTTP/2 的一个丢包全部重传问题。
大家都知道UDP是不可靠传输的,但基于 UDP 的 QUIC 协议 可以实现类似 TCP 的可靠性传输。
- QUIC 有自己的一套机制可以保证传输的可靠性的。当某个流发生丢包时,只会阻塞这个流,其他流不会受到影响。
- TL3 升级成了最新的1.3版本,头部压缩算法也升级成了 QPack。
- HTTPS 要建立一个连接,要花费 6 次交互,先是建立三次握手,然后是 TLS/1.3 的三次握手。QUIC 直接把以往的 TCP 和 TLS/1.3 的 6 次交互合并成了 3 次,减少了交互次数。
所以, QUIC 是一个在 UDP 之上的伪 TCP + TLS + HTTP/2 的多路复用的协议。
QUIC 是新协议,对于很多网络设备,根本不知道什么是 QUIC,只会当做 UDP,这样会出现新的问题。所以 HTTP/3 现在普及的进度非常的缓慢,不知道未来 UDP 是否能够逆袭 TCP