Skip to content

Latest commit

 

History

History
398 lines (220 loc) · 36.1 KB

消息队列高手课-基础篇.md

File metadata and controls

398 lines (220 loc) · 36.1 KB

01 | 为什么需要消息队列?

传送带解决了半成品运输问题,仓库可以暂存一些半成品,解决了上下游生产速度不一致的问题,小袁在不知不觉中实现了一个巧克力工厂版的消息队列。

哪些问题适合使用消息队列来解决?

  1. 异步处理

我们知道,处理一个秒杀请求包含了很多步骤,例如:

  • 风险控制;
  • 库存锁定;
  • 生成订单;
  • 短信通知;
  • 更新统计数据。

如果没有任何优化,正常的处理流程是:App 将请求发送给网关,依次调用上述 5 个流程,然后将结果返回给 APP。

对于对于这 5 个步骤来说,能否决定秒杀成功,实际上只有风险控制和库存锁定这 2 个步骤。所以当服务端完成前面 2 个步骤,确定本次请求的秒杀结果后,就可以马上给用户返回响应,然后把请求的数据放入消息队列中,由消息队列异步地进行后续的操作。

**可以看到,在这个场景中,消息队列被用于实现服务的异步处理。**这样做的好处是:

  • 可以更快地返回结果;
  • 减少等待,自然实现了步骤之间的并发,提升系统总体的性能。

(通过卷宗上传材料,这些材料数据会进入到消息队列,材料转换服务会消费这个消息,实现材料转pdf的业务,这个问题也是用到了消息队列的异步处理来解决。)

  1. 流量控制

继续说我们的秒杀系统,我们已经使用消息队列实现了部分工作的异步处理,但我们还面临一个问题:如何避免过多的请求压垮我们的秒杀系统?

因此,我们需要设计一套足够健壮的架构来将后端的服务保护起来。我们的设计思路是,使用消息队列隔离网关和后端服务,以达到流量控制和保护后端服务的目的。

加入消息队列后,整个秒杀流程变为:

  1. 网关在收到请求后,将请求放入请求消息队列;
  2. 后端服务从请求消息队列中获取 APP 请求,完成后续秒杀处理过程,然后返回结果。

秒杀开始后,当短时间内大量的秒杀请求到达网关时,不会直接冲击到后端的秒杀服务,而是先堆积在消息队列中,后端服务按照自己的最大处理能力,从消息队列中消费请求进行处理。

这种设计的优点是:能根据下游的处理能力自动调节流量,达到“削峰填谷”的作用。但这样做同样是有代价的:

  • 增加了系统调用链环节,导致总体的响应时延变长。
  • 上下游系统都要将同步调用改为异步消息,增加了系统的复杂度。

那还有没有更简单一点儿的流量控制方法呢?如果我们能预估出秒杀服务的处理能力,就可以用消息队列实现一个令牌桶,更简单地进行流量控制。

令牌桶控制流量的原理是:单位时间内只发放固定数量的令牌到令牌桶中,规定服务在处理请求之前必须先从令牌桶中拿出一个令牌,如果令牌桶中没有令牌,则拒绝请求。这样就保证单位时间内,能处理的请求不超过发放令牌的数量,起到了流量控制的作用。

令牌桶可以简单地用一个有固定容量的消息队列加一个“令牌发生器”来实现:令牌发生器按照预估的处理能力,匀速生产令牌并放入令牌队列(如果队列满了则丢弃令牌),网关在收到请求时去令牌队列消费一个令牌,获取到令牌则继续调用后端秒杀服务,如果获取不到令牌则直接返回秒杀失败。

(还是上传材料转pdf那个例子,用消息队列作一个流量控制。)

  1. 服务解耦

消息队列的另外一个作用,就是实现系统应用之间的解耦。再举一个电商的例子来说明解耦的作用和必要性。

我们知道订单是电商系统中比较核心的数据,当一个新订单创建时:

  1. 支付系统需要发起支付流程;
  2. 风控系统需要审核订单的合法性;
  3. 客服系统需要给用户发短信告知用户;
  4. 经营分析系统需要更新统计数据;
  5. ……

这些订单下游的系统都需要实时获得订单数据。随着业务不断发展,这些订单下游系统不断的增加,不断变化,并且每个系统可能只需要订单数据的一个子集,负责订单服务的开发团队不得不花费很大的精力,应对不断增加变化的下游系统,不停地修改调试订单系统与这些下游系统的接口。任何一个下游系统接口变更,都需要订单模块重新进行一次上线,对于一个电商的核心服务来说,这几乎是不可接受的。

所有的电商都选择用消息队列来解决类似的系统耦合过于紧密的问题。引入消息队列后,订单服务在订单变化时发送一条消息到消息队列的一个主题 Order 中,所有下游系统都订阅主题 Order,这样每个下游系统都可以获得一份实时完整的订单数据。

无论增加、减少下游系统或是下游系统需求如何变化,订单服务都无需做任何更改,实现了订单服务与下游服务的解耦。

(卷宗上传材料后,对材料作一个深度应用,例如信息提取服务提取材料的结构化数据,提取完成后发消息通知其他系统:可以查这个材料的数据了。)

同时我们也要认识到,消息队列也有它自身的一些问题和局限性,包括:

  • 引入消息队列带来的延迟问题;
  • 增加了系统的复杂度;
  • 可能产生数据不一致的问题。

03 | 消息模型:主题和队列有什么区别?

每种消息队列都有自己的一套消息模型,像队列(Queue)、主题(Topic)或是分区(Partition)这些名词概念,在每个消息队列模型中都会涉及一些,含义还不太一样。

为什么出现这种情况呢?因为没有标准。曾经,也是有一些国际组织尝试制定过消息相关的标准,比如早期的 JMS 和 AMQP。但让人无奈的是,标准的进化跟不上消息队列的演进速度,这些标准实际上已经被废弃了。

那么,到底什么是队列?什么是主题?主题和队列又有什么区别呢?想要彻底理解这些,我们需要从消息队列的演进说起。

主题和队列有什么区别?

最初的消息队列,就是一个严格意义上的队列。在计算机领域,“队列(Queue)”是一种数据结构,有完整而严格的定义。在维基百科中,队列的定义是这样的:

队列是先进先出(FIFO, First-In-First-Out)的线性表(Linear List)。在具体应用中通常用链表或者数组来实现。队列只允许在后端(称为 rear)进行插入操作,在前端(称为 front)进行删除操作。

这就是最初的一种消息模型:队列模型。

如果需要将一份消息数据分发给多个消费者,要求每个消费者都能收到全量的消息,例如,对于一份订单数据,风控系统、分析系统、支付系统等都需要接收消息。这个时候,单个队列就满足不了需求,一个可行的解决方式是,为每个消费者创建一个单独的队列,让生产者发送多份。

显然这是个比较蠢的做法,同样的一份消息数据被复制到多个队列中会浪费资源,更重要的是,生产者必须知道有多少个消费者。为每个消费者单独发送一份消息,这实际上违背了消息队列“解耦”这个设计初衷。

为了解决这个问题,演化出了另外一种消息模型:“发布 - 订阅模型(Publish-Subscribe Pattern)”。

实际上,在这种发布 - 订阅模型中,如果只有一个订阅者,那它和队列模型就基本是一样的了。也就是说,发布 - 订阅模型在功能层面上是可以兼容队列模型的。

RabbitMQ 的消息模型

在 RabbitMQ 中,Exchange 位于生产者和队列之间,生产者并不关心将消息发送给哪个队列,而是将消息发送给 Exchange,由 Exchange 上配置的策略来决定将消息投递到哪些队列中。

同一份消息如果需要被多个消费者来消费,需要配置 Exchange 将消息发送到多个队列,每个队列中都存放一份完整的消息数据,可以为一个消费者提供消费服务。这也可以变相地实现新发布 - 订阅模型中,“一份消息数据可以被多个订阅者来多次消费”这样的功能。

RocketMQ 的消息模型

几乎所有的消息队列产品都使用一种非常朴素的“请求 - 确认”机制,确保消息不会在传递过程中由于网络或服务器故障丢失。具体的做法也非常简单。

在生产端,生产者先将消息发送给服务端,也就是 Broker,服务端在收到消息并将消息写入主题或者队列中后,会给生产者发送确认的响应。如果生产者没有收到服务端的确认或者收到失败的响应,则会重新发送消息;

在消费端,消费者在收到消息并完成自己的消费业务逻辑(比如,将数据保存到数据库中)后,也会给服务端发送消费成功的确认,服务端只有收到消费确认后,才认为一条消息被成功消费,否则它会给消费者重新发送这条消息,直到收到对应的消费成功确认。

这个确认机制很好地保证了消息传递过程中的可靠性,但是,引入这个机制在消费端带来了一个不小的问题。什么问题呢?为了确保消息的有序性,在某一条消息被成功消费之前,下一条消息是不能被消费的,也就是说,每个主题在任意时刻,至多只能有一个消费者实例在进行消费,那就没法通过水平扩展消费者的数量来提升消费端总体的消费性能。为了解决这个问题,RocketMQ 在主题下面增加了队列的概念。

**每个主题包含多个队列,通过多个队列来实现多实例并行生产和消费。**需要注意的是,RocketMQ 只在队列上保证消息的有序性,主题层面是无法保证消息的严格顺序的。

RocketMQ 中,订阅者的概念是通过消费组(Consumer Group)来体现的。每个消费组都消费主题中一份完整的消息,不同消费组之间消费进度彼此不受影响,也就是说,一条消息被 Consumer Group1 消费过,也会再给 Consumer Group2 消费。

消费组中包含多个消费者,同一个组内的消费者是竞争消费的关系,每个消费者负责消费组内的一部分消息。如果一条消息被消费者 Consumer1 消费了,那同组的其他消费者就不会再收到这条消息。

在 Topic 的消费过程中,由于消息需要被不同的组进行多次消费,所以消费完的消息并不会立即被删除,这就需要 RocketMQ 为每个消费组在每个队列上维护一个消费位置(Consumer Offset),这个位置之前的消息都被消费过,之后的消息都没有被消费过,每成功消费一条消息,消费位置就加一。这个消费位置是非常重要的概念,我们在使用消息队列的时候,丢消息的原因大多是由于消费位置处理不当导致的。

Kafka 的消息模型

我们再来看看另一种常见的消息队列 Kafka,Kafka 的消息模型和 RocketMQ 是完全一样的,我刚刚讲的所有 RocketMQ 中对应的概念,和生产消费过程中的确认机制,都完全适用于 Kafka。唯一的区别是,在 Kafka 中,队列这个概念的名称不一样,Kafka 中对应的名称是“分区(Partition)”,含义和功能是没有任何区别的。

总结

  1. producer会往所有队列发消息,但不是“同一条消息每个队列都发一次”,每条消息只会往某个队列里面发送一次。producer和queue不需要关联,简单点儿说,就是发到哪个queue都可以。RocketMQ的默认策略是轮询选择每个queue。
  2. 对于一个消费组,每个队列上只能串行消费,多个队列加一起就是并行消费了,并行度就是队列数量,队列数量越多并行度越大,所以水平扩展可以提升消费性能。
  3. consumer和queue不是强关联的,但是在任何一个时刻,某个queue在同一个consumer group中最多只能有一个consumer占用。

05 | 如何确保消息不会丢失?

现在主流的消息队列产品都提供了非常完善的消息可靠性保证机制,完全可以做到在消息传递过程中,即使发生网络中断或者硬件故障,也能确保消息的可靠传递,不丢消息。

检测消息丢失的方法

我们说,用消息队列最尴尬的情况不是丢消息,而是消息丢了还不知道。一般而言,一个新的系统刚刚上线,各方面都不太稳定,需要一个磨合期,这个时候,特别需要监控到你的系统中是否有消息丢失的情况。

如果是 IT 基础设施比较完善的公司,一般都有分布式链路追踪系统,使用类似的追踪系统可以很方便地追踪每一条消息。如果没有这样的追踪系统,这里我提供一个比较简单的方法,来检查是否有消息丢失的情况。

**我们可以利用消息队列的有序性来验证是否有消息丢失。**原理非常简单,在 Producer 端,我们给每个发出的消息附加一个连续递增的序号,然后在 Consumer 端来检查这个序号的连续性。

大多数消息队列的客户端都支持拦截器机制,你可以利用这个拦截器机制,在 Producer 发送消息之前的拦截器中将序号注入到消息中,在 Consumer 收到消息的拦截器中检测序号的连续性,这样实现的好处是消息检测的代码不会侵入到你的业务代码中,待你的系统稳定后,也方便将这部分检测的逻辑关闭或者删除。

如果是在一个分布式系统中实现这个检测方法,有几个问题需要你注意。

首先,像 Kafka 和 RocketMQ 这样的消息队列,它是不保证在 Topic 上的严格顺序的,只能保证分区上的消息是有序的,所以我们在发消息的时候必须要指定分区,并且,在每个分区单独检测消息序号的连续性。

如果你的系统中 Producer 是多实例的,由于并不好协调多个 Producer 之间的发送顺序,所以也需要每个 Producer 分别生成各自的消息序号,并且需要附加上 Producer 的标识,在 Consumer 端按照每个 Producer 分别来检测序号的连续性。

Consumer 实例的数量最好和分区数量一致,做到 Consumer 和分区一一对应,这样会比较方便地在 Consumer 内检测消息序号的连续性。

确保消息可靠传递

一条消息从生产到消费完成这个过程,可以划分三个阶段,为了方便描述,我给每个阶段分别起了个名字。

  • 生产阶段: 在这个阶段,从消息在 Producer 创建出来,经过网络传输发送到 Broker 端。
  • 存储阶段: 在这个阶段,消息在 Broker 端存储,如果是集群,消息会在这个阶段被复制到其他的副本上。
  • 消费阶段: 在这个阶段,Consumer 从 Broker 上拉取消息,经过网络传输发送到 Consumer 上。
  1. 生产阶段

在生产阶段,消息队列通过最常用的请求确认机制,来保证消息的可靠传递:当你的代码调用发消息方法时,消息队列的客户端会把消息发送到 Broker,Broker 收到消息后,会给客户端返回一个确认响应,表明消息已经收到了。客户端收到响应后,完成了一次正常消息的发送。

只要 Producer 收到了 Broker 的确认响应,就可以保证消息在生产阶段不会丢失。有些消息队列在长时间没收到发送确认响应后,会自动重试,如果重试再失败,就会以返回值或者异常的方式告知用户。

**你在编写发送消息代码时,需要注意,正确处理返回值或者捕获异常,就可以保证这个阶段的消息不会丢失。**以 Kafka 为例,我们看一下如何可靠地发送消息:

同步发送时,只要注意捕获异常即可。

try {
    RecordMetadata metadata = producer.send(record).get();
    System.out.println(" 消息发送成功。");
} catch (Throwable e) {
    System.out.println(" 消息发送失败!");
    System.out.println(e);
}

异步发送时,则需要在回调方法里进行检查。这个地方是需要特别注意的,很多丢消息的原因就是,我们使用了异步发送,却没有在回调中检查发送结果。

producer.send(record, (metadata, exception) -> {
    if (metadata != null) {
        System.out.println(" 消息发送成功。");
    } else {
        System.out.println(" 消息发送失败!");
        System.out.println(exception);
    }
});
  1. 存储阶段

在存储阶段正常情况下,只要 Broker 在正常运行,就不会出现丢失消息的问题,但是如果 Broker 出现了故障,比如进程死掉了或者服务器宕机了,还是可能会丢失消息的。

如果对消息的可靠性要求非常高,可以通过配置 Broker 参数来避免因为宕机丢消息。

对于单个节点的 Broker,需要配置 Broker 参数,在收到消息后,将消息写入磁盘后再给 Producer 返回确认响应,这样即使发生宕机,由于消息已经被写入磁盘,就不会丢失消息,恢复后还可以继续消费。例如,在 RocketMQ 中,需要将刷盘方式 flushDiskType 配置为 SYNC_FLUSH 同步刷盘。

如果是 Broker 是由多个节点组成的集群,需要将 Broker 集群配置成:至少将消息发送到 2 个以上的节点,再给客户端回复发送确认响应。这样当某个 Broker 宕机时,其他的 Broker 可以替代宕机的 Broker,也不会发生消息丢失。后面我会专门安排一节课,来讲解在集群模式下,消息队列是如何通过消息复制来确保消息的可靠性的。

  1. 消费阶段

消费阶段采用和生产阶段类似的确认机制来保证消息的可靠传递,客户端从 Broker 拉取消息后,执行用户的消费业务逻辑,成功后,才会给 Broker 发送消费确认响应。如果 Broker 没有收到消费确认响应,下次拉消息的时候还会返回同一条消息,确保消息不会在网络传输过程中丢失,也不会因为客户端在执行消费逻辑中出错导致丢失。

你在编写消费代码时需要注意的是,不要在收到消息后就立即发送消费确认,而是应该在执行完所有消费业务逻辑之后,再发送消费确认。

思考题

我刚刚讲到,如果消息在网络传输过程中发送错误,由于发送方收不到确认,会通过重发来保证消息不丢失。但是,如果确认响应在网络传输时丢失,也会导致重发消息。也就是说,**无论是 Broker 还是 Consumer 都是有可能收到重复消息的,**那我们在编写消费代码时,就需要考虑这种情况,你可以想一下,在消费消息的代码中,该如何处理这种重复消息,才不会影响业务逻辑的正确性?

06 | 如何处理消费过程中的重复消息?

消息重复的情况必然存在

在 MQTT 协议中,给出了三种传递消息时能够提供的服务质量标准,这三种服务质量从低到高依次是:

  • At most once: 至多一次。消息在传递时,最多会被送达一次。换一个说法就是,没什么消息可靠性保证,允许丢消息。一般都是一些对消息可靠性要求不太高的监控场景使用,比如每分钟上报一次机房温度数据,可以接受数据少量丢失。
  • At least once: 至少一次。消息在传递时,至少会被送达一次。也就是说,不允许丢消息,但是允许有少量重复消息出现。
  • Exactly once:恰好一次。消息在传递时,只会被送达一次,不允许丢失也不允许重复,这个是最高的等级。

这个服务质量标准不仅适用于 MQTT,对所有的消息队列都是适用的。我们现在常用的绝大部分消息队列提供的服务质量都是 At least once,包括 RocketMQ、RabbitMQ 和 Kafka 都是这样。也就是说,消息队列很难保证消息不重复。

用幂等性解决重复消息问题

一般解决重复消息的办法是,在消费端,让我们消费消息的操作具备幂等性。

幂等(Idempotence) 本来是一个数学上的概念,它是这样定义的:

如果一个函数 f(x) 满足:f(f(x)) = f(x),则函数 f(x) 满足幂等性。

这个概念被拓展到计算机领域,被用来描述一个操作、方法或者服务。一个幂等操作的特点是,其任意多次执行所产生的影响均与一次执行的影响相同。

一个幂等的方法,使用同样的参数,对它进行多次调用和一次调用,对系统产生的影响是一样的。所以,对于幂等的方法,不用担心重复执行会对系统造成任何改变。

我们举个例子来说明一下。在不考虑并发的情况下,“将账户 X 的余额设置为 100 元”,执行一次后对系统的影响是,账户 X 的余额变成了 100 元。只要提供的参数 100 元不变,那即使再执行多少次,账户 X 的余额始终都是 100 元,不会变化,这个操作就是一个幂等的操作。

再举一个例子,“将账户 X 的余额加 100 元”,这个操作它就不是幂等的,每执行一次,账户余额就会增加 100 元,执行多次和执行一次对系统的影响(也就是账户的余额)是不一样的。

如果我们系统消费消息的业务逻辑具备幂等性,那就不用担心消息重复的问题了,因为同一条消息,消费一次和消费多次对系统的影响是完全一样的。也就可以认为,消费多次等于消费一次。

从对系统的影响结果来说:At least once + 幂等消费 = Exactly once。

那么如何实现幂等操作呢?最好的方式就是,**从业务逻辑设计上入手,将消费的业务逻辑设计成具备幂等性的操作。**但是,不是所有的业务都能设计成天然幂等的,这里就需要一些方法和技巧来实现幂等。

下面我给你介绍几种常用的设计幂等操作的方法:

  1. 利用数据库的唯一约束实现幂等

例如我们刚刚提到的那个不具备幂等特性的转账的例子:将账户 X 的余额加 100 元。在这个例子中,我们可以通过改造业务逻辑,让它具备幂等性。

最简单的是我们在数据库中建一张转账流水表,这个表有三个字段:转账单 ID、账户 ID 和变更金额,然后给转账单 ID 和账户 ID 这两个字段联合起来创建一个唯一约束,这样对于相同的转账单 ID 和账户 ID,表里至多只能存在一条记录。

这样,我们消费消息的逻辑可以变为:“在转账流水表中增加一条转账记录,然后再根据转账记录,异步操作更新用户余额即可。”

基于这个思路,不光是可以使用关系型数据库,只要是支持类似“INSERT IF NOT EXIST”语义的存储类系统都可以用于实现幂等,比如,你可以用 Redis 的 SETNX 命令来替代数据库中的唯一约束,来实现幂等消费。

  1. 为更新的数据设置前置条件

另外一种实现幂等的思路是,给数据变更设置一个前置条件,如果满足条件就更新数据,否则拒绝更新数据,在更新数据的时候,同时变更前置条件中需要判断的数据。

比如,刚刚我们说过,“将账户 X 的余额增加 100 元”这个操作并不满足幂等性,我们可以把这个操作加上一个前置条件,变为:“如果账户 X 当前的余额为 500 元,将余额加 100 元”,这个操作就具备了幂等性。对应到消息队列中的使用时,可以在发消息时在消息体中带上当前的余额,在消费的时候进行判断数据库中,当前余额是否与消息中的余额相等,只有相等才执行变更操作。

但是,如果我们要更新的数据不是数值,或者我们要做一个比较复杂的更新操作怎么办?用什么作为前置判断条件呢?更加通用的方法是,给你的数据增加一个版本号属性,每次更数据前,比较当前数据的版本号是否和消息中的版本号一致,如果不一致就拒绝更新数据,更新数据的同时将版本号 +1,一样可以实现幂等更新。

  1. 记录并检查操作

如果上面提到的两种实现幂等方法都不能适用于你的场景,我们还有一种通用性最强,适用范围最广的实现幂等性方法:记录并检查操作,也称为“Token 机制或者 GUID(全局唯一 ID)机制”,实现的思路特别简单:在执行数据更新操作之前,先检查一下是否执行过这个更新操作。

具体的实现方法是,在发送消息时,给每条消息指定一个全局唯一的 ID,消费时,先根据这个 ID 检查这条消息是否有被消费过,如果没有消费过,才更新数据,然后将消费状态置为已消费。

原理和实现是不是很简单?其实一点儿都不简单,在分布式系统中,这个方法其实是非常难实现的。

首先,给每个消息指定一个全局唯一的 ID 就是一件不那么简单的事儿,方法有很多,但都不太好同时满足简单、高可用和高性能,或多或少都要有些牺牲。更加麻烦的是,在“检查消费状态,然后更新数据并且设置消费状态”中,三个操作必须作为一组操作保证原子性,才能真正实现幂等,否则就会出现 Bug。

比如说,对于同一条消息:“全局 ID 为 8,操作为:给 ID 为 666 账户增加 100 元”,有可能出现这样的情况:

  • t0 时刻:Consumer A 收到条消息,检查消息执行状态,发现消息未处理过,开始执行“账户增加 100 元”;
  • t1 时刻:Consumer B 收到条消息,检查消息执行状态,发现消息未处理过,因为这个时刻,Consumer A 还未来得及更新消息执行状态。

这样就会导致账户被错误地增加了两次 100 元,这是一个在分布式系统中非常容易犯的错误,一定要引以为戒。

对于这个问题,当然我们可以用事务来实现,也可以用锁来实现,但是在分布式系统中,无论是分布式事务还是分布式锁都是比较难解决问题。

思考题

最后请你想一下,为什么大部分消息队列都选择只提供 At least once 的服务质量,而不是级别更高的 Exactly once 呢?

解决一个问题,往往会引发别的问题。若消息队列实现了exactly once,会引发的问题有:①消费端在pull消息时,需要检测此消息是否被消费,这个检测机制无疑会拉低消息消费的速度。可以预想到,随着消息的剧增,消费性能势必会急剧下降,导致消息积压;②检查机制还需要业务端去配合实现,若一条消息长时间未返回ack,消息队列需要去回调看下消费结果(这个类似于事物消息的回查机制)。这样就会增加业务端的压力,与很多的未知因素。

07 | 消息积压了该如何处理?

我们都知道,消息积压的直接原因,一定是系统中的某个部分出现了性能问题,来不及处理上游发送的消息,才会导致消息积压。

所以,我们先来分析下,在使用消息队列时,如何来优化代码的性能,避免出现消息积压。然后再来看看,如果你的线上系统出现了消息积压,该如何进行紧急处理,最大程度地避免消息积压对业务的影响。

优化性能来避免消息积压

在使用消息队列的系统中,对于性能的优化,主要体现在生产者和消费者这一收一发两部分的业务逻辑中。对于消息队列本身的性能,你作为使用者,不需要太关注。为什么这么说呢?

主要原因是,对于绝大多数使用消息队列的业务来说,消息队列本身的处理能力要远大于业务系统的处理能力。主流消息队列的单个节点,消息收发的性能可以达到每秒钟处理几万至几十万条消息的水平,还可以通过水平扩展 Broker 的实例数成倍地提升处理能力。

而一般的业务系统需要处理的业务逻辑远比消息队列要复杂,单个节点每秒钟可以处理几百到几千次请求,已经可以算是性能非常好的了。所以,对于消息队列的性能优化,我们更关注的是,在消息的收发两端,我们的业务代码怎么和消息队列配合,达到一个最佳的性能。

  1. 发送端性能优化

发送端业务代码的处理性能,实际上和消息队列的关系不大,因为一般发送端都是先执行自己的业务逻辑,最后再发送消息。如果说,你的代码发送消息的性能上不去,你需要优先检查一下,是不是发消息之前的业务逻辑耗时太多导致的。

对于发送消息的业务逻辑,只需要注意设置合适的并发和批量大小,就可以达到很好的发送性能。为什么这么说呢?

我们之前的课程中讲过 Producer 发送消息的过程,Producer 发消息给 Broker,Broker 收到消息后返回确认响应,这是一次完整的交互。假设这一次交互的平均时延是 1ms,我们把这 1ms 的时间分解开,它包括了下面这些步骤的耗时:

  • 发送端准备数据、序列化消息、构造请求等逻辑的时间,也就是发送端在发送网络请求之前的耗时;
  • 发送消息和返回响应在网络传输中的耗时;
  • Broker 处理消息的时延。

如果是单线程发送,每次只发送 1 条消息,那么每秒只能发送 1000ms / 1ms * 1 条 / ms = 1000 条 消息,这种情况下并不能发挥出消息队列的全部实力。

无论是增加每次发送消息的批量大小,还是增加并发,都能成倍地提升发送性能。至于到底是选择批量发送还是增加并发,主要取决于发送端程序的业务性质。简单来说,只要能够满足你的性能要求,怎么实现方便就怎么实现。

比如说,你的消息发送端是一个微服务,主要接受 RPC 请求处理在线业务。很自然的,微服务在处理每次请求的时候,就在当前线程直接发送消息就可以了,因为所有 RPC 框架都是多线程支持多并发的,自然也就实现了并行发送消息。并且在线业务比较在意的是请求响应时延,选择批量发送必然会影响 RPC 服务的时延。这种情况,比较明智的方式就是通过并发来提升发送性能。

如果你的系统是一个离线分析系统,离线系统在性能上的需求是什么呢?它不关心时延,更注重整个系统的吞吐量。发送端的数据都是来自于数据库,这种情况就更适合批量发送,你可以批量从数据库读取数据,然后批量来发送消息,同样用少量的并发就可以获得非常高的吞吐量。

  1. 消费端性能优化

使用消息队列的时候,大部分的性能问题都出现在消费端,如果消费的速度跟不上发送端生产消息的速度,就会造成消息积压。如果这种性能倒挂的问题只是暂时的,那问题不大,只要消费端的性能恢复之后,超过发送端的性能,那积压的消息是可以逐渐被消化掉的。

要是消费速度一直比生产速度慢,时间长了,整个系统就会出现问题,要么,消息队列的存储被填满无法提供服务,要么消息丢失,这对于整个系统来说都是严重故障。

所以,我们在设计系统的时候,一定要保证消费端的消费性能要高于生产端的发送性能,这样的系统才能健康的持续运行。

消费端的性能优化除了优化消费业务逻辑以外,也可以通过水平扩容,增加消费端的并发数来提升总体的消费性能。特别需要注意的一点是,**在扩容 Consumer 的实例数量的同时,必须同步扩容主题中的分区(也叫队列)数量,确保 Consumer 的实例数和分区数量是相等的。**如果 Consumer 的实例数量超过分区数量,这样的扩容实际上是没有效果的。原因我们之前讲过,因为对于消费者来说,在每个分区上实际上只能支持单线程消费。

我见到过很多消费程序,他们是这样来解决消费慢的问题的:

它收消息处理的业务逻辑可能比较慢,也很难再优化了,为了避免消息积压,在收到消息的 OnMessage 方法中,不处理任何业务逻辑,把这个消息放到一个内存队列里面就返回了。然后它可以启动很多的业务线程,这些业务线程里面是真正处理消息的业务逻辑,这些线程从内存队列里取消息处理,这样它就解决了单个 Consumer 不能并行消费的问题。

这个方法是不是很完美地实现了并发消费?请注意,这是一个非常常见的错误方法! 为什么错误?因为会丢消息。如果收消息的节点发生宕机,在内存队列中还没来及处理的这些消息就会丢失。

消息积压了该如何处理?

还有一种消息积压的情况是,日常系统正常运转的时候,没有积压或者只有少量积压很快就消费掉了,但是某一个时刻,突然就开始积压消息并且积压持续上涨。这种情况下需要你在短时间内找到消息积压的原因,迅速解决问题才不至于影响业务。

导致突然积压的原因肯定是多种多样的,不同的系统、不同的情况有不同的原因,不能一概而论。但是,我们排查消息积压原因,是有一些相对固定而且比较有效的方法的。

能导致积压突然增加,最粗粒度的原因,只有两种:要么是发送变快了,要么是消费变慢了。

大部分消息队列都内置了监控的功能,只要通过监控数据,很容易确定是哪种原因。如果是单位时间发送的消息增多,比如说是赶上大促或者抢购,短时间内不太可能优化消费端的代码来提升消费性能,唯一的方法是通过扩容消费端的实例数来提升总体的消费能力。

如果短时间内没有足够的服务器资源进行扩容,没办法的办法是,将系统降级,通过关闭一些不重要的业务,减少发送方发送的数据量,最低限度让系统还能正常运转,服务一些重要业务。

还有一种不太常见的情况,你通过监控发现,无论是发送消息的速度还是消费消息的速度和原来都没什么变化,这时候你需要检查一下你的消费端,是不是消费失败导致的一条消息反复消费这种情况比较多,这种情况也会拖慢整个系统的消费速度。

如果监控到消费变慢了,你需要检查你的消费实例,分析一下是什么原因导致消费变慢。优先检查一下日志是否有大量的消费错误,如果没有错误的话,可以通过打印堆栈信息,看一下你的消费线程是不是卡在什么地方不动了,比如触发了死锁或者卡在等待某些资源上了。

思考题

课后请你思考一下,在消费端是否可以通过批量消费的方式来提升消费性能?在什么样场景下,适合使用这种方法?或者说,这种方法有什么局限性?

批量消费有意义的场景:

  1. 消费端对消息的处理支持批量处理;
  2. 业务上也允许消息无序;
  3. 对实时性要求不能太高,批量消费需要Broker积累到一定消费数据才会发送到Consumer;

批量消费的局限性:

  1. 需要一个整体ack的机制,一旦一条靠前的消息消费失败,可能会引起很多消息重试;