Skip to content

Latest commit

 

History

History
166 lines (98 loc) · 18.1 KB

Mysql并行复制原理.md

File metadata and controls

166 lines (98 loc) · 18.1 KB

众所周知,MySQL的复制延迟是一直被诟病的问题之一,在MySQL 5.7版本已经支持“真正”的并行复制功能,官方称为为enhanced multi-threaded slave(简称MTS),因此复制延迟问题已经得到了极大的改进。总之,MySQL 5.7版本后,复制延迟问题永不存在

MySQL 5.6并行复制架构

从MySQL 5.6.3版本开始就支持所谓的并行复制了,但是其并行只是基于schema的,也就是基于库的。如果用户的MySQL数据库实例中存在多个schema,对于从机复制的速度的确可以有比较大的帮助。但在一般的MySQL使用中,一库多表比较常见,所以MySQL 5.6的并行复制对真正用户来说属于雷声大雨点小,不太合适生产使用。MySQL 5.6并行复制的架构如下所示:

image

在MySQL 5.6版本之前,Slave服务器上有两个线程I/O线程和SQL线程

  • I/O线程负责接收二进制日志(更准确的说是二进制日志的event),
  • SQL线程进行回放二进制日志。

如果在MySQL5.6版本开启并行复制功能,那么SQL线程就变为了coordinator(协调者)线程,coordinator线程主要负责以前两部分的内容:

  • 若判断可以并行执行,那么选择worker线程执行事务的二进制日志。
  • 若判断不可以并行执行,如该操作是DDL,亦或者是事务跨schema操作,则等待所有的worker线程执行完成之后,再执行当前的日志。

image

这意味着coordinator线程并不是仅将日志发送给worker线程,自己也可以回放日志,但是所有可以并行的操作交付由worker线程完成。coordinator线程与worker是典型的生产者与消费者模型。

上述机制实现了基于schema的并行复制存在两个问题,

  • 首先是crash safe功能不好做,因为可能之后执行的事务由于并行复制的关系先完成执行,那么当发生crash的时候,这部分的处理逻辑是比较复杂的。从代码上看,5.6这里引入了Low-Water-Mark标记来解决该问题,从设计上看(WL#5569),其是希望借助于日志的幂等性来解决该问题,不过5.6的二进制日志回放还不能实现幂等性。
  • 另一个最为关键的问题是这样设计的并行复制效果并不高,如果用户实例仅有一个库,那么就无法实现并行回放,甚至性能会比原来的单线程更差。而单库多表是比多库多表更为常见的一种情形。
MySQL 5.7并行复制原理

MySQL 5.6基于库的并行复制出来后,基本无人问津,在沉寂了一段时间之后,MySQL 5.7出来了,它的并行复制以一种全新的姿态出现在了DBA面前。MySQL 5.7才可称为真正的并行复制,这其中最为主要的原因就是slave服务器的回放与master是一致的,即master服务器上是怎么并行执行的,那么slave上就怎样进行并行回放。不再有库的并行复制限制,对于二进制日志格式也无特殊的要求(基于库的并行复制也没有要求)。

从MySQL官方来看,其并行复制的原本计划是支持表级的并行复制和行级的并行复制,行级的并行复制通过解析ROW格式的二进制日志的方式来完成,WL#4648。但是最终出现给小伙伴的确是在开发计划中称为:MTS(Prepared transactions slave parallel applier),可见:WL#6314。该并行复制的思想最早是由MariaDB的Kristain提出,并已在MariaDB 10中出现,相信很多选择MariaDB的小伙伴最为看重的功能之一就是并行复制。

下面来看看MySQL 5.7中的并行复制究竟是如何实现的?

组提交(group commit):通过对事务进行分组,优化减少了生成二进制日志所需的操作数。当事务同时提交时,它们将在单个操作中写入到二进制日志中。如果事务能同时提交成功,那么它们就不会共享任何锁,这意味着它们没有冲突,因此可以在Slave上并行执行。所以通过在主机上的二进制日志中添加组提交信息,这些Slave可以并行地安全地运行事务

首先,MySQL 5.7的并行复制基于一个前提,即所有已经处于prepare阶段的事务,都是可以并行提交的。这些当然也可以在从库中并行提交,因为处理这个阶段的事务,都是没有冲突的,该获取的资源都已经获取了。反过来说,如果有冲突,则后来的会等已经获取资源的事务完成之后才能继续,故而不会进入prepare阶段。这是一种新的并行复制思路,完全摆脱了原来一直致力于为了防止冲突而做的分发算法,等待策略等复杂的而又效率底下的工作。

MySQL5.7并行复制的思想一言以蔽之:一个组提交(group commit)的事务都是可以并行回放,因为这些事务都已进入到事务的prepare阶段,则说明事务之间没有任何冲突(否则就不可能提交)。

根据以上描述,这里的重点是如何来定义哪些事务是处于prepare阶段的?以及在生成的Binlog内容中该如何告诉Slave哪些事务是可以并行复制的?为了兼容MySQL 5.6基于库的并行复制,5.7引入了新的变量slave-parallel-type,其可以配置的值有:DATABASE(默认值,基于库的并行复制方式)、LOGICAL_CLOCK(基于组提交的并行复制方式)

支持并行复制的GTID

那么如何知道事务是否在同一组中,又是一个问题,因为原版的MySQL并没有提供这样的信息。在MySQL 5.7版本中,其设计方式是将组提交的信息存放在GTID中。那么如果用户没有开启GTID功能,即将参数gtid_mode设置为OFF呢?故MySQL 5.7又引入了称之为Anonymous_Gtid(ANONYMOUS_GTID_LOG_EVENT)的二进制日志event类型

mysql> SHOW BINLOG EVENTS in 'mysql-bin.000006';

+------------------+-----+----------------+-----------+-------------+-----------------------------------------------+

| Log_name         | Pos | Event_type     | Server_id | End_log_pos | Info                                          |

+------------------+-----+----------------+-----------+-------------+-----------------------------------------------+

| mysql-bin.000006 | 4   | Format_desc    | 88        | 123         | Server ver: 5.7.7-rc-debug-log, Binlog ver: 4 |

| mysql-bin.000006 | 123 | Previous_gtids | 88        | 194         |                                               |

| mysql-bin.000006 | 194 | Anonymous_Gtid | 88        | 259         | SET @@SESSION.GTID_NEXT= 'ANONYMOUS'          |

| mysql-bin.000006 | 259 | Query          | 88        | 330         | BEGIN                                         |

| mysql-bin.000006 | 330 | Table_map      | 88        | 373         | table_id: 108 (aaa.t)                         |

| mysql-bin.000006 | 373 | Write_rows     | 88        | 413         | table_id: 108 flags: STMT_END_F               |

......

当开启GTID时,每一个操作语句(DML/DDL)执行前就会添加一个GTID事件,记录当前全局事务ID;同时在MySQL 5.7版本中,组提交信息也存放在GTID事件中,有两个关键字段last_committed,sequence_number就是用来标识组提交信息的。在InnoDB中有一个全局计数器(global counter),在每一次存储引擎提交之前,计数器值就会增加。在事务进入prepare阶段之前,全局计数器的当前值会被储存在事务中,这个值称为此事务的commit-parent(也就是last_committed)。

这意味着在MySQL5.7版本中即使不开启GTID,每个事务开始前也是会存在一个Anonymous_Gtid,而这个Anonymous_Gtid事件中就存在着组提交的信息。反之,如果开启了GTID后,就不会存在这个Anonymous_Gtid了,从而组提交信息就记录在非匿名GTID事件中。

LOGICAL_CLOCK

然而,通过上述的SHOW BINLOG EVENTS,我们并没有发现有关组提交的任何信息。但是通过mysqlbinlog工具,用户就能发现组提交的内部信息:

$ mysqlbinlog mysql-bin.0000006 | grep last_committed

#150520 14:23:11 server id 88 end_log_pos 259   CRC32 0x4ead9ad6 GTID last_committed=0  sequence_number=1

#150520 14:23:11 server id 88 end_log_pos 1483  CRC32 0xdf94bc85 GTID last_committed=0  sequence_number=2

#150520 14:23:11 server id 88 end_log_pos 2708  CRC32 0x0914697b GTID last_committed=0  sequence_number=3

#150520 14:23:11 server id 88 end_log_pos 3934  CRC32 0xd9cb4a43 GTID last_committed=0  sequence_number=4

#150520 14:23:11 server id 88 end_log_pos 5159  CRC32 0x06a6f531 GTID last_committed=0  sequence_number=5

#150520 14:23:11 server id 88 end_log_pos 6386  CRC32 0xd6cae930 GTID last_committed=0  sequence_number=6

#150520 14:23:11 server id 88 end_log_pos 7610  CRC32 0xa1ea531c GTID last_committed=6  sequence_number=7

#150520 14:23:11 server id 88 end_log_pos 8834  CRC32 0x96864e6b GTID last_committed=6  sequence_number=8

#150520 14:23:11 server id 88 end_log_pos 10057 CRC32 0x2de1ae55 GTID last_committed=6  sequence_number=9

#150520 14:23:11 server id 88 end_log_pos 11280 CRC32 0x5eb13091 GTID last_committed=6  sequence_number=10

#150520 14:23:11 server id 88 end_log_pos 12504 CRC32 0x16721011 GTID last_committed=6  sequence_number=11

#150520 14:23:11 server id 88 end_log_pos 13727 CRC32 0xe2210ab6 GTID last_committed=6  sequence_number=12

#150520 14:23:11 server id 88 end_log_pos 14952 CRC32 0xf41181d3 GTID last_committed=12 sequence_number=13

...

可以发现MySQL5.7二进制日志较之原来的二进制日志内容多了last_committed和sequence_number。

  • last_committed:表示事务提交的时候,上次事务提交的编号,如果事务具有相同的last_committed,表示这些事务都在一组内,可以进行并行的回放。例如上述last_committed为0的事务有6个,表示组提交时提交了6个事务,而这6个事务在从机是可以进行并行回放的。
  • sequence_number是顺序增长的,每个事务对应一个序列号。

另外,还有一个细节,其实每一个组的last_committed值,都是上一个组中事务的sequence_number最大值,也是本组中事务sequence_number最小值减1。同时这两个值的有效作用域都在文件内,只要换一个文件(flush binary logs),这两个值就都会从0开始计数。上述的last_committed和sequence_number代表的就是所谓的LOGICAL_CLOCK

那么此时,还有一个重要的技术问题–MySQL是如何做到将这些事务分组的呢?要搞清楚这个问题,首先需要了解一下MySQL事务提交方式

事务两阶段提交

事务的提交主要分为两个主要步骤:

  1. 准备阶段(Prepare Phase):此时SQL已经成功执行,并生成xid信息及redo和undo的内存日志。然后调用prepare方法完成第一阶段,papare方法实际上什么也没做,将事务状态设为TRX_PREPARED,并将redo log刷磁盘。

  2. 提交阶段(Commit Phase)

  • 2.1 记录协调者日志,即Binlog日志:如果事务涉及的所有存储引擎的prepare都执行成功,则调用TC_LOG_BINLOG::log_xid方法将SQL语句写到binlog(write()将binary log内存日志数据写入文件系统缓存,fsync()将binary log文件系统缓存日志数据永久写入磁盘)。此时,事务已经铁定要提交了。否则,调用ha_rollback_trans方法回滚事务,而SQL语句实际上也不会写到binlog。

  • 2.2 告诉引擎做commit:最后,调用引擎的commit完成事务的提交。会清除undo信息,刷redo日志,将事务设为TRX_NOT_STARTED状态。

ordered commit

关于MySQL是如何提交的,内部使用ordered_commit函数来处理的。先看它的逻辑图,如下:

image

从图中可以看到,只要事务提交(调用ordered_commit),就都会先加入队列中。而提交有三个步骤,包括FLUSH、SYNC及COMMIT,相应地也有三个队列。首先要加入的是FLUSH队列,如果某个事务加入时,队列还是空的,则这个事务就担任队长,来代表其他事务执行提交操作。而在其他事务继续加入时,就会发现此时队列已经不为空了,那么这些事务就会等待队长帮它们完成提交操作。在上图中,事务2-6都是这种坐享其成之辈,事务1就是队长了。不过这里需要注意一点,不是说队长会一直等待要提交的事务不停地加入,而是有一个时限,只有在这个时限之内成功加入到队列的,才能帮它提交。这个时限就是从队长加入开始,到它去处理队列的时间,这个时间实际非常小,基本上就是程序从这行到哪行的一个过程,也没有刻意去等待。

只要对长将这个队列中的事务取出,其他事务就可以加入这个队列了。第一个加入的还是队长,但此时必须要等待。因为此时有事务正在做FLUSH,做完FLUSH之后,其他的对长才能带着队员做FLUSH。而在同一时刻,只能有一个组在做FLUSH。这就是上图中所示的等待事务组2和等待事务组3,此时队长会按照顺序依次做FLUSH,做FLUSH的过程中,有一些重要的事务需要去做,如下:

  1. 要保证顺序必须是提交加入到队列的顺序。
  2. 如果有新的事务提交,此时队列为空,则可以加入到FLUSH队列中。不过,因为此时FLUSH临界区正在被占用,所以新事务组必须要等待。
  3. 给每个事务分配sequence_number,如果是第一个事务,则将这个组的last_committed设置为sequence_number-1.
  4. 将带着last_committed与sequence_number的GTID事件FLUSH到Binlog文件中。
  5. 将当前事务所产生的Binlog内容FLUSH到Binlog文件中。

这样,一个事务的FLUSH就完成了。接下来,依次做完组内所有事务的FLUSH,然后做SYNC。如果SYNC的临界区是空的,则直接做SYNC操作,而如果已经有事务组在做,则必须要等待。同样地,做完FLUSH之后,FLUSH临界区会空闲出来,哪儿此时再等待这个临界区的组就可以做FLUSH操作了。总而言之,每个步骤都会有事务组在做, 就像一个流水线一样。完成一件产品需要三个工序,每个工序都可以批量来做,那么每个工序车间都不会闲着,都一直重复着相同的事情,最终每个产品都是以完全相同的顺序完成。

到COMMIT时,实际做的是存储引擎提交,参数binlog_order_commits会影响提交行为。如果设置为ON,那么此时提交就变为串行操作了,就以队列的顺序为提交顺序。而如果设置为OFF,提交就不会在这里进行,而会在每个事务(包括队长和队员)做finish_commit(FINISH)时各自做存储引擎的提交操作。组内每个事务做finish_commit是在队长完成COMMIT工序之后进行,到步骤DONE时,便会唤醒每个等待提交完成的事务,告诉他们可以继续了,那么每个事务就会去做finish_commit。而后,自己再去做finish_commit。这样,一个组的事务就都按部就班地提交完成了。现在也可以知道,与这个组中同时在做提交的最多还有另外两个事务,一个是在做FLUSH,一个是在做SYNC。

现在应该搞明白关于order commit的原理了,而这也是LOGICAL_CLOCK并行复制的基础。因为order commit使得所有的事务分了组,并且有了序列号,从库拿到这些信息之后,就可以根据序号放心大胆地做分发了。

但是有没有发现一个问题,每个组的事务数都没有做过特殊处理。因为从时间上说,从队长开始入队,到取队列中的所有事务出来,这之间的时间是非常非常小的,其实就是几行代码的事,也不会有任何费时间的操作,所以在这段时间内其实不会有多少个事务。只有在压力很大,提交的事务非常多的时候,才会提高并发度(组内事务数变大)。不过这个问题也可以解释得通,主库压力小的时候,从库何必要那么大的并发度呢?只有主库压力大的时候,从库才会延迟。

这种情况下也可以通过调整主服务器上的参数binlog_group_commit_sync_delay、binlog_group_commit_sync_no_delay_count

  • 前者表示事务延迟提交多少时间来加大整个组提交的事务数量,从而减少进行磁盘刷盘sync的次数,单位为1/1000000秒,最大值1000000也就是1秒;
  • 后者表示组提交的事务数量凑齐多少此值时就跳出等待,然后提交事务,而无需等待binlog_group_commit_sync_delay的延迟时间;但是binlog_group_commit_sync_no_delay_count也不会超过binlog_group_commit_sync_delay设置。

几个参数都是为了增加主服务器组提交的事务比例,从而增大从机MTS的并行度。

从库多线程复制分发原理

知道了order commit原理之后,现在很容易可以想到在从库端是如何分发的,从库以事务为单位做APPLY的,每个事务有一个GTID事件,从而都有一个last_committed及sequence_number值,分发原理如下。

  1. 从库SQL线程拿到一个新事务,取出last_committed及sequence_number值。
  2. 判断当前last_committed是不是大于当前已经执行的sequence_number的最小值(low water mark,下面称lwm)。
  3. 如果大于,则说明上一个组的事务还没有完成。此时等待lwm变大,直到last_committed与lwm相等,才可以继续。
  4. 如果小于或等于,则说明当前事务与正在执行的组是同一个组,不需要等待。
  5. SQL线程通过统计,找到一个空闲的worker线程,如果没有空闲,则SQL线程转入等待状态,直到找到一个为止。
  6. 将当前事务打包,交给选定的worker,之后worker线程会去APPLY这个事务,此时的SQL线程就会处理下一个事务。

说明:上面的步骤是以事务为单位介绍的,其实实际处理中还是一个事件一个事件地分发。如果一个事务已经选定了worker,而新的event还在那个事务中,则直接交给那个worker处理即可。

原文地址