-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbayesian.py
140 lines (126 loc) · 5.38 KB
/
bayesian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from bayes_opt import BayesianOptimization
def black_box_function(x, y):
"""Function with unknown internals we wish to maximize.
This is just serving as an example, for all intents and
purposes think of the internals of this function, i.e.: the process
which generates its output values, as unknown.
"""
return -x ** 2 - (y - 1) ** 2 + 1
# Bounded region of parameter space
pbounds = {'x': (2, 4), 'y': (-3, 3)}
optimizer = BayesianOptimization(
f=black_box_function,
pbounds=pbounds,
random_state=1,
)
optimizer.maximize(
init_points=2,
n_iter=3,
)
print(optimizer.max)
import os
from pydub import AudioSegment
import wave
import numpy as np
import shutil
import random
from audiotsm import phasevocoder, ola, wsola
from audiotsm.io.wav import WavReader, WavWriter
# def audio_split(file_path, split_time):
# for i in range(len(file_path))
# FileName = files[i]
# print("CutFile File Name is ",FileName)
# f = wave.open(r"" + FileName, "rb")
# params = f.getparams()
# # print(params)
# nchannels, sampwidth, framerate, nframes = params[:4]
# CutFrameNum = int(framerate * split_time)
# # print("CutFrameNum=%d" % (CutFrameNum))
# # # print("nchannels=%d" % (nchannels))
# # # print("sampwidth=%d" % (sampwidth))
# # # print("framerate=%d" % (framerate))
# # # print("nframes=%d" % (nframes))
# str_data = f.readframes(nframes)
# f.close() # 将波形数据转换成数组
# wave_data = np.fromstring(str_data, dtype=np.short)
# # print(np.shape(wave_data))
# # wave_data.shape = -1, 2
# # print(np.shape(wave_data))
# wave_data = wave_data.T
# temp_data = wave_data.T
# # print(np.shape(temp_data))
# # StepNum = int(CutFrameNum/2)
# StepNum = CutFrameNum
# StepTotalNum = 0
# count = 0
# while StepTotalNum < nframes:
# FileName = result_dir + '/' + files[i][:-4] + '_' + str(count + 1) + ".wav"
# temp_dataTemp = temp_data[StepNum*(count):StepNum*(count + 1)]
# count = count + 1
# StepTotalNum = count * StepNum
# temp_dataTemp.shape = 1, -1
# temp_dataTemp = temp_dataTemp.astype(np.short) # 打开WAV文档
# f = wave.open(FileName, "wb") #
# # 配置声道数、量化位数和取样频率
# f.setnchannels(nchannels)
# f.setsampwidth(sampwidth)
# f.setframerate(framerate)
# # 将wav_data转换为二进制数据写入文件
# f.writeframes(temp_dataTemp.tostring())
# f.close()
# print("audio_split successfully")
def audio_split(input_file_path, split_time):
wav_time =AudioSegment.from_file(input_file_path).duration_seconds
wav_time = int(wav_time * 1000)
# print(wav_time)
start_time = 0
end_time = split_time
sound = AudioSegment.from_wav(input_file_path)
(filepath,tempfilename) = os.path.split(input_file_path)
for i in range(1,(wav_time//split_time+2)):
output_file_path = filepath + '\speech_split' +'\\' + tempfilename[:-4] + '\\' + str(i) + '.wav'
word = sound[start_time:end_time]
word.export(output_file_path,format='wav')
start_time += split_time
end_time += split_time
def audio_join(input_dir, output_dir):
join_sound_lists = AudioSegment.empty()
for i in range(len(os.listdir(input_dir))):
filename = input_dir + '\\' +str(i + 1) + '.wav'
join_sound_lists += AudioSegment.from_wav(filename)
join_sound_lists.export(output_dir, format="wav")
print("audio_join successfully")
def audio_tsm(ca_type,i,input_filename,output_filename):
with WavReader(input_filename) as reader:
with WavWriter(output_filename, reader.channels, reader.samplerate) as writer_tsm:
if (ca_type == phasevocoder):
tsm = phasevocoder(reader.channels, speed=i)
if (ca_type == ola):
tsm = ola(reader.channels, speed=i)
if (ca_type == wsola):
tsm = wsola(reader.channels, speed=i)
tsm.run(reader, writer_tsm)
print("audio_tsm successfully")
if __name__ == '__main__':
path = r"D:\github\audio_tsm_test\dataset\speech_origin\without_wake_words"
src = r"D:\github\audio_tsm_test\dataset\speech_origin\without_wake_words\speech_split"
dst = r"D:\github\audio_tsm_test\dataset\speech_split_tsm_join\split_orgin"
dst2 = r"D:\github\audio_tsm_test\dataset\speech_split_tsm_join\split_test"
if(os.path.exists(dst)):
shutil.copytree(dst, dst2)
for i in range(1,11):
join_input_path = dst2 + '\\' + str(i)
join_output_path = dst2 + '\\' + str(i) + '.wav'
print(len(os.listdir(join_input_path)))
for j in range(len(os.listdir(join_input_path))):
tsm_path = dst2 + '\\' + str(i) +'\\' + str(j+1) + '.wav'
if (j <=10):
audio_tsm(ola, 0.9, tsm_path, tsm_path)
# random.randint(0,9)random.uniform(0.5,1.5)
audio_join(join_input_path,join_output_path)
else:
for i in range(1,11):
input_path = path + '\\' + str(i) + '.wav'
split_path = path + '\speech_split' + '\\' + str(i)
audio_split(input_path,50)
shutil.copytree(src, dst)