-
Notifications
You must be signed in to change notification settings - Fork 4.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hi All any one can tell me how i can build sql db agent with langflow thanks #5494
Comments
@MuhammadAdil-Developer Hello there! I'm here to help you out with any bugs, questions, or contributions you have in mind. Let's tackle this together! Dosu To build an SQL DB agent with Langflow, you can use the
Here's a code snippet to illustrate: from langflow.custom import SQLAgentComponent
from langflow.field_typing import LanguageModel
# Initialize your language model (llm) and database URI
llm = ... # Your language model instance
database_uri = "your_database_uri_here"
# Create an instance of SQLAgentComponent
sql_agent_component = SQLAgentComponent()
# Build the SQL agent
sql_agent = sql_agent_component.build_agent(llm=llm, database_uri=database_uri, extra_tools=[]) This will create an SQL agent using the specified language model and database connection [1][2]. To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
@dosu Can you please provide me with the complete code if you know that shows connect an LLM (Language Learning Model) to my sql database and chat effectively with my SQL database? I would be very thankful to you. plzz!!! |
To connect an LLM to your SQL database and enable effective interaction, you can use the from langchain.agents import AgentExecutor
from langchain_community.agent_toolkits import SQLDatabaseToolkit
from langchain_community.utilities import SQLDatabase
from langflow.base.agents.agent import LCAgentComponent
from langflow.inputs import HandleInput, MessageTextInput
class SQLAgentComponent(LCAgentComponent):
display_name = "SQLAgent"
description = "Construct an SQL agent from an LLM and tools."
name = "SQLAgent"
inputs = [
HandleInput(name="llm", display_name="Language Model", input_types=["LanguageModel"], required=True),
MessageTextInput(name="database_uri", display_name="Database URI", required=True),
HandleInput(
name="extra_tools",
display_name="Extra Tools",
input_types=["Tool", "BaseTool"],
is_list=True,
advanced=True,
),
]
def build_agent(self, llm, database_uri, extra_tools=None) -> AgentExecutor:
db = SQLDatabase.from_uri(database_uri)
toolkit = SQLDatabaseToolkit(db=db, llm=llm)
agent_args = self.get_agent_kwargs()
agent_args["max_iterations"] = agent_args["agent_executor_kwargs"]["max_iterations"]
del agent_args["agent_executor_kwargs"]["max_iterations"]
return create_sql_agent(llm=llm, toolkit=toolkit, extra_tools=extra_tools or [], **agent_args)
# Example usage
# Initialize your language model (llm) and database URI
llm = ... # Your language model instance
database_uri = "your_database_uri_here"
# Create an instance of SQLAgentComponent
sql_agent_component = SQLAgentComponent()
# Build the SQL agent
sql_agent = sql_agent_component.build_agent(llm=llm, database_uri=database_uri, extra_tools=[])
# Now you can use `sql_agent` to interact with your SQL database This code sets up an SQL agent using a language model and a database URI. You can replace To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
@dosu. Can you provide me with code that includes an LLM instance? I want to use OpenAI's LLM and return responses properly. I don't want to use any tools right now; I just want to chat directly with the tables in my SQL database in a best way. |
To connect an OpenAI LLM to your SQL database and chat directly with the tables, you can use the from langflow.base.models.model import LCModelComponent
from langchain_openai import ChatOpenAI
from pydantic.v1 import SecretStr
from langflow.base.agents.agent import LCAgentComponent
from langflow.inputs import HandleInput, MessageTextInput
from langflow.base.langflow.components.data.sql_executor import SQLExecutorComponent
# Initialize the OpenAI language model
class OpenAIModelComponent(LCModelComponent):
display_name = "OpenAI"
description = "Generates text using OpenAI LLMs."
icon = "OpenAI"
def build_model(self) -> ChatOpenAI:
openai_api_key = "your_openai_api_key_here"
model_name = "gpt-3.5-turbo" # Example model name
return ChatOpenAI(api_key=SecretStr(openai_api_key), model=model_name)
# Initialize your language model
openai_model_component = OpenAIModelComponent()
llm = openai_model_component.build_model()
# SQL Executor to interact with the database
class SQLAgentComponent(LCAgentComponent):
display_name = "SQLAgent"
description = "Construct an SQL agent from an LLM and tools."
name = "SQLAgent"
inputs = [
HandleInput(name="llm", display_name="Language Model", input_types=["LanguageModel"], required=True),
MessageTextInput(name="database_uri", display_name="Database URI", required=True),
]
def build_agent(self, llm, database_uri) -> SQLExecutorComponent:
sql_executor = SQLExecutorComponent()
return sql_executor.build(query="SELECT * FROM your_table_name", database_url=database_uri)
# Example usage
database_uri = "your_database_uri_here"
# Create an instance of SQLAgentComponent
sql_agent_component = SQLAgentComponent()
# Build the SQL agent
sql_agent = sql_agent_component.build_agent(llm=llm, database_uri=database_uri)
# Now you can use `sql_agent` to interact with your SQL database Replace To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
@dosu I want to connect to all the tables and data in the database so that if I ask anything from the entire DB, it gives me a proper and accurate answer. This is what I want. plz i dont want to connect a single table i want to connect whole sql db so.. |
To connect an OpenAI LLM to interact with all tables and data in your entire SQL database, you can use the
Here's a code snippet to illustrate the setup: from langchain.sql_database import SQLDatabase
from langchain.base_language import BaseLanguageModel
from langflow.components.chains.SQLGenerator import SQLGeneratorComponent
# Initialize your SQL database connection
db_uri = "your_database_connection_string"
llm = BaseLanguageModel(your_language_model)
# Create an instance of SQLGeneratorComponent
sql_generator = SQLGeneratorComponent(
input_value="Your natural language question here",
llm=llm,
db=SQLDatabase(db_uri),
top_k=5, # Number of results per select statement
prompt="Your custom prompt with {question}" # Optional
)
# Generate SQL query from natural language
query = sql_generator.invoke_chain()
print(query) This setup will allow the LLM to generate SQL queries that can interact with all tables and data in your SQL database to provide accurate answers to any query. Make sure your prompt contains To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
@ dosu i dont need to provide open ai or other llm key? |
from langchain.sql_database import SQLDatabase Initialize your SQL database connectiondb_uri = "your_database_connection_string" Create an instance of SQLGeneratorComponentsql_generator = SQLGeneratorComponent( Generate SQL query from natural languagequery = sql_generator.invoke_chain() print(query) plz add the llm configuration at this entire code i want to use open ai |
from langchain.sql_database import SQLDatabase Initialize your SQL database connection Create an instance of SQLGeneratorComponent Generate SQL query from natural language print(query) plz add the llm configuration at this entire code i want to use open ai |
To configure the LLM to use OpenAI in your code, you need to initialize an OpenAI language model and pass it to the from langchain_community.utilities.sql_database import SQLDatabase
from langchain_core.models import OpenAI
from langflow.base.chains.model import SQLGeneratorComponent
# Initialize your OpenAI model
openai_llm = OpenAI(api_key="your_openai_api_key")
# Initialize your SQL database connection
db_uri = "your_database_connection_string"
sql_db = SQLDatabase(connection_string=db_uri)
# Create an instance of SQLGeneratorComponent
sql_generator = SQLGeneratorComponent()
# Build the component with the OpenAI LLM
query = sql_generator.build(
input_value="Your natural language question here",
llm=openai_llm,
db=sql_db,
top_k=5, # Number of results per select statement
prompt="Your custom prompt with {question}" # Optional
)
print(query) Make sure to replace To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
@dosu |
To build a solution using Langflow to connect an OpenAI LLM to your entire SQL database, you can use the
Here's a code snippet to illustrate the setup: from langflow.interface.agents.custom import SQLAgent
from langchain_openai import ChatOpenAI
from pydantic.v1 import SecretStr
# Initialize the OpenAI language model
openai_api_key = "your_openai_api_key_here"
llm = ChatOpenAI(api_key=SecretStr(openai_api_key), model="gpt-3.5-turbo")
# Define your database URI
database_uri = "your_database_uri_here"
# Initialize the SQLAgent
sql_agent = SQLAgent.from_toolkit_and_llm(
llm=llm,
database_uri=database_uri
)
# Now you can use sql_agent to interact with your SQL database Replace To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
@dosu can you please give me complete and proper code with proper return plz |
To connect an OpenAI LLM to your entire SQL database using Langflow, you can use the from langflow.interface.agents.custom import SQLAgent
from langchain_openai import ChatOpenAI
from pydantic.v1 import SecretStr
# Initialize the OpenAI language model
openai_api_key = "your_openai_api_key_here"
llm = ChatOpenAI(api_key=SecretStr(openai_api_key), model="gpt-3.5-turbo")
# Define your database URI
database_uri = "your_database_uri_here"
# Initialize the SQLAgent
sql_agent = SQLAgent.from_toolkit_and_llm(
llm=llm,
database_uri=database_uri
)
# Example function to query the database
def query_database(question):
# Use the SQL agent to generate a response
response = sql_agent.run(question)
return response
# Example usage
question = "What are the top 10 products by sales?"
response = query_database(question)
print(response) Replace To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
but yeh error is code me File "/home/ahmed-siddiqui/python-important/langflow/dbagent.py", line 89, in |
The error you're encountering suggests that the import path for the If you're still facing the
If the issue persists, double-check the import path and ensure that the Langflow package is correctly set up in your Python environment. To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
this from langflow.interface.agents.custom import SQLAgent class is decpreted plz update the code |
To update your code and replace the deprecated from langflow.custom import CustomComponent
from langchain_community.utilities import SQLDatabase
from langchain_community.agent_toolkits import SQLDatabaseToolkit
from langchain_community.agent_toolkits.sql.base import create_sql_agent
from langflow.field_typing import LanguageModel
from langchain.agents import AgentExecutor
from typing import Callable, Union
from langchain_openai import ChatOpenAI
from pydantic.v1 import SecretStr
# Define the SQLAgentComponent class
class SQLAgentComponent(CustomComponent):
display_name = "SQLAgent"
description = "Construct an SQL agent from an LLM and tools."
def build_config(self):
return {
"llm": {"display_name": "LLM"},
"database_uri": {"display_name": "Database URI"},
"verbose": {"display_name": "Verbose", "value": False, "advanced": True},
}
def build(
self,
llm: LanguageModel,
database_uri: str,
verbose: bool = False,
) -> Union[AgentExecutor, Callable]:
db = SQLDatabase.from_uri(database_uri)
toolkit = SQLDatabaseToolkit(db=db, llm=llm)
return create_sql_agent(llm=llm, toolkit=toolkit)
# Initialize the OpenAI language model
openai_api_key = "your_openai_api_key_here"
llm = ChatOpenAI(api_key=SecretStr(openai_api_key), model="gpt-3.5-turbo")
# Define your database URI
database_uri = "your_database_uri_here"
# Create an instance of SQLAgentComponent
sql_agent_component = SQLAgentComponent()
# Build the SQL agent
sql_agent = sql_agent_component.build(llm=llm, database_uri=database_uri)
# Example function to query the database
def query_database(question):
# Use the SQL agent to generate a response
response = sql_agent.run(question)
return response
# Example usage
question = "What are the top 10 products by sales?"
response = query_database(question)
print(response) Replace To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
from langflow.custom import CustomComponent class SQLAgentComponent(CustomComponent):
def create_sql_query_agent(api_key: str, database_uri: str, verbose: bool = False):
def query_database(agent: AgentExecutor, question: str) -> str:
if name == "main":
could you plz solve this type of error in this code and provide me perfect solution for this Action Input: SELECT title FROM article LIMIT 5;[('How are religiosity and ethnicity navigated by young people in the context of school, and wider societal expectations?',), ('Is Farming the New Rock and Roll?',), ('All eyes on Rafah – the role of social media in raising awareness and bringing about social change',), ('Racing Against the Clock: The Effects of Social Jet Lag and Exercise on Metabolic Health',), ('The backlash on flexible working – how might this impact women? ',)]Response: Error querying database: An output parsing error occurred. In order to pass this error back to the agent and have it try again, pass |
To resolve the output parsing error and ensure the agent retries upon encountering such errors, you need to set the from langflow.custom import CustomComponent
from langchain_community.utilities import SQLDatabase
from langchain_community.agent_toolkits import SQLDatabaseToolkit
from langchain_community.agent_toolkits.sql.base import create_sql_agent
from langflow.field_typing import LanguageModel
from langchain.agents import AgentExecutor
from typing import Callable, Union
from langchain_openai import ChatOpenAI
from pydantic.v1 import SecretStr
class SQLAgentComponent(CustomComponent):
display_name = "SQLAgent"
description = "Construct an SQL agent from an LLM and tools."
def build_config(self):
return {
"llm": {"display_name": "LLM"},
"database_uri": {"display_name": "Database URI"},
"verbose": {"display_name": "Verbose", "value": False, "advanced": True},
}
def build(
self,
llm: LanguageModel,
database_uri: str,
verbose: bool = False,
) -> Union[AgentExecutor, Callable]:
db = SQLDatabase.from_uri(database_uri)
toolkit = SQLDatabaseToolkit(db=db, llm=llm)
return create_sql_agent(llm=llm, toolkit=toolkit, verbose=verbose, handle_parsing_errors=True)
def create_sql_query_agent(api_key: str, database_uri: str, verbose: bool = False):
try:
llm = ChatOpenAI(
api_key=SecretStr(api_key),
model="gpt-3.5-turbo",
temperature=0
)
sql_agent_component = SQLAgentComponent()
sql_agent = sql_agent_component.build(
llm=llm,
database_uri=database_uri,
verbose=verbose
)
return sql_agent, sql_agent_component
except Exception as e:
raise Exception(f"Error creating SQL agent: {str(e)}")
def query_database(agent: AgentExecutor, question: str) -> str:
try:
response = agent.run(question)
return response
except Exception as e:
return f"Error querying database: {str(e)}"
if __name__ == "__main__":
openai_api_key = "your_openai_api_key_here"
database_uri = "your_database_uri_here"
try:
sql_agent, component = create_sql_query_agent(
api_key=openai_api_key,
database_uri=database_uri,
verbose=True
)
questions = [
"could you tell me about my database in detail which purpose of this db please briefly explain",
]
for question in questions:
print(f"\nQuestion: {question}")
response = query_database(sql_agent, question)
print(f"Response: {response}")
except Exception as e:
print(f"An error occurred: {str(e)}") Make sure to replace To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
from langflow.custom import CustomComponent class SQLAgentComponent(CustomComponent):
def create_sql_query_agent(api_key: str, database_uri: str, verbose: bool = False):
def query_database(agent: AgentExecutor, question: str) -> str: if name == "main":
can i use genemi llm instead of open ai plz |
To use the Genemi LLM instead of OpenAI in your setup with Langflow, you will need to replace the OpenAI-specific components with those compatible with Genemi. Unfortunately, I don't have specific details on how to integrate Genemi LLM with Langflow, as the repository does not provide explicit instructions or support for Genemi LLM. However, I can guide you on the general steps you might take to integrate a different LLM:
Here's a conceptual example of what the changes might look like: from langflow.custom import CustomComponent
from langchain_community.utilities import SQLDatabase
from langchain_community.agent_toolkits import SQLDatabaseToolkit
from langchain_community.agent_toolkits.sql.base import create_sql_agent
from langflow.field_typing import LanguageModel
from langchain.agents import AgentExecutor
from typing import Callable, Union
# Import Genemi LLM library here
# from genemi import GenemiLLM
class SQLAgentComponent(CustomComponent):
display_name = "SQLAgent"
description = "Construct an SQL agent from an LLM and tools."
def build_config(self):
return {
"llm": {"display_name": "LLM"},
"database_uri": {"display_name": "Database URI"},
"verbose": {"display_name": "Verbose", "value": False, "advanced": True},
}
def build(
self,
llm: LanguageModel,
database_uri: str,
verbose: bool = False,
) -> Union[AgentExecutor, Callable]:
db = SQLDatabase.from_uri(database_uri)
toolkit = SQLDatabaseToolkit(db=db, llm=llm)
return create_sql_agent(llm=llm, toolkit=toolkit, verbose=verbose, handle_parsing_errors=True)
def create_sql_query_agent(api_key: str, database_uri: str, verbose: bool = False):
try:
# Initialize the Genemi language model
llm = GenemiLLM(
api_key=api_key, # Pass the API key directly
model="genemi-model-name", # Use the appropriate model name
temperature=0
)
sql_agent_component = SQLAgentComponent()
sql_agent = sql_agent_component.build(
llm=llm,
database_uri=database_uri,
verbose=verbose
)
return sql_agent, sql_agent_component
except Exception as e:
raise Exception(f"Error creating SQL agent: {str(e)}")
def query_database(agent: AgentExecutor, question: str) -> str:
try:
response = agent.run(question)
return response
except Exception as e:
return f"Error querying database: {str(e)}"
if __name__ == "__main__":
genemi_api_key = "your_genemi_api_key_here"
database_uri = "your_database_uri_here"
try:
sql_agent, component = create_sql_query_agent(
api_key=genemi_api_key,
database_uri=database_uri,
verbose=True
)
questions = [
"could you tell me about my database in detail which purpose of this db please briefly explain",
]
for question in questions:
print(f"\nQuestion: {question}")
response = query_database(sql_agent, question)
print(f"Response: {response}")
except Exception as e:
print(f"An error occurred: {str(e)}") Replace To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
@dosu now i need to make a agent that works for no sql db can you plz provide that complete code plz |
To create an agent that works with a NoSQL database using Langflow, you can use the from langflow.custom import CustomComponent
from langchain_community.utilities import MongoDBAtlasVectorSearch
from langflow.field_typing import LanguageModel
from langchain.agents import AgentExecutor
from typing import Callable, Union
from langchain_openai import ChatOpenAI
from pydantic.v1 import SecretStr
class NoSQLAgentComponent(CustomComponent):
display_name = "NoSQLAgent"
description = "Construct a NoSQL agent from an LLM and tools."
def build_config(self):
return {
"llm": {"display_name": "LLM"},
"mongodb_uri": {"display_name": "MongoDB URI"},
"db_name": {"display_name": "Database Name"},
"collection_name": {"display_name": "Collection Name"},
"verbose": {"display_name": "Verbose", "value": False, "advanced": True},
}
def build(
self,
llm: LanguageModel,
mongodb_uri: str,
db_name: str,
collection_name: str,
verbose: bool = False,
) -> Union[AgentExecutor, Callable]:
vector_search = MongoDBAtlasVectorSearch(
mongodb_atlas_cluster_uri=mongodb_uri,
db_name=db_name,
collection_name=collection_name,
embedding=llm
)
# Create an agent using the vector search
return AgentExecutor.from_vector_search(vector_search, llm, verbose=verbose)
def create_nosql_query_agent(api_key: str, mongodb_uri: str, db_name: str, collection_name: str, verbose: bool = False):
try:
llm = ChatOpenAI(
api_key=SecretStr(api_key),
model="gpt-3.5-turbo",
temperature=0
)
nosql_agent_component = NoSQLAgentComponent()
nosql_agent = nosql_agent_component.build(
llm=llm,
mongodb_uri=mongodb_uri,
db_name=db_name,
collection_name=collection_name,
verbose=verbose
)
return nosql_agent, nosql_agent_component
except Exception as e:
raise Exception(f"Error creating NoSQL agent: {str(e)}")
def query_database(agent: AgentExecutor, question: str) -> str:
try:
response = agent.run(question)
return response
except Exception as e:
return f"Error querying database: {str(e)}"
if __name__ == "__main__":
openai_api_key = "your_openai_api_key_here"
mongodb_uri = "your_mongodb_uri_here"
db_name = "your_db_name_here"
collection_name = "your_collection_name_here"
try:
nosql_agent, component = create_nosql_query_agent(
api_key=openai_api_key,
mongodb_uri=mongodb_uri,
db_name=db_name,
collection_name=collection_name,
verbose=True
)
questions = [
"What are the most recent entries in the collection?",
]
for question in questions:
print(f"\nQuestion: {question}")
response = query_database(nosql_agent, question)
print(f"Response: {response}")
except Exception as e:
print(f"An error occurred: {str(e)}") Replace To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
@dosu aik aisa agent bhi banana hy ju data json ya csv me input aur osse vector db me convert karen aur phir process karen |
To create an agent that takes JSON or CSV data as input, converts it into a vector format, and processes it using a vector database in Langflow, you can follow these steps. This involves using components for handling JSON/CSV data and integrating with a vector database. Here's a conceptual setup: from langflow.custom import CustomComponent
from langchain_community.utilities import CSVLoader, JSONLoader
from langchain_community.vectorstores import ChromaDB
from langflow.field_typing import LanguageModel
from langchain.agents import AgentExecutor
from typing import Callable, Union
from langchain_openai import ChatOpenAI
from pydantic.v1 import SecretStr
class DataToVectorAgentComponent(CustomComponent):
display_name = "DataToVectorAgent"
description = "Convert JSON/CSV data to vectors and process with a vector database."
def build_config(self):
return {
"llm": {"display_name": "LLM"},
"data_type": {"display_name": "Data Type", "value": "csv", "options": ["csv", "json"]},
"file_path": {"display_name": "File Path"},
"vector_db_uri": {"display_name": "Vector DB URI"},
"verbose": {"display_name": "Verbose", "value": False, "advanced": True},
}
def build(
self,
llm: LanguageModel,
data_type: str,
file_path: str,
vector_db_uri: str,
verbose: bool = False,
) -> Union[AgentExecutor, Callable]:
# Load data based on type
if data_type == "csv":
data_loader = CSVLoader(file_path)
else:
data_loader = JSONLoader(file_path)
# Convert data to vectors
data = data_loader.load()
vector_store = ChromaDB(uri=vector_db_uri, embedding=llm)
vector_store.add_documents(data)
# Create an agent using the vector store
return AgentExecutor.from_vector_store(vector_store, llm, verbose=verbose)
def create_data_to_vector_agent(api_key: str, data_type: str, file_path: str, vector_db_uri: str, verbose: bool = False):
try:
llm = ChatOpenAI(
api_key=SecretStr(api_key),
model="gpt-3.5-turbo",
temperature=0
)
data_to_vector_agent_component = DataToVectorAgentComponent()
data_to_vector_agent = data_to_vector_agent_component.build(
llm=llm,
data_type=data_type,
file_path=file_path,
vector_db_uri=vector_db_uri,
verbose=verbose
)
return data_to_vector_agent, data_to_vector_agent_component
except Exception as e:
raise Exception(f"Error creating Data to Vector agent: {str(e)}")
def query_vector_database(agent: AgentExecutor, question: str) -> str:
try:
response = agent.run(question)
return response
except Exception as e:
return f"Error querying vector database: {str(e)}"
if __name__ == "__main__":
openai_api_key = "your_openai_api_key_here"
data_type = "csv" # or "json"
file_path = "path_to_your_file.csv" # or "path_to_your_file.json"
vector_db_uri = "your_vector_db_uri_here"
try:
data_to_vector_agent, component = create_data_to_vector_agent(
api_key=openai_api_key,
data_type=data_type,
file_path=file_path,
vector_db_uri=vector_db_uri,
verbose=True
)
questions = [
"What insights can you provide from the data?",
]
for question in questions:
print(f"\nQuestion: {question}")
response = query_vector_database(data_to_vector_agent, question)
print(f"Response: {response}")
except Exception as e:
print(f"An error occurred: {str(e)}") Replace To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
yar aisa feature hy kiya langflow me ke jab hum input me data json ya csv me de input me tu vector db ka uri nahi dena hu koi bhi vector db use hu bhale but hume hume is tahra uri nahi dena hu |
@dosu |
Langflow does have features that allow you to input data in JSON or CSV format without needing to provide a vector database URI. The To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
@dosu but jab hum langflow ke dashboard me vector agent banate hy rag agent tu wahan astra db me tu hume koi vector uri provide kerne ki need nahi huti |
In Langflow, when creating a vector agent or RAG (Retrieval-Augmented Generation) agent through the dashboard, you might not need to provide a vector database URI explicitly because Langflow can use default settings or fallbacks. Specifically, if a To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
from langflow.custom import CustomComponent class NoSQLAgentComponent(CustomComponent):
def create_nosql_query_agent(api_key: str, mongodb_uri: str, db_name: str, collection_name: str, verbose: bool = False):
def query_database(agent: AgentExecutor, question: str) -> str: if name == "main":
but apne ju code diya hy is me yeh error araha hy yar Traceback (most recent call last): |
The To resolve this issue, you should:
Here's how you can modify your code with the correct import path: from langflow.custom import CustomComponent
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
from langflow.field_typing import LanguageModel
from langchain.agents import AgentExecutor
from typing import Callable, Union
from langchain_google_genai import ChatGoogleGenerativeAI
from pydantic.v1 import SecretStr
class NoSQLAgentComponent(CustomComponent):
display_name = "NoSQLAgent"
description = "Construct a NoSQL agent from an LLM and tools."
def build_config(self):
return {
"llm": {"display_name": "LLM"},
"mongodb_uri": {"display_name": "MongoDB URI"},
"db_name": {"display_name": "Database Name"},
"collection_name": {"display_name": "Collection Name"},
"verbose": {"display_name": "Verbose", "value": False, "advanced": True},
}
def build(
self,
llm: LanguageModel,
mongodb_uri: str,
db_name: str,
collection_name: str,
verbose: bool = False,
) -> Union[AgentExecutor, Callable]:
vector_search = MongoDBAtlasVectorSearch(
mongodb_atlas_cluster_uri=mongodb_uri,
db_name=db_name,
collection_name=collection_name,
embedding=llm
)
# Create an agent using the vector search
return AgentExecutor.from_vector_search(vector_search, llm, verbose=verbose)
def create_nosql_query_agent(api_key: str, mongodb_uri: str, db_name: str, collection_name: str, verbose: bool = False):
try:
llm = ChatGoogleGenerativeAI(
api_key=SecretStr(api_key),
model="gemini-1.5-flash",
temperature=0
)
nosql_agent_component = NoSQLAgentComponent()
nosql_agent = nosql_agent_component.build(
llm=llm,
mongodb_uri=mongodb_uri,
db_name=db_name,
collection_name=collection_name,
verbose=verbose
)
return nosql_agent, nosql_agent_component
except Exception as e:
raise Exception(f"Error creating NoSQL agent: {str(e)}")
def query_database(agent: AgentExecutor, question: str) -> str:
try:
response = agent.run(question)
return response
except Exception as e:
return f"Error querying database: {str(e)}"
if __name__ == "__main__":
google_api_key = "your_google_api_key_here"
mongodb_uri = "mongodb://localhost:27017/"
db_name = "mydatabase"
collection_name = "mycollection"
try:
nosql_agent, component = create_nosql_query_agent(
api_key=google_api_key,
mongodb_uri=mongodb_uri,
db_name=db_name,
collection_name=collection_name,
verbose=True
)
questions = [
"What are the most recent entries in the collection?",
]
for question in questions:
print(f"\nQuestion: {question}")
response = query_database(nosql_agent, question)
print(f"Response: {response}")
except Exception as e:
print(f"An error occurred: {str(e)}") Make sure to replace To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
class SQLAgentComponent:
class NoSQLAgentComponent(CustomComponent):
def enhance_agent_configuration(agent_config: dict, db_type: str) -> dict:
def create_sql_query_agent(api_key: str, database_uri: str, verbose: bool = False):
def create_nosql_query_agent(
def query_database(agent: AgentExecutor, question: str) -> str: Question: {question}
Based on my search of the database, {formatted_response.lower()} Let me provide more context about what I searched for and what's available in the database.
I encountered an issue while searching for the requested information in the database. Please feel free to ask another question or rephrase your current one. I'm here to help you find the information you need. @app.post("/chat")
is code me koi aisa tool ya impletentation kerna charaha hu using lanflow jis me connected db ke related koi bhi question karo agar os ka 1 % bhi db me available hu tu agent os ka bhi answer provide kerde ache se accurate bikul properly kiya kcuh husakta hy aisa langflow me |
To achieve a setup where an agent can answer any question related to the connected database, even if only a small portion of the data is available, you can enhance the agent's capabilities using Langflow. This involves using advanced prompting and response handling to ensure comprehensive and accurate answers. Here's a conceptual approach to implement this:
Here's a simplified example of how you might set this up: from langflow.custom import CustomComponent
from langchain_community.utilities import SQLDatabase, MongoDBAtlasVectorSearch
from langflow.field_typing import LanguageModel
from langchain.agents import AgentExecutor
from typing import Callable, Union
from langchain_google_genai import ChatGoogleGenerativeAI
from pydantic.v1 import SecretStr
class EnhancedAgentComponent(CustomComponent):
display_name = "EnhancedAgent"
description = "Construct an enhanced agent for comprehensive database querying."
def build_config(self):
return {
"llm": {"display_name": "LLM"},
"database_uri": {"display_name": "Database URI"},
"db_type": {"display_name": "Database Type", "options": ["sql", "nosql"]},
"verbose": {"display_name": "Verbose", "value": False, "advanced": True},
}
def build(
self,
llm: LanguageModel,
database_uri: str,
db_type: str,
verbose: bool = False,
) -> Union[AgentExecutor, Callable]:
if db_type == "sql":
db = SQLDatabase.from_uri(database_uri)
toolkit = SQLDatabaseToolkit(db=db, llm=llm)
prompt = create_enhanced_agent_prompt("sql")
agent = create_sql_agent(
llm=llm,
toolkit=toolkit,
verbose=verbose,
handle_parsing_errors=True,
prefix=prompt
)
elif db_type == "nosql":
vector_search = MongoDBAtlasVectorSearch.from_connection_string(
connection_string=database_uri,
embedding=llm
)
prompt = create_enhanced_agent_prompt("nosql")
agent = AgentExecutor.from_vector_search(vector_search, llm, verbose=verbose, agent_kwargs={"prefix": prompt})
else:
raise ValueError("Unsupported database type")
return agent
def create_enhanced_agent_prompt(db_type: str) -> str:
return f"Provide detailed and accurate responses for {db_type} database queries, even if only partial data is available."
def query_database(agent: AgentExecutor, question: str) -> str:
try:
response = agent.run(question)
return response
except Exception as e:
return f"Error querying database: {str(e)}"
# Example usage
if __name__ == "__main__":
google_api_key = "your_google_api_key_here"
database_uri = "your_database_uri_here"
db_type = "sql" # or "nosql"
llm = ChatGoogleGenerativeAI(
api_key=SecretStr(google_api_key),
model="gemini-1.5-pro",
temperature=0.3
)
enhanced_agent_component = EnhancedAgentComponent()
agent = enhanced_agent_component.build(
llm=llm,
database_uri=database_uri,
db_type=db_type,
verbose=True
)
question = "What information is available about recent transactions?"
response = query_database(agent, question)
print(response) Replace To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
kisi tool etc eg. call kerne ki need nahi hume agr for example me chatbot se question kerta hu (who is Adil user in database) agar databse me 1000 of users bhi hy tu bot mujhe os me se bhi batade ke kon hy yeh user kiya hy yeh just aik example hy ke hamare agent ku bhut efficient huna chahiyai kiya langflow me koi tool etc hy is kam ke liye |
Langflow provides several components that can be used for efficient search and retrieval tasks in large databases, which can help in building an efficient agent for your use case. Specifically, the Additionally, the For advanced configurations, the These tools and components can be integrated into your Langflow setup to create a highly efficient agent capable of handling large datasets and providing accurate responses based on the available data. To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
tu kiya ap in tools ku mere code me integrate kersakte hy jisse mera bot bhut efficient huagaye import uuid app = FastAPI() app.add_middleware( Request Model for handling inputclass QueryRequest(BaseModel): class SQLAgentComponent:
class NoSQLAgentComponent(CustomComponent):
def enhance_agent_configuration(agent_config: dict, db_type: str) -> dict:
def create_sql_query_agent(api_key: str, database_uri: str, verbose: bool = False):
def create_nosql_query_agent(
def query_database(agent: AgentExecutor, question: str) -> str: Question: {question}
Based on my search of the database, {formatted_response.lower()} Let me provide more context about what I searched for and what's available in the database.
I encountered an issue while searching for the requested information in the database. Please feel free to ask another question or rephrase your current one. I'm here to help you find the information you need. |
To integrate Langflow's tools for efficient data retrieval into your existing code, you can enhance your SQL and NoSQL agent components by incorporating retrieval components like Here's how you can modify your code to include these components:
Here's a conceptual example of how you might integrate these components: from langflow.custom import CustomComponent
from langchain_community.utilities import SQLDatabase, MongoDBAtlasVectorSearch
from langflow.field_typing import LanguageModel
from langchain.agents import AgentExecutor, initialize_agent, AgentType
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.tools import Tool
from pymongo import MongoClient
from typing import Callable, Union
from pydantic import BaseModel
from utils import create_enhanced_agent_prompt
class EnhancedSQLAgentComponent(CustomComponent):
display_name = "EnhancedSQLAgent"
description = "Construct an enhanced SQL agent with retrieval capabilities."
def build(self, llm, database_uri: str, verbose: bool = False):
db = SQLDatabase.from_uri(database_uri)
toolkit = SQLDatabaseToolkit(db=db, llm=llm)
# Use a retriever tool for enhanced data retrieval
retriever_tool = RetrieverToolComponent()
retriever = retriever_tool.build(llm=llm, database_uri=database_uri)
prompt = create_enhanced_agent_prompt("sql")
agent = create_sql_agent(
llm=llm,
toolkit=toolkit,
retriever=retriever,
verbose=verbose,
handle_parsing_errors=True,
prefix=prompt
)
return agent
class EnhancedNoSQLAgentComponent(CustomComponent):
display_name = "EnhancedNoSQLAgent"
description = "Construct an enhanced NoSQL agent with retrieval capabilities."
def build(
self,
llm: LanguageModel,
mongodb_uri: str,
db_name: str,
collection_name: str,
google_api_key: str,
index_name: str = "default",
verbose: bool = False,
) -> Union[AgentExecutor, Callable]:
client = MongoClient(mongodb_uri)
db = client[db_name]
collection = db[collection_name]
embeddings = GoogleGenerativeAIEmbeddings(
model="models/embedding-001",
google_api_key=google_api_key,
)
vector_store = MongoDBAtlasVectorSearch.from_connection_string(
connection_string=mongodb_uri,
namespace=f"{db_name}.{collection_name}",
embedding=embeddings,
index_name=index_name
)
# Use a retriever tool for enhanced data retrieval
retriever_tool = RetrieverToolComponent()
retriever = retriever_tool.build(llm=llm, mongodb_uri=mongodb_uri)
prompt = create_enhanced_agent_prompt("nosql")
agent = initialize_agent(
tools=[retriever],
llm=llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=verbose,
agent_kwargs={"prefix": prompt}
)
return agent
# Example usage
if __name__ == "__main__":
google_api_key = "your_google_api_key_here"
database_uri = "your_database_uri_here"
db_type = "sql" # or "nosql"
llm = ChatGoogleGenerativeAI(
api_key=google_api_key,
model="gemini-1.5-pro",
temperature=0.3
)
if db_type == "sql":
agent_component = EnhancedSQLAgentComponent()
else:
agent_component = EnhancedNoSQLAgentComponent()
agent = agent_component.build(
llm=llm,
database_uri=database_uri,
verbose=True
)
question = "Who is Adil user in the database?"
response = query_database(agent, question)
print(response) Replace To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
@dosu see if you can update this code in this code please. class SQLAgentComponent:
class NoSQLAgentComponent(CustomComponent):
def enhance_agent_configuration(agent_config: dict, db_type: str) -> dict:
def create_sql_query_agent(api_key: str, database_uri: str, verbose: bool = False):
def create_nosql_query_agent(
def query_database(agent: AgentExecutor, question: str) -> str: Question: {question}
Based on my search of the database, {formatted_response.lower()} Let me provide more context about what I searched for and what's available in the database.
I encountered an issue while searching for the requested information in the database. Please feel free to ask another question or rephrase your current one. I'm here to help you find the information you need. @app.post("/chat")
|
To enhance your code with Langflow's retrieval capabilities, you can integrate components like
Here's an updated version of your code with these enhancements: from langflow.custom import CustomComponent
from langchain_community.utilities import SQLDatabase, MongoDBAtlasVectorSearch
from langflow.field_typing import LanguageModel
from langchain.agents import AgentExecutor, initialize_agent, AgentType
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.tools import Tool
from pymongo import MongoClient
from typing import Callable, Union
from pydantic import BaseModel
from utils import create_enhanced_agent_prompt
class EnhancedSQLAgentComponent(CustomComponent):
display_name = "EnhancedSQLAgent"
description = "Construct an enhanced SQL agent with retrieval capabilities."
def build(self, llm, database_uri: str, verbose: bool = False):
db = SQLDatabase.from_uri(database_uri)
toolkit = SQLDatabaseToolkit(db=db, llm=llm)
# Use a retriever tool for enhanced data retrieval
retriever_tool = RetrieverToolComponent()
retriever = retriever_tool.build(llm=llm, database_uri=database_uri)
prompt = create_enhanced_agent_prompt("sql")
agent = create_sql_agent(
llm=llm,
toolkit=toolkit,
retriever=retriever,
verbose=verbose,
handle_parsing_errors=True,
prefix=prompt
)
return agent
class EnhancedNoSQLAgentComponent(CustomComponent):
display_name = "EnhancedNoSQLAgent"
description = "Construct an enhanced NoSQL agent with retrieval capabilities."
def build(
self,
llm: LanguageModel,
mongodb_uri: str,
db_name: str,
collection_name: str,
google_api_key: str,
index_name: str = "default",
verbose: bool = False,
) -> Union[AgentExecutor, Callable]:
client = MongoClient(mongodb_uri)
db = client[db_name]
collection = db[collection_name]
embeddings = GoogleGenerativeAIEmbeddings(
model="models/embedding-001",
google_api_key=google_api_key,
)
vector_store = MongoDBAtlasVectorSearch.from_connection_string(
connection_string=mongodb_uri,
namespace=f"{db_name}.{collection_name}",
embedding=embeddings,
index_name=index_name
)
# Use a retriever tool for enhanced data retrieval
retriever_tool = RetrieverToolComponent()
retriever = retriever_tool.build(llm=llm, mongodb_uri=mongodb_uri)
prompt = create_enhanced_agent_prompt("nosql")
agent = initialize_agent(
tools=[retriever],
llm=llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=verbose,
agent_kwargs={"prefix": prompt}
)
return agent
# Example usage
if __name__ == "__main__":
google_api_key = "your_google_api_key_here"
database_uri = "your_database_uri_here"
db_type = "sql" # or "nosql"
llm = ChatGoogleGenerativeAI(
api_key=google_api_key,
model="gemini-1.5-pro",
temperature=0.3
)
if db_type == "sql":
agent_component = EnhancedSQLAgentComponent()
else:
agent_component = EnhancedNoSQLAgentComponent()
agent = agent_component.build(
llm=llm,
database_uri=database_uri,
verbose=True
)
question = "Who is Adil user in the database?"
response = query_database(agent, question)
print(response) Replace To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
but is code me tu yeh error araha hy yar boss { |
To resolve the error "name 'RetrieverToolComponent' is not defined," you need to ensure that the
Here's how you can update your code: from langflow.custom import CustomComponent
from langchain_community.utilities import SQLDatabase, MongoDBAtlasVectorSearch
from langflow.field_typing import LanguageModel
from langchain.agents import AgentExecutor, initialize_agent, AgentType
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.tools import Tool
from pymongo import MongoClient
from typing import Callable, Union
from pydantic import BaseModel
from utils import create_enhanced_agent_prompt
from langflow.components.tools import RetrieverToolComponent # Add this import
class EnhancedSQLAgentComponent(CustomComponent):
display_name = "EnhancedSQLAgent"
description = "Construct an enhanced SQL agent with retrieval capabilities."
def build(self, llm, database_uri: str, verbose: bool = False):
db = SQLDatabase.from_uri(database_uri)
toolkit = SQLDatabaseToolkit(db=db, llm=llm)
# Use a retriever tool for enhanced data retrieval
retriever_tool = RetrieverToolComponent()
retriever = retriever_tool.build(llm=llm, database_uri=database_uri)
prompt = create_enhanced_agent_prompt("sql")
agent = create_sql_agent(
llm=llm,
toolkit=toolkit,
retriever=retriever,
verbose=verbose,
handle_parsing_errors=True,
prefix=prompt
)
return agent
# Continue with the rest of your code... Make sure that the import path for To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
class SQLAgentComponent:
class NoSQLAgentComponent(CustomComponent):
|
To resolve the error regarding the
Here's the updated code with the necessary import: from langflow.custom import CustomComponent
from langchain_community.utilities import SQLDatabase, MongoDBAtlasVectorSearch
from langflow.field_typing import LanguageModel
from langchain.agents import AgentExecutor, initialize_agent, AgentType
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.tools import Tool
from pymongo import MongoClient
from typing import Callable, Union
from utils import create_enhanced_agent_prompt
from langflow.components.tools import RetrieverToolComponent # Ensure this import is correct
class SQLAgentComponent:
display_name = "SQLAgent"
description = "Construct an SQL agent from an LLM and tools."
def build_config(self):
return {
"llm": {"display_name": "LLM"},
"database_uri": {"display_name": "Database URI"},
"verbose": {"display_name": "Verbose", "value": False, "advanced": True},
}
def build(self, llm, database_uri: str, verbose: bool = False):
try:
db = SQLDatabase.from_uri(database_uri)
toolkit = SQLDatabaseToolkit(db=db, llm=llm)
# Use a retriever tool for enhanced data retrieval
retriever_tool = RetrieverToolComponent()
retriever = retriever_tool.build(llm=llm, database_uri=database_uri)
prompt = create_enhanced_agent_prompt("sql")
agent = create_sql_agent(
llm=llm,
toolkit=toolkit,
retriever=retriever,
verbose=verbose,
handle_parsing_errors=True,
prefix=prompt
)
return agent
except Exception as e:
raise Exception(f"Failed to connect to SQL database. Please check the database URI. Error: {str(e)}")
class NoSQLAgentComponent(CustomComponent):
display_name = "NoSQLAgent"
description = "Construct a NoSQL agent from an LLM and tools."
def build_config(self):
return {
"llm": {"display_name": "LLM"},
"mongodb_uri": {"display_name": "MongoDB URI"},
"db_name": {"display_name": "Database Name"},
"collection_name": {"display_name": "Collection Name"},
"index_name": {"display_name": "Index Name", "value": "default"},
"verbose": {"display_name": "Verbose", "value": False, "advanced": True},
}
def build(
self,
llm: LanguageModel,
mongodb_uri: str,
db_name: str,
collection_name: str,
google_api_key: str,
index_name: str = "default",
verbose: bool = False,
) -> Union[AgentExecutor, Callable]:
client = MongoClient(mongodb_uri)
db = client[db_name]
collection = db[collection_name]
embeddings = GoogleGenerativeAIEmbeddings(
model="models/embedding-001",
google_api_key=google_api_key,
)
vector_store = MongoDBAtlasVectorSearch.from_connection_string(
connection_string=mongodb_uri,
namespace=f"{db_name}.{collection_name}",
embedding=embeddings,
index_name=index_name
)
def query_mongodb(query_str: str) -> str:
try:
results = collection.find().sort('_id', -1).limit(5)
formatted_results = []
for doc in results:
# Convert ObjectId to string and format the document
doc['_id'] = str(doc['_id'])
formatted_results.append(str(doc))
return "\n".join(formatted_results)
except Exception as e:
return f"Error executing query: {str(e)}"
tools = [
Tool(
name="MongoDB Query",
func=query_mongodb,
description="Useful for querying MongoDB database. Returns formatted results from the collection."
)
]
# Use a retriever tool for enhanced data retrieval
retriever_tool = RetrieverToolComponent()
retriever = retriever_tool.build(llm=llm, mongodb_uri=mongodb_uri)
# Create MongoDB agent with enhanced prompting
prompt = create_enhanced_agent_prompt("nosql")
agent = initialize_agent(
tools=tools,
llm=llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=verbose,
agent_kwargs={"prefix": prompt}
)
return agent Ensure that the import path for To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
class SQLAgentComponent:
class NoSQLAgentComponent(CustomComponent):
def enhance_agent_configuration(agent_config: dict, db_type: str) -> dict:
def create_sql_query_agent(api_key: str, database_uri: str, verbose: bool = False):
def create_nosql_query_agent(
def query_database(agent: AgentExecutor, question: str) -> str:
"""
Based on my search of the database, {formatted_response.lower()} Let me provide more context about what I searched for and what's available in the database.
I encountered an issue while searching for the requested information in the database. Please feel free to ask another question or rephrase your current one. I'm here to help you find the information you need. can you solve this code in this code plz { |
To resolve the error "RetrieverToolComponent.build() missing 3 required positional arguments: 'retriever', 'name', and 'description'," you need to ensure that when you call the Here's how you can update your code to fix this issue:
Here's the updated code: from langflow.custom import CustomComponent
from langchain_community.utilities import SQLDatabase, MongoDBAtlasVectorSearch
from langflow.field_typing import LanguageModel
from langchain.agents import AgentExecutor, initialize_agent, AgentType
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.tools import Tool
from pymongo import MongoClient
from typing import Callable, Union
from utils import create_enhanced_agent_prompt
from langflow.components.tools import RetrieverToolComponent # Ensure this import is correct
class SQLAgentComponent:
display_name = "SQLAgent"
description = "Construct an SQL agent from an LLM and tools."
def build_config(self):
return {
"llm": {"display_name": "LLM"},
"database_uri": {"display_name": "Database URI"},
"verbose": {"display_name": "Verbose", "value": False, "advanced": True},
}
def build(self, llm, database_uri: str, verbose: bool = False):
try:
db = SQLDatabase.from_uri(database_uri)
toolkit = SQLDatabaseToolkit(db=db, llm=llm)
# Use a retriever tool for enhanced data retrieval
retriever_tool = RetrieverToolComponent()
retriever = retriever_tool.build(
retriever=toolkit, # Assuming toolkit acts as a retriever
name="SQLRetriever",
description="Retrieves data from SQL database"
)
prompt = create_enhanced_agent_prompt("sql")
agent = create_sql_agent(
llm=llm,
toolkit=toolkit,
retriever=retriever,
verbose=verbose,
handle_parsing_errors=True,
prefix=prompt
)
return agent
except Exception as e:
raise Exception(f"Failed to connect to SQL database. Please check the database URI. Error: {str(e)}")
class NoSQLAgentComponent(CustomComponent):
display_name = "NoSQLAgent"
description = "Construct a NoSQL agent from an LLM and tools."
def build_config(self):
return {
"llm": {"display_name": "LLM"},
"mongodb_uri": {"display_name": "MongoDB URI"},
"db_name": {"display_name": "Database Name"},
"collection_name": {"display_name": "Collection Name"},
"index_name": {"display_name": "Index Name", "value": "default"},
"verbose": {"display_name": "Verbose", "value": False, "advanced": True},
}
def build(
self,
llm: LanguageModel,
mongodb_uri: str,
db_name: str,
collection_name: str,
google_api_key: str,
index_name: str = "default",
verbose: bool = False,
) -> Union[AgentExecutor, Callable]:
client = MongoClient(mongodb_uri)
db = client[db_name]
collection = db[collection_name]
embeddings = GoogleGenerativeAIEmbeddings(
model="models/embedding-001",
google_api_key=google_api_key,
)
vector_store = MongoDBAtlasVectorSearch.from_connection_string(
connection_string=mongodb_uri,
namespace=f"{db_name}.{collection_name}",
embedding=embeddings,
index_name=index_name
)
def query_mongodb(query_str: str) -> str:
try:
results = collection.find().sort('_id', -1).limit(5)
formatted_results = []
for doc in results:
# Convert ObjectId to string and format the document
doc['_id'] = str(doc['_id'])
formatted_results.append(str(doc))
return "\n".join(formatted_results)
except Exception as e:
return f"Error executing query: {str(e)}"
tools = [
Tool(
name="MongoDB Query",
func=query_mongodb,
description="Useful for querying MongoDB database. Returns formatted results from the collection."
)
]
# Use a retriever tool for enhanced data retrieval
retriever_tool = RetrieverToolComponent()
retriever = retriever_tool.build(
retriever=vector_store, # Assuming vector_store acts as a retriever
name="NoSQLRetriever",
description="Retrieves data from NoSQL database"
)
# Create MongoDB agent with enhanced prompting
prompt = create_enhanced_agent_prompt("nosql")
agent = initialize_agent(
tools=tools,
llm=llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=verbose,
agent_kwargs={"prefix": prompt}
)
return agent Ensure that the To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
kiya me is code me sql server ka db bhi use kersakta hu is me ?? ya nahi |
Yes, you can use a SQL Server database with this code. To do so, ensure that your database_uri = "mssql+pyodbc://username:password@server/database?driver=ODBC+Driver+17+for+SQL+Server" Make sure you have the necessary Python packages installed, such as To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
Feature Request
Hi All any one can tell me how i can build sql db agent with langflow thanks
Motivation
None
Your Contribution
None
The text was updated successfully, but these errors were encountered: