-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmagnitude_calculator.py
84 lines (69 loc) · 3 KB
/
magnitude_calculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import logging
from typing import List
import numpy as np
from astropy.io import fits
from utils.data_handler import FitsHandler
from utils.models import DarkImage, FlatImage, ScienceImage
from const import (
dark_iso200_2s, dark_iso1000_1s, dark_iso1000_30s,
dark_iso200_30s, dark_iso400_30s, flat_morning,
flat_evening, IC4665, M13, ursa_major,
)
logging.basicConfig(level=logging.NOTSET)
logger = logging.getLogger()
def get_image_list_from_fits(fits_handler: FitsHandler, filenames: List[str]) -> List[np.ndarray]:
images_list = []
for filename in filenames:
image = fits_handler.get_image_from_fits_by_name(filename)
images_list.append(image)
return images_list
def get_dark_file(fits_handler: FitsHandler, exposure_time: str, filenames: List[str]) -> DarkImage:
dark_list = get_image_list_from_fits(fits_handler, filenames)
return DarkImage(exposure_time, dark_list)
if __name__ == '__main__':
# Set files to be used here:
SCIENCE_DARK_FILENAMES = dark_iso200_2s
FLAT_DARK_FILENAMES = dark_iso1000_1s
FLAT_FILENAMES = flat_morning
SCIENCE_FILENAMES = ursa_major
############################
# Set path for master images to save here:
ROOT_DIR = "data/master/"
SCIENCE_DARK_MASTER_NAME = "dark_iso200_2s.FITS"
FLAT_DARK_MASTER_NAME = "dark_iso1000_1s.FITS"
FLAT_MASTER_NAME = "flat_morning.FITS"
SCIENCE_MASTER_PREFIX = "ursa_major"
############################
logger.info('Starting JAROO...')
fits_handler = FitsHandler()
logger.info('Reading dark images...')
science_dark: DarkImage = get_dark_file(fits_handler, '1.0', SCIENCE_DARK_FILENAMES)
flat_dark: DarkImage = get_dark_file(fits_handler, '0.6', FLAT_DARK_FILENAMES)
logger.info('Clipping dark images...')
science_sigma_clipped_dark = science_dark.get_sigma_clipped_median()
flat_sigma_clipped_dark = flat_dark.get_sigma_clipped_median()
logger.info('Reading and cleaning flat images...')
flat_images = get_image_list_from_fits(fits_handler, FLAT_FILENAMES)
flat_image = FlatImage(flat_images)
normalized_flat = flat_image.get_normalized_flat(flat_sigma_clipped_dark)
logger.info('Reading and cleaning science images...')
unclean_science_images = get_image_list_from_fits(fits_handler, SCIENCE_FILENAMES)
science_image = ScienceImage(
unclean_science_images,
normalized_flat,
science_sigma_clipped_dark
)
logger.info('Writing master images to fits')
hdu = fits.PrimaryHDU(unclean_science_images)
hdu.writeto(ROOT_DIR + SCIENCE_DARK_MASTER_NAME)
hdu = fits.PrimaryHDU(flat_sigma_clipped_dark)
hdu.writeto(ROOT_DIR + FLAT_DARK_MASTER_NAME)
hdu = fits.PrimaryHDU(normalized_flat)
hdu.writeto(ROOT_DIR + FLAT_MASTER_NAME)
i = 0
for image in science_image.science_images:
logger.info(f"Writing {i}'s science image")
hdu = fits.PrimaryHDU(image)
hdu.writeto(ROOT_DIR + SCIENCE_MASTER_PREFIX + f'_{i}.FITS')
i += 1
logger.info('DONE')