-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcrnn.py
66 lines (52 loc) · 3.18 KB
/
crnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# -*- coding: utf-8 -*-
import tensorflow as tf
class CRNN():
def __init__(self, layers, max_length, n_classes, pooling_type, vocab_size, embedding_size, f1, f2, n_channels):
self.input_text = tf.placeholder(tf.int32, shape=[None, max_length], name="input_text")
self.labels = tf.placeholder(tf.int32, shape=[None, n_classes])
self.dropout_keep_prob = tf.placeholder(tf.float32, name='dropout_keep_prob')
l2_loss = tf.constant(0.0)
self.pooling_type = pooling_type
self.W_emb = tf.Variable(tf.random_normal([vocab_size, embedding_size]))
self.text_embedded = tf.nn.embedding_lookup(self.W_emb, self.input_text)
self.length = self.get_length(self.text_embedded)
layers = list(map(int, layers.split('-')))
rnn_cell = tf.nn.rnn_cell.LSTMCell
cells = [rnn_cell(h, activation=tf.tanh, state_is_tuple=True) for h in layers]
multi_cells = tf.nn.rnn_cell.MultiRNNCell(cells, state_is_tuple=True)
self.rnn_outputs, _states = tf.nn.bidirectional_dynamic_rnn(multi_cells, multi_cells, self.text_embedded, sequence_length=self.length, dtype=tf.float32)
self.rnn_outputs = tf.concat(self.rnn_outputs, 2)
self.rnn_outputs = tf.expand_dims(self.rnn_outputs, -1)
#(64, 100, 200, 1)
self.first_pooling = tf.nn.max_pool(self.rnn_outputs, ksize=[1, f1, 1, 1], strides=[1, 1, 1, 1], padding='VALID')
#[batch, in_height, in_width, in_channels] == 64 99 200 1
# [filter_height, filter_width, in_channels, out_channels]
W_conv = tf.Variable(tf.truncated_normal([f2, layers[0]*2, 1, n_channels]))
b_conv = tf.Variable(tf.truncated_normal([n_channels]))
self.conv = tf.nn.conv2d(self.first_pooling, W_conv, strides=[1, 1, 1, 1], padding='VALID')
self.conv = tf.nn.relu(tf.nn.bias_add(self.conv, b_conv))
#(64, 95, 1, 100)
if self.pooling_type == 'max':
self.max_pooing = tf.nn.max_pool(self.conv, ksize=[1, max_length-f1-f2+2, 1, 1], strides=[1, 1, 1, 1], padding='VALID')
self.max_pooing = tf.nn.dropout(self.max_pooing, keep_prob=self.dropout_keep_prob)
self.pooing = tf.squeeze(self.max_pooing, axis=[1, 2])
elif self.pooling_type == 'att':
self.reduced_conv = tf.squeeze(self.conv, axis=2) # (64, 95, 100)
W_att = tf.Variable(tf.truncated_normal([n_channels, n_channels]))
V_att = tf.Variable(tf.truncated_normal([n_channels]))
self.M_att = tf.tanh(tf.einsum('aij,jk->aik', self.reduced_conv, W_att)) # (64, 95, 100)
self.att_vec = tf.nn.softmax(tf.einsum('aij,j->ai', self.M_att, V_att)) # (64, 95)
self.pooling = tf.einsum('aij,ai->aj', self.reduced_conv, self.att_vec)
self.pooling = tf.nn.dropout(self.pooling, keep_prob=self.dropout_keep_prob)
self.logits = tf.layers.dense(self.pooling, units=n_classes)
self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=self.labels))
self.optimizer = tf.train.AdamOptimizer()
self.train = self.optimizer.minimize(self.cost)
self.predictions = tf.argmax(self.logits, 1, name="predictions")
self.accuracy = tf.reduce_mean(tf.cast(tf.equal(self.predictions, tf.argmax(self.labels, 1)), tf.float32))
@staticmethod
def get_length(sequence):
used = tf.sign(tf.reduce_max(tf.abs(sequence), 2))
length = tf.reduce_sum(used, 1)
length = tf.cast(length, tf.int32)
return length