-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbi_lstm_cnn_crf3.py
executable file
·343 lines (302 loc) · 16.9 KB
/
bi_lstm_cnn_crf3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
'''
Edited:
- remove training logs
- check condition on early stopping
'''
__author__ = 'max'
import time
import sys
import argparse
from lasagne_nlp.utils import utils
import lasagne_nlp.utils.data_processor as data_processor
from lasagne_nlp.utils.objectives import crf_loss, crf_accuracy
import lasagne
import theano
import theano.tensor as T
from lasagne_nlp.networks.networks import build_BiLSTM_CNN_CRF
import numpy as np
def main():
parser = argparse.ArgumentParser(description='Tuning with bi-directional LSTM-CNN-CRF')
parser.add_argument('--fine_tune', action='store_true', help='Fine tune the word embeddings')
parser.add_argument('--embedding', choices=['word2vec', 'glove', 'senna', 'random'], help='Embedding for words',
required=True)
parser.add_argument('--embedding_dict', default=None, help='path for embedding dict')
parser.add_argument('--batch_size', type=int, default=10, help='Number of sentences in each batch')
parser.add_argument('--num_units', type=int, default=100, help='Number of hidden units in LSTM')
parser.add_argument('--num_filters', type=int, default=20, help='Number of filters in CNN')
parser.add_argument('--learning_rate', type=float, default=0.1, help='Learning rate')
parser.add_argument('--decay_rate', type=float, default=0.1, help='Decay rate of learning rate')
parser.add_argument('--grad_clipping', type=float, default=0, help='Gradient clipping')
parser.add_argument('--gamma', type=float, default=1e-6, help='weight for regularization')
parser.add_argument('--peepholes', action='store_true', help='Peepholes for LSTM')
parser.add_argument('--oov', choices=['random', 'embedding'], help='Embedding for oov word', required=True)
parser.add_argument('--update', choices=['sgd', 'momentum', 'nesterov', 'adadelta'], help='update algorithm',
default='sgd')
parser.add_argument('--regular', choices=['none', 'l2'], help='regularization for training', required=True)
parser.add_argument('--dropout', action='store_true', help='Apply dropout layers')
parser.add_argument('--patience', type=int, default=5, help='Patience for early stopping')
parser.add_argument('--output_prediction', action='store_true', help='Output predictions to temp files')
parser.add_argument('--train') # "data/POS-penn/wsj/split1/wsj1.train.original"
parser.add_argument('--dev') # "data/POS-penn/wsj/split1/wsj1.dev.original"
parser.add_argument('--test') # "data/POS-penn/wsj/split1/wsj1.test.original"
args = parser.parse_args()
def construct_input_layer():
if fine_tune:
layer_input = lasagne.layers.InputLayer(shape=(None, max_length), input_var=input_var, name='input')
layer_embedding = lasagne.layers.EmbeddingLayer(layer_input, input_size=alphabet_size,
output_size=embedd_dim,
W=embedd_table, name='embedding')
return layer_embedding
else:
layer_input = lasagne.layers.InputLayer(shape=(None, max_length, embedd_dim), input_var=input_var,
name='input')
return layer_input
def construct_char_input_layer():
layer_char_input = lasagne.layers.InputLayer(shape=(None, max_sent_length, max_char_length),
input_var=char_input_var, name='char-input')
layer_char_input = lasagne.layers.reshape(layer_char_input, (-1, [2]))
layer_char_embedding = lasagne.layers.EmbeddingLayer(layer_char_input, input_size=char_alphabet_size,
output_size=char_embedd_dim, W=char_embedd_table,
name='char_embedding')
layer_char_input = lasagne.layers.DimshuffleLayer(layer_char_embedding, pattern=(0, 2, 1))
return layer_char_input
logger = utils.get_logger("BiLSTM-CNN-CRF")
fine_tune = args.fine_tune
oov = args.oov
regular = args.regular
embedding = args.embedding
embedding_path = args.embedding_dict
train_path = args.train
dev_path = args.dev
test_path = args.test
update_algo = args.update
grad_clipping = args.grad_clipping
peepholes = args.peepholes
num_filters = args.num_filters
gamma = args.gamma
output_predict = args.output_prediction
dropout = args.dropout
X_train, Y_train, mask_train, X_dev, Y_dev, mask_dev, X_test, Y_test, mask_test, \
embedd_table, label_alphabet, \
C_train, C_dev, C_test, char_embedd_table = data_processor.load_dataset_sequence_labeling(train_path, dev_path,
test_path, oov=oov,
fine_tune=fine_tune,
embedding=embedding,
embedding_path=embedding_path,
use_character=True)
num_labels = label_alphabet.size() - 1
logger.info("constructing network...")
# create variables
target_var = T.imatrix(name='targets')
mask_var = T.matrix(name='masks', dtype=theano.config.floatX)
if fine_tune:
input_var = T.imatrix(name='inputs')
num_data, max_length = X_train.shape
alphabet_size, embedd_dim = embedd_table.shape
else:
input_var = T.tensor3(name='inputs', dtype=theano.config.floatX)
num_data, max_length, embedd_dim = X_train.shape
char_input_var = T.itensor3(name='char-inputs')
num_data_char, max_sent_length, max_char_length = C_train.shape
char_alphabet_size, char_embedd_dim = char_embedd_table.shape
assert (max_length == max_sent_length)
assert (num_data == num_data_char)
# construct input and mask layers
layer_incoming1 = construct_char_input_layer()
layer_incoming2 = construct_input_layer()
layer_mask = lasagne.layers.InputLayer(shape=(None, max_length), input_var=mask_var, name='mask')
# construct bi-rnn-cnn
num_units = args.num_units
bi_lstm_cnn_crf = build_BiLSTM_CNN_CRF(layer_incoming1, layer_incoming2, num_units, num_labels, mask=layer_mask,
grad_clipping=grad_clipping, peepholes=peepholes, num_filters=num_filters,
dropout=dropout)
logger.info("Network structure: hidden=%d, filter=%d" % (num_units, num_filters))
# compute loss
num_tokens = mask_var.sum(dtype=theano.config.floatX)
# get outpout of bi-lstm-cnn-crf shape [batch, length, num_labels, num_labels]
energies_train = lasagne.layers.get_output(bi_lstm_cnn_crf)
energies_eval = lasagne.layers.get_output(bi_lstm_cnn_crf, deterministic=True)
loss_train = crf_loss(energies_train, target_var, mask_var).mean()
loss_eval = crf_loss(energies_eval, target_var, mask_var).mean()
# l2 regularization?
if regular == 'l2':
l2_penalty = lasagne.regularization.regularize_network_params(bi_lstm_cnn_crf, lasagne.regularization.l2)
loss_train = loss_train + gamma * l2_penalty
_, corr_train = crf_accuracy(energies_train, target_var)
corr_train = (corr_train * mask_var).sum(dtype=theano.config.floatX)
prediction_eval, corr_eval = crf_accuracy(energies_eval, target_var)
corr_eval = (corr_eval * mask_var).sum(dtype=theano.config.floatX)
# Create update expressions for training.
# hyper parameters to tune: learning rate, momentum, regularization.
batch_size = args.batch_size
learning_rate = 1.0 if update_algo == 'adadelta' else args.learning_rate
decay_rate = args.decay_rate
momentum = 0.9
params = lasagne.layers.get_all_params(bi_lstm_cnn_crf, trainable=True)
updates = utils.create_updates(loss_train, params, update_algo, learning_rate, momentum=momentum)
# Compile a function performing a training step on a mini-batch
train_fn = theano.function([input_var, target_var, mask_var, char_input_var], [loss_train, corr_train, num_tokens],
updates=updates)
# Compile a second function evaluating the loss and accuracy of network
eval_fn = theano.function([input_var, target_var, mask_var, char_input_var],
[loss_eval, corr_eval, num_tokens, prediction_eval])
# Finally, launch the training loop.
logger.info(
"Start training: %s with regularization: %s(%f), dropout: %s, fine tune: %s (#training data: %d, batch size: %d, clip: %.1f, peepholes: %s)..." \
% (
update_algo, regular, (0.0 if regular == 'none' else gamma), dropout, fine_tune, num_data, batch_size,
grad_clipping,
peepholes))
num_batches = num_data / batch_size
num_epochs = 1000
best_loss = 1e+12
best_acc = 0.0
best_epoch_loss = 0
best_epoch_acc = 0
best_loss_test_err = 0.
best_loss_test_corr = 0.
best_acc_test_err = 0.
best_acc_test_corr = 0.
stop_count = 0
lr = learning_rate
patience = args.patience
for epoch in range(1, num_epochs + 1):
print 'Epoch %d (learning rate=%.4f, decay rate=%.4f): ' % (epoch, lr, decay_rate)
logger.info('Epoch %d (learning rate=%.4f, decay rate=%.4f): ' % (epoch, lr, decay_rate))
train_err = 0.0
train_corr = 0.0
train_total = 0
train_inst = 0
start_time = time.time()
num_back = 0
train_batches = 0
for batch in utils.iterate_minibatches(X_train, Y_train, masks=mask_train, char_inputs=C_train,
batch_size=batch_size, shuffle=True):
inputs, targets, masks, char_inputs = batch
err, corr, num = train_fn(inputs, targets, masks, char_inputs)
train_err += err * inputs.shape[0]
train_corr += corr
train_total += num
train_inst += inputs.shape[0]
train_batches += 1
time_ave = (time.time() - start_time) / train_batches
time_left = (num_batches - train_batches) * time_ave
# update log
#sys.stdout.write("\b" * num_back)
log_info = 'train: %d/%d loss: %.4f, acc: %.2f%%, time left (estimated): %.2fs' % (
min(train_batches * batch_size, num_data), num_data,
train_err / train_inst, train_corr * 100 / train_total, time_left)
#sys.stdout.write(log_info)
num_back = len(log_info)
logger.info(log_info)
# update training log after each epoch
assert train_inst == num_data
# sys.stdout.write("\b" * num_back)
# print 'train: %d/%d loss: %.4f, acc: %.2f%%, time: %.2fs' % (
# min(train_batches * batch_size, num_data), num_data,
# train_err / num_data, train_corr * 100 / train_total, time.time() - start_time)
logger.info('train: %d/%d loss: %.4f, acc: %.2f%%, time: %.2fs' % (
min(train_batches * batch_size, num_data), num_data,
train_err / num_data, train_corr * 100 / train_total, time.time() - start_time))
# evaluate performance on dev data
dev_err = 0.0
dev_corr = 0.0
dev_total = 0
dev_inst = 0
for batch in utils.iterate_minibatches(X_dev, Y_dev, masks=mask_dev, char_inputs=C_dev, batch_size=batch_size):
inputs, targets, masks, char_inputs = batch
err, corr, num, predictions = eval_fn(inputs, targets, masks, char_inputs)
dev_err += err * inputs.shape[0]
dev_corr += corr
dev_total += num
dev_inst += inputs.shape[0]
if output_predict:
utils.output_predictions(predictions, targets, masks, 'tmp3/dev%d' % epoch, label_alphabet,
is_flattened=False)
# print 'dev loss: %.4f, corr: %d, total: %d, acc: %.2f%%' % (
# dev_err / dev_inst, dev_corr, dev_total, dev_corr * 100 / dev_total)
logger.info('dev loss: %.4f, corr: %d, total: %d, acc: %.2f%%' % (
dev_err / dev_inst, dev_corr, dev_total, dev_corr * 100 / dev_total))
logger.info('dev_err: %.4f, best_loss: %.4f, best_acc: %.4f, dev_corr: %.4f, dev_total: %.4f, (dev_corr/dev_total): %.4f' %(
dev_err, best_loss, best_acc, dev_corr, dev_total, dev_corr/dev_total))
if best_loss < dev_err and best_acc > dev_corr / dev_total:
stop_count += 1
else:
update_loss = False
update_acc = False
stop_count = 0
if best_loss > dev_err:
update_loss = True
best_loss = dev_err
best_epoch_loss = epoch
if best_acc < dev_corr / dev_total:
update_acc = True
best_acc = dev_corr / dev_total
best_epoch_acc = epoch
# evaluate on test data when better performance detected
test_err = 0.0
test_corr = 0.0
test_total = 0
test_inst = 0
for batch in utils.iterate_minibatches(X_test, Y_test, masks=mask_test, char_inputs=C_test,
batch_size=batch_size):
inputs, targets, masks, char_inputs = batch
err, corr, num, predictions = eval_fn(inputs, targets, masks, char_inputs)
test_err += err * inputs.shape[0]
test_corr += corr
test_total += num
test_inst += inputs.shape[0]
if output_predict:
utils.output_predictions(predictions, targets, masks, 'tmp3/test%d' % epoch, label_alphabet,
is_flattened=False)
# print 'test loss: %.4f, corr: %d, total: %d, acc: %.2f%%' % (
# test_err / test_inst, test_corr, test_total, test_corr * 100 / test_total)
logger.info('test loss: %.4f, corr: %d, total: %d, acc: %.2f%%' % (
test_err / test_inst, test_corr, test_total, test_corr * 100 / test_total))
if update_loss:
best_loss_test_err = test_err
best_loss_test_corr = test_corr
if update_acc:
best_acc_test_err = test_err
best_acc_test_corr = test_corr
logger.info('stop_count: %.4f' %(stop_count))
# stop if dev acc decrease 3 time straightly.
if stop_count == patience:
break
# re-compile a function with new learning rate for training
if update_algo != 'adadelta':
lr = learning_rate / (1.0 + epoch * decay_rate)
updates = utils.create_updates(loss_train, params, update_algo, lr, momentum=momentum)
train_fn = theano.function([input_var, target_var, mask_var, char_input_var],
[loss_train, corr_train, num_tokens],
updates=updates)
# print best performance on test data.
logger.info("final best loss test performance (at epoch %d)" % best_epoch_loss)
logger.info("final best acc test performance (at epoch %d)" % best_epoch_acc)
# print 'test loss: %.4f, corr: %d, total: %d, acc: %.2f%%' % (
# best_loss_test_err / test_inst, best_loss_test_corr, test_total, best_loss_test_corr * 100 / test_total)
logger.info('test loss: %.4f, corr: %d, total: %d, acc: %.2f%%' % (
best_loss_test_err / test_inst, best_loss_test_corr, test_total, best_loss_test_corr * 100 / test_total))
# print 'test loss: %.4f, corr: %d, total: %d, acc: %.2f%%' % (
# best_acc_test_err / test_inst, best_acc_test_corr, test_total, best_acc_test_corr * 100 / test_total)
logger.info('test loss: %.4f, corr: %d, total: %d, acc: %.2f%%' % (
best_acc_test_err / test_inst, best_acc_test_corr, test_total, best_acc_test_corr * 100 / test_total))
def test():
energies_var = T.tensor4('energies', dtype=theano.config.floatX)
targets_var = T.imatrix('targets')
masks_var = T.matrix('masks', dtype=theano.config.floatX)
layer_input = lasagne.layers.InputLayer([2, 2, 3, 3], input_var=energies_var)
out = lasagne.layers.get_output(layer_input)
loss = crf_loss(out, targets_var, masks_var)
prediction, acc = crf_accuracy(energies_var, targets_var)
fn = theano.function([energies_var, targets_var, masks_var], [loss, prediction, acc])
energies = np.array([[[[10, 15, 20], [5, 10, 15], [3, 2, 0]], [[5, 10, 1], [5, 10, 1], [5, 10, 1]]],
[[[5, 6, 7], [2, 3, 4], [2, 1, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0]]]], dtype=np.float32)
targets = np.array([[0, 1], [0, 2]], dtype=np.int32)
masks = np.array([[1, 1], [1, 0]], dtype=np.float32)
l, p, a = fn(energies, targets, masks)
print l
print p
print a
if __name__ == '__main__':
main()