forked from arishin/ChangeNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
135 lines (109 loc) · 4.84 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import models
import losses
import utils_train
import change_dataset_np
import matplotlib.pyplot as plt
import time
import os.path
import cv2
def runtest(outdir):
print("PyTorch Version: ",torch.__version__)
print("Torchvision Version: ",torchvision.__version__)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('Device:', device)
#num_gpu = torch.cuda.device_count()
num_gpu = 1
print('Number of GPUs Available:', num_gpu)
num_classes = 2
img_size = 224
train_pickle_file = './change_dataset_trainCD.pkl'
val_pickle_file = './change_dataset_valCD.pkl'
test_pickle_file = './change_dataset_testCD.pkl'
checkpointname = './best_model'+str(num_classes)+'CD.pkl'
data_transforms = {
'val': transforms.Compose([
transforms.Resize(img_size),
#transforms.CenterCrop(img_size),
transforms.ToTensor(),
#transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]),
}
# Create training and validation datasets
#train_dataset = change_dataset_np.ChangeDatasetNumpy(train_pickle_file, data_transforms['val'])
#val_dataset = change_dataset_np.ChangeDatasetNumpy(val_pickle_file, data_transforms['val'])
test_dataset = change_dataset_np.ChangeDatasetNumpy(test_pickle_file, data_transforms['val'])
change_net = models.ChangeNet(num_classes=num_classes)
change_net = change_net.to(device)
if os.path.exists((checkpointname)):
checkpoint = torch.load(checkpointname)
change_net.load_state_dict(checkpoint);
print('Checkpoint '+checkpointname+' is loaded.')
def check_dir(dir):
if not os.path.exists(dir):
os.mkdir(dir)
def explore_validation_dataset(idx, inv):
change_net.eval()
referenceimg = np.zeros((img_size,img_size*8,3))
testimg=np.zeros((img_size,img_size*8,3))
labelimg=np.zeros((img_size,img_size*8))
outputimg=np.zeros((img_size,img_size*8))
print(idx)
for i in range(0,8):
actidx = idx*8+i
#print(actidx)
sample = dataset[actidx]
if not inv:
reference = sample['reference'].unsqueeze(0).to(device)
reference_img = sample['reference'].permute(1, 2, 0).cpu().numpy()
test_img = sample['test'].permute(1, 2, 0).cpu().numpy()
test = sample['test'].unsqueeze(0).to(device)
else:
reference = sample['test'].unsqueeze(0).to(device)
reference_img = sample['test'].permute(1, 2, 0).cpu().numpy()
test_img = sample['reference'].permute(1, 2, 0).cpu().numpy()
test = sample['reference'].unsqueeze(0).to(device)
label = sample['label'].type(torch.LongTensor).squeeze(0).cpu().numpy()
#label = (sample['label']>0).type(torch.LongTensor).squeeze(0).cpu().numpy()
pred = change_net([reference, test])
#print(pred.shape)
_, output = torch.max(pred, 1)
output = output.squeeze(0).cpu().numpy()
referenceimg[:,i*img_size:(i+1)*img_size,:]=reference_img
testimg[:,i*img_size:(i+1)*img_size,:]=test_img
outputimg[:,i*img_size:(i+1)*img_size]=output
labelimg[:,i*img_size:(i+1)*img_size]=label
vline = np.ones((img_size,1))
hline = np.ones((1,img_size*8*2+1))
outimg = np.hstack((referenceimg[:,:,0],testimg[:,:,0]))
outimg= np.vstack((outimg,np.hstack((labelimg,outputimg))))
image_sizeH = 128
image_sizeW = 1024
referenceimgRES = cv2.resize(referenceimg[:,:,0],(image_sizeW,image_sizeH))
testimgRES = cv2.resize(testimg[:,:,0],(image_sizeW,image_sizeH))
labelimgRES = cv2.resize(labelimg,(image_sizeW,image_sizeH))
outputimgRES = cv2.resize(outputimg,(image_sizeW,image_sizeH))
evaloutImg = np.hstack((referenceimgRES,testimgRES))
evaloutImg= np.vstack((evaloutImg,np.hstack((labelimgRES,outputimgRES))))
cv2.imwrite(outdir+"change_net_"+str(idx).zfill(4)+".png",evaloutImg*255)
#dataset = val_dataset
#dataset = train_dataset
dataset = test_dataset
check_dir(outdir)
starttime = time.time()
for idx in range (0,min(1000,int(len(dataset)/8))):
explore_validation_dataset(idx, False)
endtime = time.time()
avgtime = (endtime-starttime)/len(dataset)/8
with open((outdir+"avgtime.time"), 'w') as f2:
f2.write(str(avgtime))
f2.write("\n")
print("Avg execution time: "+str(avgtime))
#outdir = "./trainoutput/"
#runtest(outdir)