forked from benjamin22-314/evolving-simple-organisms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathorganism.py
63 lines (45 loc) · 1.92 KB
/
organism.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
class Organism():
def __init__(self, settings, wih=None, who=None, name=None):
self.velocity_decay_factor = settings['velocity_decay_factor']
self.x_world_size = settings['x_max'] - settings['x_min']
self.y_world_size = settings['y_max'] - settings['y_min']
self.x = np.random.uniform(settings['x_min'], settings['x_max'])
self.y = np.random.uniform(settings['y_min'], settings['y_max'])
self.x_tail = self.x
self.y_tail = self.y
self.x_velocity = 0 # velocity in the x direction
self.y_velocity = 0 # velocity in the y direction
self.x_distance_to_food = 0 #
self.y_distance_to_food = 0 #
self.x_distance_to_neighbour = 0 #
self.y_distance_to_neighbour = 0 #
self.fitness = 0 # fitness (food count)
self.wih = wih # weights from input to hidden layer
self.who = who # weights from hidden layer to output
self.name = name
# NEURAL NETWORK
def think(self):
# SIMPLE MLP
def af(x):
# activation function
return np.tanh(x)
inputs = [
self.x_velocity,
self.y_velocity,
self.x_distance_to_food,
self.y_distance_to_food,
self.x_distance_to_neighbour,
self.y_distance_to_neighbour
]
h1 = af(np.dot(self.wih, inputs)) # hidden layer
out = np.multiply(af(np.dot(self.who, h1)), 0.5) # output layer
# UPDATE TAIL
self.x_tail = self.x
self.y_tail = self.y
# UPDATE VELOCITIES
self.x_velocity = float(out[0]) + self.x_velocity*self.velocity_decay_factor
self.y_velocity = float(out[1]) + self.y_velocity*self.velocity_decay_factor
# UPDATE POSITION
self.x += self.x_velocity
self.y += self.y_velocity