-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReport.thy
1428 lines (1219 loc) · 78.9 KB
/
Report.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*<*)
theory Report
imports Main
"graphs/WeightedGraph"
"graphs/CompleteGraph"
"problems/MinWeightMatching"
"problems/MinSpanningTree"
"problems/EulerianTour"
"problems/TravelingSalesman"
"algorithms/DoubleTree"
"algorithms/ChristofidesSerdyukov"
"graphs/GraphAdjList"
"graphs/GraphAdjMap_Specs"
"reductions/VertexCover4ToMetricTravelingSalesman_Specs"
"reductions/FindHamiltonianPath"
"reductions/VertexCover4ToMetricTravelingSalesman_AdjList"
"HOL-Library.OptionalSugar"
begin
declare [[show_question_marks = false]]
(*>*)
section \<open>Introduction\<close>
text \<open>The \textsc{Traveling-Salesman Problem} (\textsc{TSP}) is a well-known optimization problem
that describes the task of finding a tour among the vertices of a given weighted and
undirected graph s.t. the tour has minimum total weight and every vertex of the graph is visited
exactly once. The \textsc{TSP} has many applications in different areas, such as planning and
scheduling @{cite "brumitt_stentz_1996"}, logistics @{cite "ratliff_rosenthal_1983"}, and designing
printed circuit boards @{cite "groetschel_et_al_1991"}.
The \textsc{TSP} is \textsc{NP}-hard @{cite \<open>Theorem 15.43\<close> "korte_vygen_2018"}. This means, that unless
$\textsc{P}=\textsc{NP}$, the \textsc{TSP} cannot be solved in polynomial time. When dealing with
\textsc{NP}-hard optimization problems, a typical strategy is to approximate the optimal solution
with an approximation algorithm. An approximation algorithm @{cite "vazirani_2010"} is a polynomial
time algorithm that returns a bounded approximate solution. An approximation algorithm with an
approximation ratio of \<open>\<alpha>\<close> is guaranteed to return an approximate solution that in the worst case
has a total cost of \<open>\<alpha>OPT\<close>, where \<open>OPT\<close> is the total cost of the optimal solution. Ideally, the
approximation ratio is a constant factor. An approximation algorithm essentially trades the
optimality of the returned solution for a polynomial running time. Unfortunately, there is bad news
for the \textsc{TSP}: there is no constant-factor approximation algorithm for the \textsc{TSP}
@{cite \<open>Theorem 21.1\<close> "korte_vygen_2018"}.
Thus, in this work, I only consider the \textsc{Metric TSP}. The \textsc{Metric TSP} is a subcase
of the \textsc{TSP} which makes the following two assumptions:
\begin{enumerate*}[label=(\roman*)]
\item the given graph is complete and
\item the edge weights satisfy the triangle inequality.
\end{enumerate*}
The \textsc{Metric TSP} is still \textsc{NP}-hard @{cite \<open>Theorem 21.2\<close> "korte_vygen_2018"}.
In this work, I present my formalization of parts of section 21.1, \textit{Approximation Algorithms
for the TSP}, from @{cite "korte_vygen_2018"}.
\begin{enumerate}
\item I formalize and formally verify two approximation algorithms, \textsc{DoubleTree} and
\textsc{Christofides-Serdyukov}, for the \textsc{Metric TSP}.
\item I formalize an L-reduction from the \textsc{Minimum Vertex Cover Problem} with maximum
degree of 4 (\textsc{VCP4}) to the \textsc{Metric TSP}, which proves the \textsc{MaxSNP}-hardness
of the \textsc{Metric TSP}.
\end{enumerate}
Unless $\textsc{P}=\textsc{NP}$, the \textsc{MaxSNP}-hardness of a problem proves the non-existence
of an approximation scheme @{cite \<open>Corollary 16.40\<close> "korte_vygen_2018"}. An approximation scheme
takes a parameter \<open>\<epsilon> > 0\<close> and produces an approximation algorithm with an approximation ratio of
\mbox{\<open>(1 + \<epsilon>)\<close>} for minimization and \mbox{\<open>(1 - \<epsilon>)\<close>} for maximization problems. \textsc{MaxSNP} is a complexity
class that contains graph-theoretical optimization problems. For any problem in \textsc{MaxSNP}
there is a constant-factor approximation algorithm @{cite \<open>Theorem 1\<close> "papadimitriou_yannakakis_1991"}.
A linear reduction (L-reduction) @{cite "papadimitriou_yannakakis_1991"} is a special type of
reduction for optimization problems, that is used to prove the \textsc{MaxSNP}-hardness of problems.
A problem is called \textsc{MaxSNP}-hard if every problem in \textsc{MaxSNP} L-reduces to it. The
\textsc{VCP4} is known to be \textsc{MaxSNP}-hard @{cite \<open>Theorem 16.46\<close> "korte_vygen_2018"}.
Moreover, to get started with the project and to familiarize myself with the existing formalization
of undirected graphs by \citeauthor{abdulaziz_2020} @{cite "abdulaziz_2020"}, I have formalized a
proof by \citeauthor{korte_vygen_2018} @{cite \<open>Proposition 11.1\<close> "korte_vygen_2018"} which shows
the equivalence of the maximum weight matching problem (\textsc{Maximum Matching Problem}) and the
minimum weight perfect matching problem (\textsc{Minimum Matching Problem}).
All of my formalizations are done with the interactive theorem prover Isabelle/HOL
@{cite "nipkow_wenzel_paulson_2002"}. My formalizations can be found on GitHub:
\url{https://github.com/kollerlukas/tsp}.\<close>
section \<open>Related Work\<close>
text \<open>The \textsc{Christofides-Serdyukov} algorithm @{cite "christofides_1976" and "serdyukov_1978"}
has an approximation ratio of $\frac{3}{2}$, and thus is the best known approximation algorithm for
the \textsc{Metric TSP} @{cite "korte_vygen_2018"}. Recently, a randomized approximation algorithm
for the \textsc{Metric TSP} was proposed, which (in expectation) achieves a slightly better
approximation ratio than the \textsc{Christofides-Serdyukov} algorithm @{cite "karlin_et_al_2021"}.
A couple of different approximation algorithms are already formalized and verified in Isabelle/HOL
@{cite "essmann_et_al_2020"}. I continue the work of \citeauthor{essmann_et_al_2020}
@{cite "essmann_et_al_2020"} by formalizing and verifying the \textsc{DoubleTree} and the
\textsc{Christofides-Serdyukov} approximation algorithms. Similar to \citeauthor{essmann_et_al_2020},
I give implementations for both of the formalized approximation algorithms with an imperative
\texttt{WHILE}-program.
\citeauthor{wimmer_2021} @{cite "wimmer_2021"} formalized polynomial time reductions in Isabelle/HOL.
To formally reason about the running times of functions, a computational model for the programming
language is required. Therefore, \citeauthor{wimmer_2021} has developed the imperative language
\texttt{IMP-} which provides a computational model to reason about the running times of functions
implemented in \texttt{IMP-}. To my knowledge, there are no previous attempts to formalize an
L-reduction in Isabelle/HOL.
{\sloppy \citeauthor{vazirani_2010} @{cite "vazirani_2010"} defines a \textit{gap-introducing} reduction
which is a reduction from the satisfiability problem (\textsc{SAT}) to an optimization problem. A
\textit{gap-preserving} reduction is a reduction between optimization problems. The combination of a
gap-introducing and gap-preserving reduction can be used to prove the inapproximability of an
optimization problem. Gap-preserving reductions are weaker than L-reductions @{cite "vazirani_2010"}.\par}\<close>
section \<open>Fundamentals and Definitions\<close>
text \<open>I build on the formalization of graphs by \citeauthor{abdulaziz_2020} @{cite "abdulaziz_2020"},
which is developed for a formalization of Berge's theorem @{cite "berge_1954"}.
An undirected graph is represented by a finite set of edges. An edge is represented by a doubleton
set. The following invariant characterizes a well-formed graph.
@{abbrev[display] graph_invar}
The locale @{locale graph_abs} fixes an instance of a graph \<open>E\<close> that satisfies the invariant
@{const graph_invar}. The graph formalization by @{cite "abdulaziz_2020"} provides definitions for
the following concepts.
\begin{itemize}
\item @{const Vs} returns the set of vertices of a graph.
\item A path is represented with a list of vertices and is characterized by the predicate
@{const path}. A walk (@{const walk_betw}) is a path between two specific vertices. The function
@{const edges_of_path} returns the list of edges of a given path.
\item @{const degree} returns the degree of a vertex in a graph.
\item @{const connected_component} returns the connected component of a vertex in a graph.
\item A matching is a graph where no two edges are incident to the same vertex. The predicate
@{const matching} characterizes matchings.
\end{itemize}
The approximation algorithms and the L-reduction use many graph-related concepts that are not
defined in @{cite "abdulaziz_2020"}, such as weighted graphs, minimum spanning trees, or
Hamiltonian cycles. This section describes the formalization of the necessary graph-related concepts.
Most of the definitions are straightforward, therefore only important formalization choices are
highlighted.
All of the graph-related definitions are defined in theories that are located in the
@{path "./graphs"}- or @{path "./problems"}-directory. Many simple results and lemmas are formalized
in the theory @{file "./misc/Misc.thy"} which is located in the directory @{path "./misc"}.\<close>
subsection \<open>Connected Graphs\<close>
text \<open>A graph \<open>E\<close> is connected if any two vertices are contained in the same connected component.
@{thm[display] is_connected_def}\<close>
subsection \<open>Weighted Graphs\<close>
text \<open>The locale @{locale w_graph_abs} fixes an instance of a graph \<open>E\<close> and edge weights \<open>c\<close>. The
locale @{locale pos_w_graph_abs} extends the locale @{locale w_graph_abs} with the assumption that
all edge weights are positive.\<close>
(* (*<*)
context pos_w_graph_abs
begin
(*>*)
text \<open>The locale @{locale pos_w_graph_abs} extends the locale @{locale w_graph_abs} with the
assumption that all edge weights are positive.
@{thm[display] costs_positive}\<close>
(*<*)
end
(*>*) *)
text \<open>The function \<open>cost_of_path\<^sub>c\<close> computes the cost of a given path with the edge weights \<open>c\<close>.\<close>
subsection \<open>Complete Graphs\<close>
text \<open>A graph \<open>E\<close> is complete if there exists an edge between every two vertices.
@{thm[display] is_complete_def}
The locale @{locale compl_graph_abs} fixes an instance of a complete graph \<open>E\<close>.\<close>
(*<*)
context compl_graph_abs
begin
(*>*)
text \<open>In a complete graph \<open>E\<close>, any sequence of vertices \<open>P\<close> s.t. no two consecutive vertices are
equal (@{const distinct_adj}) is a path.
\begin{lemma}
@{lemma[display] "is_complete E \<Longrightarrow> distinct_adj P \<Longrightarrow> set P \<subseteq> Vs E \<Longrightarrow> path E P" by (rule path_complete_graph)}
\end{lemma}\<close>
(*<*)
end
(*>*)
(* text \<open>The locale @{const restr_compl_graph_abs} additionally fixes a subgraph of the instance \<open>E\<close>.\<close>*)
(*<*)
context metric_graph_abs
begin
(*>*)
text\<open>{\sloppy The locale @{locale metric_graph_abs} extends the locales @{locale compl_graph_abs} and
@{locale pos_w_graph_abs} and assumes that the edge weights \<open>c\<close> satisfy the triangle inequality.
Within such a graph any intermediate vertex along a path can be removed to obtain a shorter path.
Given a set of vertices \<open>X\<close> and a path \<open>P\<close>, the function @{const short_cut} removes all vertices
along the path \<open>P\<close> that are not contained in \<open>X\<close>. The following lemma proves that the resulting path
has less total weight.\par}
\begin{lemma}
@{thm[display] cost_of_path_short_cut_tri_ineq[where E\<^sub>V="X"]}
\end{lemma}\<close>
(*<*)
end
(*>*)
subsection \<open>Acyclic Graphs\<close>
text \<open>A path \<open>P\<close> is simple if the path does not traverse an edge twice. This definition is in
accordance to @{cite "lammich_nipkow_2019"}.
@{thm[display] is_simple_def}
A cycle \<open>C\<close> is a walk s.t.
\begin{enumerate*}[label=(\roman*)]
\item the first and last vertex are the same,
\item the path is simple, and
\item the walk uses at least one edge.
\end{enumerate*}
@{thm[display] is_cycle_def}
A graph \<open>E\<close> is acyclic if it does not contain a cycle.
@{thm[display] is_acyclic_def}\<close>
(*<*)
context graph_abs
begin
(*>*)
text \<open>The following lemma proves the fact that a vertex \<open>v\<close> that is contained in a cycle \<open>C\<close> has a
degree of at least 2.
\begin{lemma}
@{thm[display] cycle_degree}
\end{lemma}\<close>
(*<*)
end
(*>*)
subsection \<open>Trees\<close>
text \<open>A tree \<open>T\<close> is a graph that is
\begin{enumerate*}[label=(\roman*)]
\item connected, and
\item acyclic.
\end{enumerate*}
@{thm[display] is_tree_def}
A spanning tree \<open>T\<close> of a graph \<open>E\<close> is a subgraph s.t.
\begin{enumerate*}[label=(\roman*)]
\item \<open>T\<close> is a tree and
\item \<open>T\<close> contains every vertex of \<open>E\<close>.
\end{enumerate*}
@{thm[display] is_st_def}\<close>
(*<*)
context w_graph_abs
begin
(*>*)
text\<open>A minimum spanning tree (MST) \<open>T\<close> is a spanning tree with minimum total weight.
@{lemma[display,source,mode=latex_sum] "is_mst E c T \<equiv> is_st E T \<and> (\<forall>T'. is_st E T' \<longrightarrow> (\<Sum>e\<in>T. c e) \<le> (\<Sum>e\<in>T'. c e))" by (rule is_mst_def)}\<close>
(* @{thm[display] is_mst_def} *)
(*<*)
end
(*>*)
text \<open>The locale @{locale mst} assumes the existence of an algorithm (denoted by \<open>comp_mst\<close>) that
computes a MST for a given connected graph. This locale can be instantiated with a formalization of
a suitable algorithm e.g. the formalization of Prim's algorithm by \citeauthor{lammich_nipkow_2019}
@{cite "lammich_nipkow_2019"}. Given a connected graph, Prim's algorithm @{cite "jarnik_1930" and "prim_1957"}
computes a MST. In the theory @{file "./adaptors/BergePrimAdaptor.thy"}, I have started (but not
finished) to implement an adaptor between my formalization and the formalization by \citeauthor{lammich_nipkow_2019}.
The adaptor already connects both formalizations for undirected graphs and proves the equivalence of
the required definitions, e.g. definitions for MST. The only missing piece is to prove that the
instantiated function for Prim's algorithm indeed computes a MST. This should be straightforward
given the equivalences of the required definitions are already proven.\<close>
subsection \<open>Hamiltonian Cycles\<close>
text \<open>A Hamiltonian cycle \<open>H\<close> is a cycle in a graph \<open>E\<close> that visits every vertex exactly
once. Sometimes a Hamiltonian cycle is called a tour of a graph.
@{lemma[display,source] "is_hc E H \<equiv>
(H \<noteq> [] \<longrightarrow> (\<exists>v. walk_betw E v H v)) \<and> set (tl H) = Vs E \<and> distinct (tl H)" by (rule is_hc_def)}
{\sloppy With this formalization, a Hamiltonian cycle is not necessarily a cycle (@{const is_cycle}).
The graph that only contains one edge \<open>e={u,v}\<close> has the Hamiltonian cycle \<open>u,v,u\<close> which is not a
simple path.\par}\<close>
subsection \<open>Traveling-Salesman Problem\<close>
(*<*)
context w_graph_abs
begin
(*>*)
text\<open>The optimal solution \<open>H\<close> to the \textsc{TSP} is a Hamiltonian cycle for the graph \<open>E\<close> with
minimum total weight.
@{lemma[display,source] "is_tsp E c H \<equiv> is_hc E H
\<and> (\<forall>H'. is_hc E H' \<longrightarrow> cost_of_path\<^sub>c H \<le> cost_of_path\<^sub>c H')" by (rule is_tsp_def)}\<close>
(*<*)
end
(*>*)
subsection \<open>Multi-Graphs\<close>
text \<open>A multigraph is formalized as a multiset of edges. The theory @{file "./graphs/MultiGraph.thy"}
contains unfinished attempts for encoding a multigraph with a simple graph.\<close>
subsection \<open>Eulerian Tours\<close>
text \<open>A graph \<open>E\<close> is Eulerian if every vertex has even degree. The \textsc{DoubleTree} and the
\textsc{Christofides-Serdyukov} algorithm need the concept of Eulerian multigraphs, thus the predicate
@{const is_eulerian} is defined for multigraphs. The function \mbox{@{const mdegree}} returns the
degree of a vertex in a multigraph. @{const mVs} returns the set of vertices of a multigraph.
@{thm[display] is_eulerian_def}
An Eulerian tour \<open>P\<close> is a path that uses every edge of a given graph \<open>E\<close> exactly once. The predicate
@{const mpath} characterizes a path in a multigraph.
@{thm[display] is_et_def[where T="P"]}
The locale @{locale eulerian} fixes an algorithm (denoted by \<open>comp_et\<close>) that computes an Eulerian
tour for a given multigraph. This locale could be instantiated with a formalization of Eulers's
algorithm @{cite "korte_vygen_2018"}.\<close>
subsection \<open>Weighted Matchings and Perfect Matchings\<close>
text \<open>A subgraph \<open>M\<close> is a maximum weight matching for a graph \<open>E\<close> with edge weights \<open>c\<close> if \<open>M\<close> is a
matching and the total weight of \<open>M\<close> is maximum.
@{lemma[display,source] "is_max_match E c M \<equiv> M \<subseteq> E \<and> matching M
\<and> (\<forall>M'. M' \<subseteq> E \<and> matching M' \<longrightarrow> (\<Sum>e\<in>M'. c e) \<le> (\<Sum>e\<in>M. c e))" by (auto simp add: is_max_match_def)}
A subgraph \<open>M\<close> is a perfect matching for a graph \<open>E\<close> if \<open>M\<close> contains every vertex of \<open>E\<close>.
@{thm[display] is_perf_match_def}\<close>
(*<*)
context w_graph_abs
begin
(*>*)
text \<open>A minimum weight perfect matching \<open>M\<close> is a perfect matching with minimum total weight.
@{lemma[display,source] "is_min_match E c M \<equiv> is_perf_match E M
\<and> (\<forall>M'. is_perf_match E M' \<longrightarrow> (\<Sum>e\<in>M. c e) \<le> (\<Sum>e\<in>M'. c e))" by (rule is_min_match_def)}\<close>
(*<*)
end
(*>*)
text \<open>The locale @{locale min_weight_matching} fixes an algorithm (denoted by \<open>comp_match\<close>) that
computes a minimum weight perfect matching for a given graph. For an instantiation of this locale a
formalization a suitable algorithm is required, e.g. the algorithm described in chapter 11 by
\citeauthor{korte_vygen_2018} @{cite "korte_vygen_2018"}.\<close>
subsection \<open>Vertex Cover\<close>
text \<open>A vertex cover \<open>X\<close> is a subset of the vertices of a graph \<open>E\<close> s.t. every edge of \<open>E\<close> is
incident to at least one vertex in \<open>X\<close> .
@{thm[display] is_vc_def}
A minimum vertex cover is a vertex cover with minimum cardinality.
@{thm[display] is_min_vc_def}\<close>
(*<*)
context graph_abs
begin
lemma card_E_leq_max_degree_card_vc_display:
"(\<forall>v \<in> Vs E. degree E v \<le> enat k) \<Longrightarrow> is_vc E X \<Longrightarrow> card E \<le> k * card X"
using card_E_leq_max_degree_card_vc by blast
(*>*)
text \<open>If the degree of every vertex in a graph \<open>E\<close> is bounded by a constant \<open>k\<close>, then the number of
edges of \<open>E\<close> is at most \<open>k\<close>-times the cardinality of any vertex cover \<open>X\<close> for \<open>E\<close>.
\begin{lemma}\label{lemma:max_degree_bound}
@{thm[display] card_E_leq_max_degree_card_vc_display}
\end{lemma}\<close>
(*<*)
end
(*>*)
section \<open>Equivalence of the Maximum Weight Matching Problem and the Minimum Weight Perfect Matching Problem\<close>
text \<open>In this section, I go over my formalization of @{cite \<open>Proposition 11.1\<close> "korte_vygen_2018"}
which shows the equivalence of the \textsc{Maximum Matching Problem} and the
\textsc{Minimum Matching Problem}.
Similar to the formalization of polynomial time reductions by \citeauthor{wimmer_2021}
@{cite "wimmer_2021"}, a problem \<open>P\<close> consists of a predicate \<open>is_sol\<close> that characterizes the
solutions to instances of the problem. The function \<open>is_sol\<close> takes a problem instance and a potential
solution as arguments.
@{datatype[display] prob}
I define the two matching problems: the \textsc{Maximum Matching Problem} and the
\textsc{Minimum Matching Problem}. For a well-formed graph \<open>E\<close> with edge weights \<open>c\<close>, a solution to
the \textsc{Maximum Matching Problem} is a maximum weight matching (@{const is_max_match}).
@{abbrev[display] P\<^sub>m\<^sub>a\<^sub>x}
If a given well-formed graph \<open>E\<close> with edge weights \<open>c\<close> admits a perfect matching, then a solution to
the \textsc{Minimum Matching Problem} is a minimum weight perfect matching (@{const is_min_match}).
Otherwise, the solution is \<open>None\<close>.
@{abbrev[display] P\<^sub>m\<^sub>i\<^sub>n}
If a function \<open>f\<close> returns a solution to every instance of a problem \<open>P\<close>, then the function \<open>f\<close>
solves the problem \<open>P\<close>. The predicate @{const solves} characterizes functions that solve a
particular problem.
@{lemma[display] "solves P f \<equiv> \<forall>a. is_sol P a (f a)" by (auto simp add: solves_def)}
Given a function \<open>g\<close> that solves the \textsc{Maximum Matching Problem} we want to solve the
\textsc{Minimum Matching Problem}. Let \<open>E\<close> be an undirected graph with edge weights \<open>c\<close>. We change
the edge weights of each edge as follows.
\begin{equation*}
\text{\<open>c' e = 1 + (\<Sum>e\<in>E. \<bar>c e\<bar>) - c e\<close>}
\end{equation*}
A maximum weight matching for the graph \<open>E\<close> with edge weights \<open>c'\<close> is a minimum weight perfect
matching for the graph \<open>E\<close> with edge weights \<open>c\<close>. The function \<open>f\<^sub>1\<close> solves the problem \<open>P\<^sub>m\<^sub>i\<^sub>n\<close> and
takes as an argument a function \<open>g\<close> that solves the problem \<open>P\<^sub>m\<^sub>a\<^sub>x\<close>.
@{lemma[display] "f\<^sub>1 g (E,c) \<equiv>
let M = g (E,\<lambda>e. 1 + (\<Sum>e\<in>E. \<bar>c e\<bar>) - c e) in if Vs M = Vs E then Some M else None" by (auto simp add: f\<^sub>1_def)}
Given a function \<open>g\<close> that solves the \textsc{Minimum Matching Problem} we want to solve the
\textsc{Maximum Matching Problem}. Let \<open>E\<close> be an undirected graph with edge weights \<open>c\<close>. We
construct a graph \<open>H\<close> by doubling the graph \<open>E\<close> and adding an edge to connect each two copies of the
same vertex. The function \<open>E\<^sub>H E\<close> construct this graph.
@{lemma[display] "E\<^sub>H E \<equiv>
{{(v,i),(w,i)} |v w i. {v,w} \<in> E \<and> i\<in>{1,2}} \<union> {{(v,1),(v,2)} |v. v \<in> Vs E}" by (auto simp add: E\<^sub>H_def)}
The function \<open>c\<^sub>H\<close> defines the edge weights for the constructed graph \<open>H\<close>. The cost of an edge in the
first copy is its negative original weight. All other edges have no cost.
@{lemma[display] "c\<^sub>H (E,c) e \<equiv> if fst ` e \<in> E \<and> snd ` e = {1::int} then -c (fst ` e) else 0" by (auto simp add: c\<^sub>H_def)}
With the function \<open>g\<close>, we compute a minimum weight perfect matching \<open>M\<close> for the graph \<open>H\<close> with edge
weights \<open>c\<^sub>H\<close>. The matching \<open>M\<close> is a maximum weight matching for the graph \<open>E\<close> with edge weights \<open>c\<close>.
The function \<open>f\<^sub>2\<close> solves the problem \<open>P\<^sub>m\<^sub>a\<^sub>x\<close> and takes as an argument a function \<open>g\<close> that solves the
problem \<open>P\<^sub>m\<^sub>i\<^sub>n\<close>.
@{lemma[display] "f\<^sub>2 g (E,c) \<equiv> case g (E\<^sub>H E,c\<^sub>H (E,c)) of
Some M \<Rightarrow> {{v,w} |v w. {(v,(1::nat)),(w,1)} \<in> M}" by (auto simp add: f\<^sub>2_def)}
The main results of the formalization of @{cite \<open>Proposition 11.1\<close> "korte_vygen_2018"} are the
following two theorems.
\begin{theorem}
@{thm[display] P\<^sub>m\<^sub>a\<^sub>x_leq_P\<^sub>m\<^sub>i\<^sub>n}
\end{theorem}
\begin{theorem}
@{thm[display] P\<^sub>m\<^sub>i\<^sub>n_leq_P\<^sub>m\<^sub>a\<^sub>x}
\end{theorem}\<close>
section \<open>Approximaton Algorithms for the \textsc{Metric TSP}\<close>
text \<open>{\sloppy This section describes the formalization of the \textsc{DoubleTree} and the
\textsc{Christofides-Serdyukov} approximation algorithms for the \textsc{Metric TSP}. Both
algorithms are quite similar and depend on the following lemma.\par}
\begin{lemma}[{@{cite \<open>Lemma 21.3\<close> "korte_vygen_2018"}}]\label{lemma:comp_hc_of_et}
Let the graph \<open>E\<close> with edge weights \<open>c\<close> be an instance of the \textsc{Metric TSP}. Given a connected
Eulerian graph \<open>E'\<close> that has the same vertices as the graph \<open>E\<close>, we can compute (in polynomial time) a
Hamiltonian cycle for \<open>E\<close> with a total weight of at most the total weight of all edges in \<open>E'\<close>.
\end{lemma}
\begin{proof}
The proof is constructive: first compute an Eulerian tour \<open>P\<close> for the Eulerian
graph \<open>E'\<close>. The tour \<open>P\<close> visits every vertex of \<open>E\<close> at least once, because the Eulerian graph \<open>E'\<close>
spans the vertices of \<open>E\<close>. Next, the duplicate vertices in the tour \<open>P\<close> are removed to
obtain the desired Hamiltonian cycle for the graph \<open>E\<close> ("shortcutting"). By assumption, the edge
weights \<open>c\<close> satisfy the triangle inequality, and thus the total weight of the resulting
Hamiltonian cycle is at most the total weight of the Eulerian tour \<open>P\<close>, which is exactly the total
weight of all edges in the Eulerian graph \<open>E'\<close>.
\end{proof}
{\sloppy The construction for Lemma~\ref{lemma:comp_hc_of_et} is formalized with the function
@{const comp_hc_of_et}. Given an Eulerian tour \<open>P\<close> for \<open>E'\<close>, the function @{const comp_hc_of_et} computes
a Hamiltonian cycle for \<open>E\<close>. The second argument to the function @{const comp_hc_of_et} is an
accumulator.\par}\<close>
(*<*)
lemma comp_hc_of_et_simps_display:
"comp_hc_of_et [] H = H"
"comp_hc_of_et [u] H = u#H"
"comp_hc_of_et (u#v#P) H = (if u \<in> set H then comp_hc_of_et (v#P) H else comp_hc_of_et (v#P) (u#H))"
by (rule comp_hc_of_et.simps)+
(*>*)
text \<open>
@{thm[display] comp_hc_of_et_simps_display}
The function @{const comp_hc_of_et} can be restated using the function @{const remdups} which
removes duplicates from a list.
@{thm[display] comp_hc_of_et_remdups}\<close>
(*<*)
text \<open>The locale @{locale hc_of_et} extends the locales @{locale metric_graph_abs} and
@{locale eulerian} and thus assumes the necessary assumptions for the input graph \<open>E\<close>.\<close>
context hc_of_et
begin
(*>*)
text \<open>It is assumed that the multigraph \<open>E'\<close> has the same vertices as the graph \<open>E\<close> and only
contains edges (maybe multiple instances of an edge) of the graph \<open>E\<close>. Then, the function
@{const comp_hc_of_et} computes a Hamiltonian cycle for \<open>E\<close>.
\begin{lemma}
@{lemma[display,source] "is_et E' P \<and> mVs E' = Vs E \<and> set_mset E' \<subseteq> E
\<Longrightarrow> is_hc E (comp_hc_of_et P [])" by (auto simp add: hc_of_et_correct)}
\end{lemma}
The following lemma shows that the total weight of the Hamiltonian cycle returned by the function
@{const comp_hc_of_et} is at most the total weight of the Eulerian tour \<open>P\<close>.
\begin{lemma}
@{lemma[display,source] "set P \<subseteq> Vs E
\<Longrightarrow> cost_of_path\<^sub>c (comp_hc_of_et P []) \<le> cost_of_path\<^sub>c P" by (rule hc_of_et_reduces_cost)}
\end{lemma}\<close>
(*<*)
end
(*>*)
text \<open>With Lemma~\ref{lemma:comp_hc_of_et}, the task of approximating the \textsc{Metric TSP} boils
down to constructing an Eulerian graph that spans the vertices of the graph \<open>E\<close>. The total weight
of the edges of the Eulerian graph directly bounds the total weight of the approximate solution,
and thus directly affects the approximation-ratio.
{\sloppy Both approximation algorithms, \textsc{DoubleTree} and \textsc{Christofides-Serdyukov},
first compute a MST \<open>T\<close> for the graph \<open>E\<close>. Then, edges are added to the MST \<open>T\<close> to construct a
Eulerian multigraph \<open>E'\<close> that has the same vertices as the graph \<open>E\<close>. The function
@{const comp_hc_of_et} is then applied to \<open>E'\<close> to obtain a Hamiltonian cycle for \<open>E\<close>.\par}
The polynomial running time of both the \textsc{DoubleTree} and \textsc{Christofides-Serdyukov} are
easy to see and thus explicit proofs are omitted.\<close>
subsection \<open>Formalizing the \textsc{DoubleTree} Algorithm\<close>
text \<open>The \textsc{DoubleTree} algorithm constructs an Eulerian graph by simply doubling every edge
of a MST \<open>T\<close> for the input graph \<open>E\<close>. Thus, the \textsc{DoubleTree} algorithm consists of three
steps.
\begin{enumerate}
\item Compute a MST \<open>T\<close> for the input graph \<open>E\<close>.
\item Compute an Eulerian tour \<open>P\<close> for the doubled MST \<open>T + T\<close>.
\item Remove duplicate vertices in \<open>P\<close> by short-cutting (see @{const comp_hc_of_et}).
\end{enumerate}
Thus, the \textsc{DoubleTree} algorithm depends on two algorithms:
\begin{enumerate}
\item an algorithm to compute a MST and
\item an algorithm to compute an Eulerian tour in an Eulerian multigraph.
\end{enumerate}
For the formalization of the \textsc{DoubleTree} algorithm the existence of an algorithm for both of
these problems is assumed. The function \<open>comp_mst\<close> denotes the assumed algorithm to compute a MST,
and the function \<open>comp_et\<close> denotes the assumed algorithm to compute an Eulerian tour.\<close>
(*<*)
text \<open>The locale @{locale double_tree_algo} extends the locales
@{locale hc_of_et} and @{locale mst} and thus assumes the existence of the required algorithms.
The existence of a function \<open>comp_et\<close> to compute an Eulerian tour is already assumed by the
locale @{locale hc_of_et}.\<close>
context double_tree_algo
begin
(*>*)
text \<open>@{lemma[display,source] "double_tree = (
let T = comp_mst c E;
T\<^sub>2\<^sub>x = mset_set T + mset_set T;
P = comp_et T\<^sub>2\<^sub>x in
comp_hc_of_et P [])" by (rule double_tree_def)}
For the defined \textsc{DoubleTree} algorithm two properties are proven:
\begin{enumerate*}[label=(\roman*)]
\item the feasibility, and
\item the approximation ratio.
\end{enumerate*}
The formalization of these proofs is straightforward. The following lemma proves the feasibility
of the \textsc{DoubleTree} algorithm. The path returned by the \textsc{DoubleTree} algorithm is
indeed a Hamiltonian cycle for the graph \<open>E\<close>.
\begin{theorem}
@{thm[display] dt_is_hc [no_vars]}
\end{theorem}\<close>
(*<*)
end
locale dt_hoare_display = double_tree_algo_approx E c comp_et comp_mst
for E and c :: "'a set \<Rightarrow> nat" and comp_et comp_mst +
assumes opt: "is_mtsp OPT"
begin
(*>*)
text\<open>The following theorem shows that the approximation ratio of the \textsc{DoubleTree} algorithm is 2.
The optimal tour for the graph \<open>E\<close> is denoted with \<open>OPT\<close>.
\begin{theorem}
@{thm[display] dt_approx[no_vars]}
\end{theorem}
The total weight of any Hamiltonian cycle is at least the total weight of the MST \<open>T\<close>. Thus, the
total weight of the Hamiltonian cycle produced by the \textsc{DoubleTree} algorithm is at most
double the total weight of the optimal Hamiltonian cycle. Therefore, the
\textsc{DoubleTree} algorithm is a 2-approximation algorithm for the \textsc{Metric TSP}.\<close>
(*<*)
lemma dt_hoare_display: "VARS T T\<^sub>2 v P P' H { (\<forall>E c. is_connected E \<longrightarrow> is_mst E c (comp_mst c E))
\<and> (\<forall>E. is_eulerian E \<longrightarrow> is_et E (comp_et E)) }
T := comp_mst c E;
T\<^sub>2 := mset_set T + mset_set T;
P := comp_et T\<^sub>2;
P' := P;
H := [];
WHILE P' \<noteq> []
INV { comp_hc_of_et P [] = comp_hc_of_et P' H
\<and> P = comp_et T\<^sub>2
\<and> T\<^sub>2 = mset_set T + mset_set T
\<and> T = comp_mst c E
\<and> (\<forall>E c. is_connected E \<longrightarrow> is_mst E c (comp_mst c E))
\<and> (\<forall>E. is_eulerian E \<longrightarrow> is_et E (comp_et E))
} DO
v := hd P';
P' := tl P';
IF v \<in> set H \<and> P' \<noteq> [] THEN
H := H
ELSE
H := v#H
FI
OD { is_hc E H \<and> cost_of_path\<^sub>c H \<le> 2 * cost_of_path\<^sub>c OPT }"
apply (rule refine_double_tree)
apply unfold_locales
apply (simp add: graph)
apply (simp add: complete)
apply (simp add: costs_positive)
apply (simp add: tri_ineq)
apply (simp add: opt)
done
(*>*)
text\<open>Finally, the definition of the \textsc{DoubleTree} algorithm is refined to a
\texttt{WHILE}-program using Hoare Logic.
@{lemma[display] "VARS T T\<^sub>2 v P P' H { (\<forall>E c. is_connected E \<longrightarrow> is_mst E c (comp_mst c E))
\<and> (\<forall>E. is_eulerian E \<longrightarrow> is_et E (comp_et E)) }
T := comp_mst c E;
T\<^sub>2 := mset_set T + mset_set T;
P := comp_et T\<^sub>2;
P' := P;
H := [];
WHILE P' \<noteq> [] INV { comp_hc_of_et P [] = comp_hc_of_et P' H
\<and> P = comp_et T\<^sub>2
\<and> T\<^sub>2 = mset_set T + mset_set T
\<and> T = comp_mst c E
\<and> (\<forall>E c. is_connected E \<longrightarrow> is_mst E c (comp_mst c E))
\<and> (\<forall>E. is_eulerian E \<longrightarrow> is_et E (comp_et E)) }
DO
v := hd P';
P' := tl P';
IF v \<in> set H \<and> P' \<noteq> [] THEN
H := H
ELSE
H := v#H
FI
OD
{ is_hc E H \<and> cost_of_path\<^sub>c H \<le> 2 * cost_of_path\<^sub>c OPT }" by (rule dt_hoare_display)}\<close>
(*<*)
end
(*>*)
(* ----- *)
subsection \<open>Formalizing the \textsc{Christofides-Serdyukov} Algorithm\<close>
text \<open>The \textsc{Christofides-Serdyukov} algorithm is similar to the \textsc{DoubleTree}. Instead
of doubling a MST \<open>T\<close> for the input graph \<open>E\<close>, the \textsc{Christofides-Serdyukov} algorithm
computes a minimum perfect matching \<open>M\<close> between the vertices that have odd degree in \<open>T\<close>. The union
of the matching \<open>M\<close> and the MST \<open>T\<close> is a Eulerian multigraph. Therefore, the
\textsc{Christofides-Serdyukov} algorithm consists of the following steps.
\begin{enumerate}
\item Compute a MST \<open>T\<close> for the input graph \<open>E\<close>.
\item Compute a minimum perfect matching \<open>M\<close> between the vertices that have odd degree in \<open>T\<close>.
\item Compute a Eulerian tour \<open>P\<close> for the union of the MST and the perfect matching \<open>J = T + M\<close>.
\item Remove duplicate vertices in \<open>P\<close> by short-cutting (see @{const comp_hc_of_et}).
\end{enumerate}
Hence, the \textsc{Christofides-Serdyukov} algorithm depends on three algorithms: the algorithms the
\textsc{DoubleTree} algorithm already depends on, as well as an algorithm to compute a minimum
perfect matching.
The \textsc{Christofides-Serdyukov} algorithm is formalized similarly to the
\textsc{DoubleTree} algorithm. The function \<open>comp_match\<close> denotes an assumed algorithm that computes
a minimum perfect matching for a given graph.\<close>
(*<*)
text \<open>The locale @{locale christofides_serdyukov_algo} extends the locale
@{locale double_tree_algo} and adds the assumption for the existence of an algorithm to compute a
minimum perfect matching. The function \<open>comp_match\<close> computes a minimum perfect matching for a given
graph. The definition of the \textsc{Christofides-Serdyukov} algorithm in the
locale @{locale christofides_serdyukov_algo} is straightforward.\<close>
context christofides_serdyukov_algo
begin
(*>*)
text \<open>@{lemma[display,source] "christofides_serdyukov = (
let T = comp_mst c E;
W = {v \<in> Vs T. \<not> even' (degree T v)};
M = comp_match ({e \<in> E. e \<subseteq> W}) c;
J = mset_set T + mset_set M;
P = comp_et J in
comp_hc_of_et P [])" by (rule christofides_serdyukov_def)}\<close>
(*<*)
end
context christofides_serdyukov_algo_feasibility
begin
(*>*)
text \<open>The feasibility of the \textsc{Christofides-Serdyukov} algorithm is proven by the following lemma.
The path returned by the \textsc{Christofides-Serdyukov} algorithm is indeed a Hamiltonian cycle.
\begin{theorem}
@{thm[display] cs_is_hc [no_vars]}
\end{theorem}\<close>
(*<*)
end
locale christofides_serdyukov_hoare_display =
christofides_serdyukov_algo_approx _ _ _ _ _ OPT E c comp_mst comp_et comp_match
for OPT E and c :: "'a set \<Rightarrow> nat" and comp_et comp_mst comp_match
begin
(*>*)
text \<open>{\sloppy The following theorem shows that the approximation ratio of the \textsc{Christofides-Serdyukov}
algorithm is $\frac{3}{2}$. The optimal tour for the graph \<open>E\<close> is denoted with \<open>OPT\<close>.\par}
\begin{theorem}
@{thm[display] cs_approx [no_vars]}
\end{theorem}
Let \<open>T\<close> be a MST for the input graph \<open>E\<close> and let \<open>W\<close> denote the vertices with odd degree in the MST
\<open>T\<close>. The total weight of the Hamiltonian cycle that is computed by the \textsc{Christofides-Serdyukov}
algorithm has at most the total weight of the MST \<open>T\<close> plus the total weight of the minimum weight
perfect matching \<open>M\<close> between the vertices \<open>W\<close>. The total weight of the matching \<open>M\<close> is at most half
the total weight of the optimal Hamiltonian cycle. The number of vertices in \<open>W\<close> is even, thus the
edges of any Hamiltonian cycle for the vertices \<open>W\<close> can be split into two perfect matchings
\<open>M\<^sub>1\<close> and \<open>M\<^sub>2\<close>. Therefore, the total weight of the minimum weight perfect matching \<open>M\<close> is at most
half the total weight of a optimal Hamiltonian cycle for the vertices \<open>W\<close> which is at most the total
weight of the optimal Hamiltonian cycle for the input graph \<open>E\<close>. Therefore, the
\textsc{Christofides-Serdyukov} algorithm is a $\frac{3}{2}$-approximation algorithm for the
\textsc{Metric TSP}.\<close>
(*<*)
lemma cs_hoare_display: "VARS T W M J v P P' H { (\<forall>E c. is_connected E \<longrightarrow> is_mst E c (comp_mst c E))
\<and> (\<forall>E. is_eulerian E \<longrightarrow> is_et E (comp_et E))
\<and> (\<forall>E c. (\<exists>M. is_perf_match E M) \<longrightarrow> is_min_match E c (comp_match E c)) }
T := comp_mst c E;
W := {v \<in> Vs T. \<not> even' (degree T v)};
M := comp_match ({e \<in> E. e \<subseteq> W}) c;
J := mset_set T + mset_set M;
P := comp_et J;
P' := P;
H := [];
WHILE P' \<noteq> []
INV { comp_hc_of_et P [] = comp_hc_of_et P' H
\<and> P = comp_et J
\<and> J = mset_set T + mset_set M
\<and> M = comp_match ({e \<in> E. e \<subseteq> W}) c
\<and> W = {v \<in> Vs T. \<not> even' (degree T v)}
\<and> T = comp_mst c E
\<and> (\<forall>E c. is_connected E \<longrightarrow> is_mst E c (comp_mst c E))
\<and> (\<forall>E. is_eulerian E \<longrightarrow> is_et E (comp_et E))
\<and> (\<forall>E c. (\<exists>M. is_perf_match E M) \<longrightarrow> is_min_match E c (comp_match E c))
} DO
v := hd P';
P' := tl P';
IF v \<in> set H \<and> P' \<noteq> [] THEN
H := H
ELSE
H := v#H
FI
OD { is_hc E H \<and> 2 * cost_of_path\<^sub>c H \<le> 3 * cost_of_path\<^sub>c OPT }"
apply (rule refine_christofides_serdyukov)
apply unfold_locales
(* apply (simp add: mst)
apply (simp add: eulerian)
apply (simp add: match) *)
apply (simp add: opt)
done
(*>*)
text\<open>{\sloppy Like the \textsc{DoubleTree} algorithm, the definition of the \textsc{Christofides-Serdyukov}
algorithm is refined to a \texttt{WHILE}-program using Hoare Logic.\par}
@{lemma[display] "VARS T W M J v P P' H { (\<forall>E c. is_connected E \<longrightarrow> is_mst E c (comp_mst c E))
\<and> (\<forall>E. is_eulerian E \<longrightarrow> is_et E (comp_et E))
\<and> (\<forall>E c. (\<exists>M. is_perf_match E M) \<longrightarrow> is_min_match E c (comp_match E c)) }
T := comp_mst c E;
W := {v \<in> Vs T. \<not> even' (degree T v)};
M := comp_match ({e \<in> E. e \<subseteq> W}) c;
J := mset_set T + mset_set M;
P := comp_et J;
P' := P;
H := [];
WHILE P' \<noteq> []
INV { comp_hc_of_et P [] = comp_hc_of_et P' H
\<and> P = comp_et J
\<and> J = mset_set T + mset_set M
\<and> M = comp_match ({e \<in> E. e \<subseteq> W}) c
\<and> W = {v \<in> Vs T. \<not> even' (degree T v)}
\<and> T = comp_mst c E
\<and> (\<forall>E c. is_connected E \<longrightarrow> is_mst E c (comp_mst c E))
\<and> (\<forall>E. is_eulerian E \<longrightarrow> is_et E (comp_et E))
\<and> (\<forall>E c. (\<exists>M. is_perf_match E M) \<longrightarrow> is_min_match E c (comp_match E c))
} DO
v := hd P';
P' := tl P';
IF v \<in> set H \<and> P' \<noteq> [] THEN
H := H
ELSE
H := v#H
FI
OD
{ is_hc E H \<and> 2 * cost_of_path\<^sub>c H \<le> 3 * cost_of_path\<^sub>c OPT }" by (rule cs_hoare_display)}\<close>
(*<*)
end
(*>*)
section \<open>L-Reduction from \textsc{VCP4} to \textsc{Metric TSP}\<close>
(*<*)
context VCP4_To_mTSP
begin
(*>*)
text \<open>This section describes the formalization of an L-Reduction from the
\textsc{Minimum Vertex Cover Problem}, with maximum degree of 4 (\textsc{VCP4}), to the \textsc{Metric TSP}.
The formalization is based on an L-reduction proof by @{cite \<open>Theorem 21.6\<close> "korte_vygen_2018"}.
The \textsc{Minimum Vertex Cover Problem} describes the optimization problem of finding
a vertex cover with minimum cardinality for a given graph. The \textsc{VCP4} is the restriction of the
\textsc{Minimum Vertex Cover Problem} to input graphs where the degree of every vertex is bounded by 4.
The bounded degree is only needed to prove the linear inequalities that are required for the L-reduction.
The \textsc{VCP4} is known to be \textsc{MaxSNP}-hard @{cite \<open>Theorem 16.46\<close> "korte_vygen_2018"}.
First, I define what an L-reduction is.
Let \<open>A\<close> and \<open>B\<close> be optimization problems with cost functions \<open>c\<^sub>A\<close> and \<open>c\<^sub>B\<close>. The cost of the optimal
solution for an instance of an optimization problem is denoted by \<open>OPT(\<cdot>)\<close>.
An L-reduction (linear reduction) consists of a pair of functions \<open>f\<close> and \<open>g\<close> (both computable in
polynomial time) and two positive constants \<open>\<alpha>,\<beta> > 0\<close> s.t. for every instance \<open>x\<^sub>A\<close> of \<open>A\<close>
\begin{enumerate}[label=(\roman*)]
\item \<open>f x\<^sub>A\<close> is an instance of \<open>B\<close> s.t.
@{theory_text "OPT (f x\<^sub>A) \<le> \<alpha>(OPT x\<^sub>A)"}, and
\item and for any feasible solution \<open>y\<^sub>B\<close> of \<open>f x\<^sub>A\<close>, \<open>g x\<^sub>A y\<^sub>B\<close> is a feasible solution of \<open>x\<^sub>A\<close> s.t.
@{theory_text "\<bar>(c\<^sub>A x\<^sub>A (g x\<^sub>A y\<^sub>B)) - OPT x\<^sub>A\<bar> \<le> \<beta>\<bar>(c\<^sub>B (f x\<^sub>A) y\<^sub>B) - OPT (f x\<^sub>A)\<bar>"}.
\end{enumerate}
The second linear inequality essentially ensures the following: given an optimal solution for \<open>f x\<^sub>A\<close>
the function \<open>g\<close> has to construct an optimal solution for \<open>x\<^sub>A\<close>.
The \textsc{VCP4} is L-reduced to the \textsc{Metric TSP} by defining the functions \<open>f\<close> and \<open>g\<close> and
proving the feasibility of the functions and the required inequalities.
The function \<open>f\<close> maps an instance of the \textsc{VCP4} to an instance of the \textsc{Metric TSP}.
An instance of the \textsc{VCP4} consists of a graph where the degree of every vertex is at most 4.
To construct an instance of the \textsc{Metric TSP}, we construct a complete graph with edge weights
s.t. the edge weights satisfy the triangle inequality.
\begin{figure}
\centering
\begin{tikzpicture}
\pic[scale=2.0] (uv) at (0,0) {He={$\mathstrut u$}{$\mathstrut v$}};
\end{tikzpicture}
\caption{Subgraph \<open>H\<^sub>e\<close> for an edge \<open>e:={u,v}\<close>. Each corner vertex of \<open>H\<^sub>e\<close> corresponds to a vertex of \<open>e\<close>.}\label{fig:He}
\end{figure}
The function \<open>f\<close> is defined by the following construction.
Let \<open>G\<close> be an instance of the \textsc{VCP4}, and let \<open>H:=f G\<close>. For each edge \<open>e\<close> of \<open>G\<close>, a subgraph
\<open>H\<^sub>e\<close> is added to \<open>H\<close> (see Figure~\ref{fig:He}). The function \<open>f\<close> computes the complete graph over
all the subgraphs \<open>H\<^sub>e\<close> (one for every edge \<open>e\<close> of the graph \<open>G\<close>). Figure~\ref{fig:l-reduction-graph-H}
illustrates this construction. A subgraph \<open>H\<^sub>e\<close> consists of 12 vertices that are arranged in a 4-by-3
lattice. Each corner vertex of a subgraph \<open>H\<^sub>e\<close> corresponds to a vertex of the edge \<open>e\<close>. Moreover, a
subgraph \<open>H\<^sub>e\<close> has the special property that there is no Hamiltonian path for \<open>H\<^sub>e\<close> that starts and
ends at corner vertices of \<open>H\<^sub>e\<close> that correspond to different vertices of the edge \<open>e\<close>. E.g. there is
no Hamiltonian path for the subgraph \<open>H\<^sub>e\<close> that starts at the top-left corner vertex and ends at the
bottom-right corner vertex. Therefore, the start- and end-vertex of a Hamiltonian path for a
subgraph \<open>H\<^sub>e\<close> can only correspond to the one vertex of the edge \<open>e\<close>. This property is used to encode
a vertex cover of \<open>G\<close> with a Hamiltonian cycle of \<open>H\<close>. The subgraph \<open>H\<^sub>e\<close> admits 3 types of
Hamiltonian paths (see Figure~\ref{fig:Hamiltonian-paths-He}).
\begin{figure}
\centering
\begin{subfigure}[b]{0.3\textwidth}
\centering
\begin{tikzpicture}
\pic[scale=1.5] (uv) at (0,0) {He={$\mathstrut u$}{$\mathstrut v$}};
\draw[hpEdge]
(uv-u1) -- (uv-u3) -- (uv-v2) -- (uv-u5) -- (uv-v6)
-- (uv-u4) -- (uv-v5) -- (uv-u6) -- (uv-v4) -- (uv-v1)
-- (uv-v3) -- (uv-u2);
\node[hpEndpoint] at (uv-u1) {};
\node[hpEndpoint] at (uv-u2) {};
\end{tikzpicture}
\caption{}\label{fig:Hamiltonian-paths-He1}
\end{subfigure}
\hfill
\begin{subfigure}[b]{0.3\textwidth}
\centering
\begin{tikzpicture}
\pic[scale=1.5] (uv) at (0,0) {He={$\mathstrut u$}{$\mathstrut v$}};
\draw[hpEdge]
(uv-u1) -- (uv-u3) -- (uv-v2) -- (uv-u5) -- (uv-v6)
-- (uv-u4) -- (uv-v5) -- (uv-u2) -- (uv-v3) -- (uv-v1)
-- (uv-v4) -- (uv-u6);
\node[hpEndpoint] at (uv-u1) {};
\node[hpEndpoint] at (uv-u6) {};
\end{tikzpicture}
\caption{}\label{fig:Hamiltonian-paths-He2}
\end{subfigure}
\hfill
\begin{subfigure}[b]{0.3\textwidth}
\centering
\begin{tikzpicture}
\pic[scale=1.5] (uv) at (0,0) {He={$\mathstrut u$}{$\mathstrut v$}};
\draw[hpEdge]
(uv-v6) -- (uv-u5)-- (uv-v2) -- (uv-u3) -- (uv-u1)
-- (uv-u4) -- (uv-v5) -- (uv-u2) -- (uv-v3) -- (uv-v1)
-- (uv-v4) -- (uv-u6);
\node[hpEndpoint] at (uv-v6) {};
\node[hpEndpoint] at (uv-u6) {};
\end{tikzpicture}
\caption{}\label{fig:Hamiltonian-paths-He3}
\end{subfigure}
\caption{There are three different types of Hamiltonian paths for a subgraph \<open>H\<^sub>e\<close> for an edge \<open>e:={u,v}\<close>.
Each corner vertex is labeled with its corresponding vertex of the edge \<open>e\<close>.}\label{fig:Hamiltonian-paths-He}
\end{figure}
Next, I describe the edge weights of the graph \<open>H\<close>. The graph \<open>H\<close> is complete, thus there is an edge
between every pair of vertices of \<open>H\<close>. Every vertex of \<open>H\<close> belongs to exactly one subgraph \<open>H\<^sub>e\<close>. We
distinguish between 3 types of edges.
\begin{enumerate}[label=(\roman*)]
\item An edge that connects two vertices that both belong to the same subgraph \<open>H\<^sub>e\<close> has a weight
equal to the distance of the vertices in the subgraph \<open>H\<^sub>e\<close>.
\item An edge that connects two corner vertices of different subgraphs \<open>H\<^sub>e\<close> and \<open>H\<^sub>f\<close> (\<open>e \<noteq> f\<close>) but
both of the vertices correspond to the same vertices \<open>v\<close> of the graph \<open>G\<close> has a weight of 4.
\item All remaining edges have a weight of 5.
\end{enumerate}
The edge weights satisfy the triangle inequality because the edge weights can be seen as a metric
completion of the graph \<open>H\<close> restricted to the edges that have weight 1 or 4.
\begin{figure}
\centering
\begin{tikzpicture}[label distance=0mm, scale=1]
\node[graphNode] (u) at (0,\HeWidth+\HeHeight+\HeMargin) {};
\node[graphNode,right = of u] (v) {};
\node[graphNode,below = of u] (w) {};
\node[graphNode,right = of w] (x) {};
\path[-] (u) edge (v);
\path[-] (v) edge (w);
\path[-] (v) edge (x);
\path[-] (w) edge (x);
\path[|->,thick] (2.5,\HeWidth+\HeHeight+\HeMargin-0.5) edge node[label={above:$\mathstrut f$}] {} (3.5,\HeWidth+\HeHeight+\HeMargin-0.5);
\pic (wx) at (5,0) {He={}{}};
\pic[rotate=-90] (vx) at (5+\HeWidth+\HeMargin,\HeWidth+\HeHeight+\HeMargin) {He={}{}};
\pic[rotate=45] (wv) at (5+0.146*\HeWidth,\HeMargin+0.146*\HeWidth+\HeHeight) {He={}{}};
\pic (uv) at (5+-\HeMargin,1.146*\HeWidth+\HeHeight+3*\HeMargin) {He={}{}};
\begin{scope}[on background layer]
\draw (uv-v1) edge[edge4] (wv-v1);
\draw (uv-v1) edge[edge4] (wv-v2);
\draw (uv-v2) edge[edge4] (wv-v1);
\draw (uv-v2) edge[edge4] (wv-v2);
\draw (uv-v1) edge[edge4] (vx-u1);
\draw (uv-v1) edge[edge4] (vx-u2);
\draw (uv-v2) edge[edge4] (vx-u1);
\draw (uv-v2) edge[edge4] (vx-u2);
\draw (wv-v1) edge[edge4] (vx-u1);
\draw (wv-v1) edge[edge4] (vx-u2);
\draw (wv-v2) edge[edge4] (vx-u1);
\draw (wv-v2) edge[edge4] (vx-u2);
\draw (wx-u1) edge[edge4] (wv-u1);
\draw (wx-u1) edge[edge4] (wv-u2);
\draw (wx-u2) edge[edge4] (wv-u1);
\draw (wx-u2) edge[edge4] (wv-u2);
\draw (vx-v1) edge[edge4] (wx-v1);
\draw (vx-v1) edge[edge4] (wx-v2);
\draw (vx-v2) edge[edge4] (wx-v1);
\draw (vx-v2) edge[edge4] (wx-v2);
\end{scope}
\end{tikzpicture}
\caption{Depicted is the construction of the graph \<open>H:=f G\<close> from the graph \<open>G\<close>. The graph
\<open>H\<close> is complete, but only the edges with weight 1 or 4 are shown.}\label{fig:l-reduction-graph-H}
\end{figure}
Next, I describe the definition of the function \<open>g\<close>.
The function \<open>g\<close> maps a Hamiltonian cycle \<open>T\<close> in \<open>H\<close> to a vertex cover \<open>X\<close> of \<open>G\<close>.
By the construction of \<open>H\<close>, the Hamiltonian cycle \<open>T\<close> may be
composed of only Hamiltonian paths for the subgraphs \<open>H\<^sub>e\<close>. In this case, for each edge \<open>e\<close> of \<open>G\<close>
the covering vertex of \<open>e\<close> is identified by looking at the Hamiltonian path for the subgraph \<open>H\<^sub>e\<close>
that is contained in \<open>T\<close>. The Hamiltonian path of the subgraph \<open>H\<^sub>e\<close> can only
correspond to one vertex of the edge \<open>e\<close>. This vertex is selected as the covering vertex for
the edge \<open>e\<close>. If the Hamiltonian cycle \<open>T\<close> does not contain a Hamiltonian path for every subgraph \<open>H\<^sub>e\<close>,
a Hamiltonian cycle \<open>T'\<close> for \<open>H\<close> is constructed. The Hamiltonian cycle \<open>T'\<close> contains a Hamiltonian
path for every subgraph \<open>H\<^sub>e\<close> and the total cost of \<open>T'\<close> is at most the total cost of \<open>T\<close>. The
Hamiltonian cycle \<open>T'\<close> is constructed by carefully replacing parts of \<open>T\<close> with a Hamiltonian path