Skip to content

Latest commit

 

History

History
35 lines (26 loc) · 886 Bytes

README.md

File metadata and controls

35 lines (26 loc) · 886 Bytes

Time-Series-Stock-Predictor

Tech Stack Used:

  • Python fastApi for backend
  • HTML & JS for Frontend
  • postgreSQL 14 as Database

Follow the steps below to setup your project.

installation packages:

  • pip install ta
  • pip install fastapi uvicorn
  • pip install python-dotenv
  • pip install tensorflow
  • pip install celery
  • pip install sqlalchemy
  • pip install psycopg2

create a .env file

Write the below things in the env file

  • API_KEY_1 = "YOUR_API_KEY"
  • API_KEY_2 = "YOUR_API_KEY"
  • API_KEY_3 = "YOUR_API_KEY"
  • BASE_URL = 'https://www.alphavantage.co/query'
  • DATABASE_URL = "postgresql://{user}:{password}@localhost:{portnumber}/{database_name}"

To run application in vscode:

  • uvicorn main:app --reload

To predict model :

http://127.0.0.1:8000/api/v1/stock_prices/{bse_stock_name}

replace bse_stock_name with your stock name.