-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmonads.ml
executable file
·196 lines (157 loc) · 4.35 KB
/
monads.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#! /usr/bin/env ocaml
let (=>) left right = print_string @@ if left = right then "." else "F"
let format = Printf.sprintf
type term = Con of int | Div of term * term
let rec show_term = function
| Con a -> format "Con %i" a
| Div (t, u) -> format "Div (%s, %s)" (show_term t) (show_term u)
module TestNoMonad = struct
let rec eval = function
| Con a -> a
| Div (t, u) -> eval t / eval u
let test_eval =
eval (Div (Div (Con 1972, Con 2), Con 23)) => 42;
try ignore (eval (Div (Con 1, Con 0))) with Division_by_zero -> ()
end
module IdentityMonad: sig
type 'a t = 'a
val return: 'a -> 'a t
val (>>=): 'a t -> ('a -> 'b t) -> 'b t
end = struct
type 'a t = 'a
let return t = t
let (>>=) a k = k a
end
module TestIdentityMonad = struct
open IdentityMonad
let test_identity_monad = begin
1 >>= fun a ->
2 >>= fun b ->
return (a + b)
end => 3
let rec eval = function
| Con a -> return a
| Div (t, u) ->
eval t >>= fun a ->
eval u >>= fun b ->
return (a / b)
let test_eval =
eval (Div (Div (Con 1972, Con 2), Con 23)) => 42;
try ignore (eval (Div (Con 1, Con 0))) with Division_by_zero -> ()
end
module ExceptionMonad: sig
type exception_ = string
type 'a t = Raise of exception_ | Return of 'a
val return: 'a -> 'a t
val (>>=): 'a t -> ('a -> 'b t) -> 'b t
val raise_: string -> 'a t
end = struct
type exception_ = string
type 'a t = Raise of exception_ | Return of 'a
let return t = Return t
let (>>=) m k = match m with
| Raise e -> Raise e
| Return a -> k a
let raise_ e = Raise e
end
module TestExceptionMonad = struct
open ExceptionMonad
let test_exception_monad = begin
return 1 >>= fun a ->
return 0 >>= fun b ->
if b = 0
then raise_ "divide by zero"
else return (a / b)
end => Raise "divide by zero"
let rec eval = function
| Con a -> return a
| Div (t, u) ->
eval t >>= fun a ->
eval u >>= fun b ->
if b = 0
then raise_ "divide by zero"
else return (a / b)
let test_eval =
eval (Div (Div (Con 1972, Con 2), Con 23)) => Return 42;
eval (Div (Con 1, Con 0)) => Raise "divide by zero"
end
module StateMonad: sig
type state = int
type 'a t = state -> 'a * state
val return: 'a -> 'a t
val (>>=): 'a t -> ('a -> 'b t) -> 'b t
val tick: unit t
end = struct
type state = int
type 'a t = state -> 'a * state
let return a = fun x -> (a, x)
let (>>=) m k =
fun x ->
let a, y = m x in
let b, z = k a y in
b, z
let tick = fun x -> (), x + 1
end
module TestStateMonad = struct
open StateMonad
let test_state_monad = begin
return 11 >>= fun a ->
tick >>= fun () ->
return 22 >>= fun b ->
tick >>= fun () ->
return (a + b)
end 0 => (33, 2)
let rec eval = function
| Con a -> return a
| Div (t, u) ->
eval t >>= fun a ->
eval u >>= fun b ->
tick >>= fun () ->
return (a / b)
let test_eval =
eval (Div (Div (Con 1972, Con 2), Con 23)) 0 => (42, 2)
end
module OutputMonad: sig
type output = string
type 'a t = output * 'a
val return: 'a -> 'a t
val (>>=): 'a t -> ('a -> 'b t) -> 'b t
val out: output -> unit t
end = struct
type output = string
type 'a t = output * 'a
let return a = "", a
let (>>=) m k =
let x, a = m in
let y, b = k a in
x ^ y, b
let out x = x, ()
end
module TestOutputMonad = struct
open OutputMonad
let test_output_monad = begin
return 11 >>= fun a ->
out "hai" >>= fun () ->
return 22 >>= fun b ->
out "bye" >>= fun () ->
return (a + b)
end => ("haibye", 33)
let line term value =
format "eval (%s) ⇐ %i \n" (show_term term) value
let rec eval = function
| Con a as term ->
out (line term a) >>= fun () ->
return a
| Div (t, u) as term ->
eval t >>= fun a ->
eval u >>= fun b ->
out (line term (a / b)) >>= fun () ->
return (a / b)
let test_eval =
let output = "eval (Con 1972) ⇐ 1972 \n" ^
"eval (Con 2) ⇐ 2 \n" ^
"eval (Div (Con 1972, Con 2)) ⇐ 986 \n" ^
"eval (Con 23) ⇐ 23 \n" ^
"eval (Div (Div (Con 1972, Con 2), Con 23)) ⇐ 42 \n" in
eval (Div (Div (Con 1972, Con 2), Con 23)) => (output, 42);
end