-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathmain.py
648 lines (553 loc) · 28.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
import argparse
import logging
import math
import os
import random
import time
import numpy as np
import torch
from torch.cuda import amp
from torch import nn
from torch.nn import functional as F
from torch import optim
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter
# import wandb
from tqdm import tqdm
from data import DATASET_GETTERS
from models import WideResNet, ModelEMA
from utils import (AverageMeter, accuracy, create_loss_fn,
save_checkpoint, reduce_tensor, model_load_state_dict)
logger = logging.getLogger(__name__)
parser = argparse.ArgumentParser()
parser.add_argument('--name', type=str, required=True, help='experiment name')
parser.add_argument('--data-path', default='./data', type=str, help='data path')
parser.add_argument('--save-path', default='./checkpoint', type=str, help='save path')
parser.add_argument('--dataset', default='cifar10', type=str,
choices=['cifar10', 'cifar100'], help='dataset name')
parser.add_argument('--num-labeled', type=int, default=4000, help='number of labeled data')
parser.add_argument("--expand-labels", action="store_true", help="expand labels to fit eval steps")
parser.add_argument('--total-steps', default=300000, type=int, help='number of total steps to run')
parser.add_argument('--eval-step', default=1000, type=int, help='number of eval steps to run')
parser.add_argument('--start-step', default=0, type=int,
help='manual epoch number (useful on restarts)')
parser.add_argument('--workers', default=4, type=int, help='number of workers')
parser.add_argument('--num-classes', default=10, type=int, help='number of classes')
parser.add_argument('--resize', default=32, type=int, help='resize image')
parser.add_argument('--batch-size', default=64, type=int, help='train batch size')
parser.add_argument('--teacher-dropout', default=0, type=float, help='dropout on last dense layer')
parser.add_argument('--student-dropout', default=0, type=float, help='dropout on last dense layer')
parser.add_argument('--teacher_lr', default=0.01, type=float, help='train learning late')
parser.add_argument('--student_lr', default=0.01, type=float, help='train learning late')
parser.add_argument('--momentum', default=0.9, type=float, help='SGD Momentum')
parser.add_argument('--nesterov', action='store_true', help='use nesterov')
parser.add_argument('--weight-decay', default=0, type=float, help='train weight decay')
parser.add_argument('--ema', default=0, type=float, help='EMA decay rate')
parser.add_argument('--warmup-steps', default=0, type=int, help='warmup steps')
parser.add_argument('--student-wait-steps', default=0, type=int, help='warmup steps')
parser.add_argument('--grad-clip', default=1e9, type=float, help='gradient norm clipping')
parser.add_argument('--resume', default='', type=str, help='path to checkpoint')
parser.add_argument('--evaluate', action='store_true', help='only evaluate model on validation set')
parser.add_argument('--finetune', action='store_true',
help='only finetune model on labeled dataset')
parser.add_argument('--finetune-epochs', default=625, type=int, help='finetune epochs')
parser.add_argument('--finetune-batch-size', default=512, type=int, help='finetune batch size')
parser.add_argument('--finetune-lr', default=3e-5, type=float, help='finetune learning late')
parser.add_argument('--finetune-weight-decay', default=0, type=float, help='finetune weight decay')
parser.add_argument('--finetune-momentum', default=0.9, type=float, help='finetune SGD Momentum')
parser.add_argument('--seed', default=None, type=int, help='seed for initializing training')
parser.add_argument('--label-smoothing', default=0, type=float, help='label smoothing alpha')
parser.add_argument('--mu', default=7, type=int, help='coefficient of unlabeled batch size')
parser.add_argument('--threshold', default=0.95, type=float, help='pseudo label threshold')
parser.add_argument('--temperature', default=1, type=float, help='pseudo label temperature')
parser.add_argument('--lambda-u', default=1, type=float, help='coefficient of unlabeled loss')
parser.add_argument('--uda-steps', default=1, type=float, help='warmup steps of lambda-u')
parser.add_argument("--randaug", nargs="+", type=int, help="use it like this. --randaug 2 10")
parser.add_argument("--amp", action="store_true", help="use 16-bit (mixed) precision")
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
def get_cosine_schedule_with_warmup(optimizer,
num_warmup_steps,
num_training_steps,
num_wait_steps=0,
num_cycles=0.5,
last_epoch=-1):
def lr_lambda(current_step):
if current_step < num_wait_steps:
return 0.0
if current_step < num_warmup_steps + num_wait_steps:
return float(current_step) / float(max(1, num_warmup_steps + num_wait_steps))
progress = float(current_step - num_warmup_steps - num_wait_steps) / \
float(max(1, num_training_steps - num_warmup_steps - num_wait_steps))
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
return LambdaLR(optimizer, lr_lambda, last_epoch)
def get_lr(optimizer):
return optimizer.param_groups[0]['lr']
def train_loop(args, labeled_loader, unlabeled_loader, test_loader, finetune_dataset,
teacher_model, student_model, avg_student_model, criterion,
t_optimizer, s_optimizer, t_scheduler, s_scheduler, t_scaler, s_scaler):
logger.info("***** Running Training *****")
logger.info(f" Task = {args.dataset}@{args.num_labeled}")
logger.info(f" Total steps = {args.total_steps}")
if args.world_size > 1:
labeled_epoch = 0
unlabeled_epoch = 0
labeled_loader.sampler.set_epoch(labeled_epoch)
unlabeled_loader.sampler.set_epoch(unlabeled_epoch)
labeled_iter = iter(labeled_loader)
unlabeled_iter = iter(unlabeled_loader)
# for author's code formula
# moving_dot_product = torch.empty(1).to(args.device)
# limit = 3.0**(0.5) # 3 = 6 / (f_in + f_out)
# nn.init.uniform_(moving_dot_product, -limit, limit)
for step in range(args.start_step, args.total_steps):
if step % args.eval_step == 0:
pbar = tqdm(range(args.eval_step), disable=args.local_rank not in [-1, 0])
batch_time = AverageMeter()
data_time = AverageMeter()
s_losses = AverageMeter()
t_losses = AverageMeter()
t_losses_l = AverageMeter()
t_losses_u = AverageMeter()
t_losses_mpl = AverageMeter()
mean_mask = AverageMeter()
teacher_model.train()
student_model.train()
end = time.time()
try:
# error occurs ↓
# images_l, targets = labeled_iter.next()
images_l, targets = next(labeled_iter)
except:
if args.world_size > 1:
labeled_epoch += 1
labeled_loader.sampler.set_epoch(labeled_epoch)
labeled_iter = iter(labeled_loader)
# error occurs ↓
# images_l, targets = labeled_iter.next()
images_l, targets = next(labeled_iter)
try:
# error occurs ↓
# (images_uw, images_us), _ = unlabeled_iter.next()
(images_uw, images_us), _ = next(unlabeled_iter)
except:
if args.world_size > 1:
unlabeled_epoch += 1
unlabeled_loader.sampler.set_epoch(unlabeled_epoch)
unlabeled_iter = iter(unlabeled_loader)
# error occurs ↓
# (images_uw, images_us), _ = unlabeled_iter.next()
(images_uw, images_us), _ = next(unlabeled_iter)
data_time.update(time.time() - end)
images_l = images_l.to(args.device)
images_uw = images_uw.to(args.device)
images_us = images_us.to(args.device)
targets = targets.to(args.device)
with amp.autocast(enabled=args.amp):
batch_size = images_l.shape[0]
t_images = torch.cat((images_l, images_uw, images_us))
t_logits = teacher_model(t_images)
t_logits_l = t_logits[:batch_size]
t_logits_uw, t_logits_us = t_logits[batch_size:].chunk(2)
del t_logits
t_loss_l = criterion(t_logits_l, targets)
soft_pseudo_label = torch.softmax(t_logits_uw.detach() / args.temperature, dim=-1)
max_probs, hard_pseudo_label = torch.max(soft_pseudo_label, dim=-1)
mask = max_probs.ge(args.threshold).float()
t_loss_u = torch.mean(
-(soft_pseudo_label * torch.log_softmax(t_logits_us, dim=-1)).sum(dim=-1) * mask
)
weight_u = args.lambda_u * min(1., (step + 1) / args.uda_steps)
t_loss_uda = t_loss_l + weight_u * t_loss_u
s_images = torch.cat((images_l, images_us))
s_logits = student_model(s_images)
s_logits_l = s_logits[:batch_size]
s_logits_us = s_logits[batch_size:]
del s_logits
s_loss_l_old = F.cross_entropy(s_logits_l.detach(), targets)
s_loss = criterion(s_logits_us, hard_pseudo_label)
s_scaler.scale(s_loss).backward()
if args.grad_clip > 0:
s_scaler.unscale_(s_optimizer)
nn.utils.clip_grad_norm_(student_model.parameters(), args.grad_clip)
s_scaler.step(s_optimizer)
s_scaler.update()
s_scheduler.step()
if args.ema > 0:
avg_student_model.update_parameters(student_model)
with amp.autocast(enabled=args.amp):
with torch.no_grad():
s_logits_l = student_model(images_l)
s_loss_l_new = F.cross_entropy(s_logits_l.detach(), targets)
# theoretically correct formula (https://github.com/kekmodel/MPL-pytorch/issues/6)
# dot_product = s_loss_l_old - s_loss_l_new
# author's code formula
dot_product = s_loss_l_new - s_loss_l_old
# moving_dot_product = moving_dot_product * 0.99 + dot_product * 0.01
# dot_product = dot_product - moving_dot_product
_, hard_pseudo_label = torch.max(t_logits_us.detach(), dim=-1)
t_loss_mpl = dot_product * F.cross_entropy(t_logits_us, hard_pseudo_label)
# test
# t_loss_mpl = torch.tensor(0.).to(args.device)
t_loss = t_loss_uda + t_loss_mpl
t_scaler.scale(t_loss).backward()
if args.grad_clip > 0:
t_scaler.unscale_(t_optimizer)
nn.utils.clip_grad_norm_(teacher_model.parameters(), args.grad_clip)
t_scaler.step(t_optimizer)
t_scaler.update()
t_scheduler.step()
teacher_model.zero_grad()
student_model.zero_grad()
if args.world_size > 1:
s_loss = reduce_tensor(s_loss.detach(), args.world_size)
t_loss = reduce_tensor(t_loss.detach(), args.world_size)
t_loss_l = reduce_tensor(t_loss_l.detach(), args.world_size)
t_loss_u = reduce_tensor(t_loss_u.detach(), args.world_size)
t_loss_mpl = reduce_tensor(t_loss_mpl.detach(), args.world_size)
mask = reduce_tensor(mask, args.world_size)
s_losses.update(s_loss.item())
t_losses.update(t_loss.item())
t_losses_l.update(t_loss_l.item())
t_losses_u.update(t_loss_u.item())
t_losses_mpl.update(t_loss_mpl.item())
mean_mask.update(mask.mean().item())
batch_time.update(time.time() - end)
pbar.set_description(
f"Train Iter: {step+1:3}/{args.total_steps:3}. "
f"LR: {get_lr(s_optimizer):.4f}. Data: {data_time.avg:.2f}s. "
f"Batch: {batch_time.avg:.2f}s. S_Loss: {s_losses.avg:.4f}. "
f"T_Loss: {t_losses.avg:.4f}. Mask: {mean_mask.avg:.4f}. ")
pbar.update()
if args.local_rank in [-1, 0]:
args.writer.add_scalar("lr", get_lr(s_optimizer), step)
# wandb.log({"lr": get_lr(s_optimizer)})
args.num_eval = step // args.eval_step
if (step + 1) % args.eval_step == 0:
pbar.close()
if args.local_rank in [-1, 0]:
args.writer.add_scalar("train/1.s_loss", s_losses.avg, args.num_eval)
args.writer.add_scalar("train/2.t_loss", t_losses.avg, args.num_eval)
args.writer.add_scalar("train/3.t_labeled", t_losses_l.avg, args.num_eval)
args.writer.add_scalar("train/4.t_unlabeled", t_losses_u.avg, args.num_eval)
args.writer.add_scalar("train/5.t_mpl", t_losses_mpl.avg, args.num_eval)
args.writer.add_scalar("train/6.mask", mean_mask.avg, args.num_eval)
# wandb.log({"train/1.s_loss": s_losses.avg,
# "train/2.t_loss": t_losses.avg,
# "train/3.t_labeled": t_losses_l.avg,
# "train/4.t_unlabeled": t_losses_u.avg,
# "train/5.t_mpl": t_losses_mpl.avg,
# "train/6.mask": mean_mask.avg})
test_model = avg_student_model if avg_student_model is not None else student_model
test_loss, top1, top5 = evaluate(args, test_loader, test_model, criterion)
args.writer.add_scalar("test/loss", test_loss, args.num_eval)
args.writer.add_scalar("test/acc@1", top1, args.num_eval)
args.writer.add_scalar("test/acc@5", top5, args.num_eval)
# wandb.log({"test/loss": test_loss,
# "test/acc@1": top1,
# "test/acc@5": top5})
is_best = top1 > args.best_top1
if is_best:
args.best_top1 = top1
args.best_top5 = top5
logger.info(f"top-1 acc: {top1:.2f}")
logger.info(f"Best top-1 acc: {args.best_top1:.2f}")
save_checkpoint(args, {
'step': step + 1,
'teacher_state_dict': teacher_model.state_dict(),
'student_state_dict': student_model.state_dict(),
'avg_state_dict': avg_student_model.state_dict() if avg_student_model is not None else None,
'best_top1': args.best_top1,
'best_top5': args.best_top5,
'teacher_optimizer': t_optimizer.state_dict(),
'student_optimizer': s_optimizer.state_dict(),
'teacher_scheduler': t_scheduler.state_dict(),
'student_scheduler': s_scheduler.state_dict(),
'teacher_scaler': t_scaler.state_dict(),
'student_scaler': s_scaler.state_dict(),
}, is_best)
if args.local_rank in [-1, 0]:
args.writer.add_scalar("result/test_acc@1", args.best_top1)
# wandb.log({"result/test_acc@1": args.best_top1})
# finetune
del t_scaler, t_scheduler, t_optimizer, teacher_model, labeled_loader, unlabeled_loader
del s_scaler, s_scheduler, s_optimizer
ckpt_name = f'{args.save_path}/{args.name}_best.pth.tar'
loc = f'cuda:{args.gpu}'
checkpoint = torch.load(ckpt_name, map_location=loc)
logger.info(f"=> loading checkpoint '{ckpt_name}'")
if checkpoint['avg_state_dict'] is not None:
model_load_state_dict(student_model, checkpoint['avg_state_dict'])
else:
model_load_state_dict(student_model, checkpoint['student_state_dict'])
finetune(args, finetune_dataset, test_loader, student_model, criterion)
return
def evaluate(args, test_loader, model, criterion):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
model.eval()
test_iter = tqdm(test_loader, disable=args.local_rank not in [-1, 0])
with torch.no_grad():
end = time.time()
for step, (images, targets) in enumerate(test_iter):
data_time.update(time.time() - end)
batch_size = images.shape[0]
images = images.to(args.device)
targets = targets.to(args.device)
with amp.autocast(enabled=args.amp):
outputs = model(images)
loss = criterion(outputs, targets)
acc1, acc5 = accuracy(outputs, targets, (1, 5))
losses.update(loss.item(), batch_size)
top1.update(acc1[0], batch_size)
top5.update(acc5[0], batch_size)
batch_time.update(time.time() - end)
end = time.time()
test_iter.set_description(
f"Test Iter: {step+1:3}/{len(test_loader):3}. Data: {data_time.avg:.2f}s. "
f"Batch: {batch_time.avg:.2f}s. Loss: {losses.avg:.4f}. "
f"top1: {top1.avg:.2f}. top5: {top5.avg:.2f}. ")
test_iter.close()
return losses.avg, top1.avg, top5.avg
def finetune(args, finetune_dataset, test_loader, model, criterion):
model.drop = nn.Identity()
train_sampler = RandomSampler if args.local_rank == -1 else DistributedSampler
labeled_loader = DataLoader(
finetune_dataset,
batch_size=args.finetune_batch_size,
num_workers=args.workers,
pin_memory=True)
optimizer = optim.SGD(model.parameters(),
lr=args.finetune_lr,
momentum=args.finetune_momentum,
weight_decay=args.finetune_weight_decay,
nesterov=True)
scaler = amp.GradScaler(enabled=args.amp)
logger.info("***** Running Finetuning *****")
logger.info(f" Finetuning steps = {len(labeled_loader)*args.finetune_epochs}")
for epoch in range(args.finetune_epochs):
if args.world_size > 1:
labeled_loader.sampler.set_epoch(epoch + 624)
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
model.train()
end = time.time()
labeled_iter = tqdm(labeled_loader, disable=args.local_rank not in [-1, 0])
for step, (images, targets) in enumerate(labeled_iter):
data_time.update(time.time() - end)
batch_size = images.shape[0]
images = images.to(args.device)
targets = targets.to(args.device)
with amp.autocast(enabled=args.amp):
model.zero_grad()
outputs = model(images)
loss = criterion(outputs, targets)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
if args.world_size > 1:
loss = reduce_tensor(loss.detach(), args.world_size)
losses.update(loss.item(), batch_size)
batch_time.update(time.time() - end)
labeled_iter.set_description(
f"Finetune Epoch: {epoch+1:2}/{args.finetune_epochs:2}. Data: {data_time.avg:.2f}s. "
f"Batch: {batch_time.avg:.2f}s. Loss: {losses.avg:.4f}. ")
labeled_iter.close()
if args.local_rank in [-1, 0]:
args.writer.add_scalar("finetune/train_loss", losses.avg, epoch)
test_loss, top1, top5 = evaluate(args, test_loader, model, criterion)
args.writer.add_scalar("finetune/test_loss", test_loss, epoch)
args.writer.add_scalar("finetune/acc@1", top1, epoch)
args.writer.add_scalar("finetune/acc@5", top5, epoch)
# wandb.log({"finetune/train_loss": losses.avg,
# "finetune/test_loss": test_loss,
# "finetune/acc@1": top1,
# "finetune/acc@5": top5})
is_best = top1 > args.best_top1
if is_best:
args.best_top1 = top1
args.best_top5 = top5
logger.info(f"top-1 acc: {top1:.2f}")
logger.info(f"Best top-1 acc: {args.best_top1:.2f}")
save_checkpoint(args, {
'step': step + 1,
'best_top1': args.best_top1,
'best_top5': args.best_top5,
'student_state_dict': model.state_dict(),
'avg_state_dict': None,
'student_optimizer': optimizer.state_dict(),
}, is_best, finetune=True)
if args.local_rank in [-1, 0]:
args.writer.add_scalar("result/finetune_acc@1", args.best_top1)
# wandb.log({"result/finetune_acc@1": args.best_top1})
return
def main():
args = parser.parse_args()
args.best_top1 = 0.
args.best_top5 = 0.
if args.local_rank != -1:
args.gpu = args.local_rank
torch.distributed.init_process_group(backend='nccl')
args.world_size = torch.distributed.get_world_size()
else:
args.gpu = 0
args.world_size = 1
args.device = torch.device('cuda', args.gpu)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARNING)
logger.warning(
f"Process rank: {args.local_rank}, "
f"device: {args.device}, "
f"distributed training: {bool(args.local_rank != -1)}, "
f"16-bits training: {args.amp}")
logger.info(dict(args._get_kwargs()))
if args.local_rank in [-1, 0]:
args.writer = SummaryWriter(f"results/{args.name}")
# wandb.init(name=args.name, project='MPL', config=args)
if args.seed is not None:
set_seed(args)
if args.local_rank not in [-1, 0]:
torch.distributed.barrier()
labeled_dataset, unlabeled_dataset, test_dataset, finetune_dataset = DATASET_GETTERS[args.dataset](args)
if args.local_rank == 0:
torch.distributed.barrier()
train_sampler = RandomSampler if args.local_rank == -1 else DistributedSampler
labeled_loader = DataLoader(
labeled_dataset,
sampler=train_sampler(labeled_dataset),
batch_size=args.batch_size,
num_workers=args.workers,
drop_last=True)
unlabeled_loader = DataLoader(
unlabeled_dataset,
sampler=train_sampler(unlabeled_dataset),
batch_size=args.batch_size * args.mu,
num_workers=args.workers,
drop_last=True)
test_loader = DataLoader(test_dataset,
sampler=SequentialSampler(test_dataset),
batch_size=args.batch_size,
num_workers=args.workers)
if args.dataset == "cifar10":
depth, widen_factor = 28, 2
elif args.dataset == 'cifar100':
depth, widen_factor = 28, 8
if args.local_rank not in [-1, 0]:
torch.distributed.barrier()
teacher_model = WideResNet(num_classes=args.num_classes,
depth=depth,
widen_factor=widen_factor,
dropout=0,
dense_dropout=args.teacher_dropout)
student_model = WideResNet(num_classes=args.num_classes,
depth=depth,
widen_factor=widen_factor,
dropout=0,
dense_dropout=args.student_dropout)
if args.local_rank == 0:
torch.distributed.barrier()
logger.info(f"Model: WideResNet {depth}x{widen_factor}")
logger.info(f"Params: {sum(p.numel() for p in teacher_model.parameters())/1e6:.2f}M")
teacher_model.to(args.device)
student_model.to(args.device)
avg_student_model = None
if args.ema > 0:
avg_student_model = ModelEMA(student_model, args.ema)
criterion = create_loss_fn(args)
no_decay = ['bn']
teacher_parameters = [
{'params': [p for n, p in teacher_model.named_parameters() if not any(
nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in teacher_model.named_parameters() if any(
nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
student_parameters = [
{'params': [p for n, p in student_model.named_parameters() if not any(
nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in student_model.named_parameters() if any(
nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
t_optimizer = optim.SGD(teacher_parameters,
lr=args.teacher_lr,
momentum=args.momentum,
nesterov=args.nesterov)
s_optimizer = optim.SGD(student_parameters,
lr=args.student_lr,
momentum=args.momentum,
nesterov=args.nesterov)
t_scheduler = get_cosine_schedule_with_warmup(t_optimizer,
args.warmup_steps,
args.total_steps)
s_scheduler = get_cosine_schedule_with_warmup(s_optimizer,
args.warmup_steps,
args.total_steps,
args.student_wait_steps)
t_scaler = amp.GradScaler(enabled=args.amp)
s_scaler = amp.GradScaler(enabled=args.amp)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
logger.info(f"=> loading checkpoint '{args.resume}'")
loc = f'cuda:{args.gpu}'
checkpoint = torch.load(args.resume, map_location=loc)
args.best_top1 = checkpoint['best_top1'].to(torch.device('cpu'))
args.best_top5 = checkpoint['best_top5'].to(torch.device('cpu'))
if not (args.evaluate or args.finetune):
args.start_step = checkpoint['step']
t_optimizer.load_state_dict(checkpoint['teacher_optimizer'])
s_optimizer.load_state_dict(checkpoint['student_optimizer'])
t_scheduler.load_state_dict(checkpoint['teacher_scheduler'])
s_scheduler.load_state_dict(checkpoint['student_scheduler'])
t_scaler.load_state_dict(checkpoint['teacher_scaler'])
s_scaler.load_state_dict(checkpoint['student_scaler'])
model_load_state_dict(teacher_model, checkpoint['teacher_state_dict'])
if avg_student_model is not None:
model_load_state_dict(avg_student_model, checkpoint['avg_state_dict'])
else:
if checkpoint['avg_state_dict'] is not None:
model_load_state_dict(student_model, checkpoint['avg_state_dict'])
else:
model_load_state_dict(student_model, checkpoint['student_state_dict'])
logger.info(f"=> loaded checkpoint '{args.resume}' (step {checkpoint['step']})")
else:
logger.info(f"=> no checkpoint found at '{args.resume}'")
if args.local_rank != -1:
teacher_model = nn.parallel.DistributedDataParallel(
teacher_model, device_ids=[args.local_rank],
output_device=args.local_rank, find_unused_parameters=True)
student_model = nn.parallel.DistributedDataParallel(
student_model, device_ids=[args.local_rank],
output_device=args.local_rank, find_unused_parameters=True)
if args.finetune:
del t_scaler, t_scheduler, t_optimizer, teacher_model, unlabeled_loader
del s_scaler, s_scheduler, s_optimizer
finetune(args, finetune_dataset, test_loader, student_model, criterion)
return
if args.evaluate:
del t_scaler, t_scheduler, t_optimizer, teacher_model, unlabeled_loader, labeled_loader
del s_scaler, s_scheduler, s_optimizer
evaluate(args, test_loader, student_model, criterion)
return
teacher_model.zero_grad()
student_model.zero_grad()
train_loop(args, labeled_loader, unlabeled_loader, test_loader, finetune_dataset,
teacher_model, student_model, avg_student_model, criterion,
t_optimizer, s_optimizer, t_scheduler, s_scheduler, t_scaler, s_scaler)
return
if __name__ == '__main__':
main()