-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathflow_network.go
472 lines (430 loc) · 14.9 KB
/
flow_network.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
package flownet
import (
"container/heap"
"fmt"
"log"
"math"
)
// Source is the ID of the source pseudonode.
const Source int = -2
// Sink is the ID of the sink pseudonode.
const Sink int = -1
// A FlowNetwork is a directed graph which can be used to solve maximum-flow problems. Each edge is
// associated with a capacity and a flow. The flow on each edge may not exceed the stated capacity.
//
// Each node may optionally be connected to a source or a sink node.
// By default, nodes which do not have any incoming edges are presumed to be connected to the source,
// while nodes which have no outgoing edges are presumed to be connected to the sink. These default
// source/sink connections all have maximum capacity of math.MaxInt64. The first time AddEdge is called
// with a value of either flownet.Source or flownet.Sink, all the presumptive edges to the respective
// node are cleared and the programmer becomes responsible for managing all edges to the Source or Sink,
// respectively.
type FlowNetwork struct {
// numNodes is the total number of nodes in this network other than the source and sink.
numNodes int
// nodeOrder contains the order in which nodes are discharged.
nodeOrder []int
// adjacencyList is a map from source nodes to a set of destination nodes in no particular order.
adjacencyList []map[int]struct{}
// adjacencyVisitList is a list of adjacency lists in the order nodes are visited.
adjacencyVisitList [][]int
// capacity contains a map from each edge to its capacity.
capacity map[edge]int64
// preflow contains a map from each edge to its flow value.
preflow map[edge]int64
// excess stores the excess flow at each node.
excess []int64
// label stores the label of each node.
label []int
// seen stores the last node seen by each node for use during the discharge operation.
seen []int
// manualSource is true only if the programmer has manually added an edge leaving flownet.Source.
manualSource bool
// manualSink is true only if the programmer has manually added an edge entering flownet.Sink.
manualSink bool
}
// Edge represents a directed edge from the node with ID 'from' to the node with ID 'to'.
type edge struct {
from, to int
}
// newEdge constructs an edge between external node IDS fromID and toID.
func newEdge(fromID, toID int) edge {
return edge{
from: internalID(fromID),
to: internalID(toID),
}
}
func fromSource(toID int) edge {
return edge{
from: sourceID,
to: internalID(toID),
}
}
func toSink(fromID int) edge {
return edge{
from: internalID(fromID),
to: sinkID,
}
}
// internalID converts an external node ID to an internal node ID.
func internalID(externalID int) int {
return externalID + 2
}
// externalID converts an internal node ID to an external node ID.
func externalID(internalID int) int {
return internalID - 2
}
// reverse returns the reversed edge.
func (e edge) reverse() edge {
return edge{from: e.to, to: e.from}
}
// sourceID is the internal ID for the source node.
const sourceID = 0
// sinkID is the internal ID for the sink node.
const sinkID = 1
// NewFlowNetwork constructs a new graph, preallocating enough memory for the provided number of nodes.
func NewFlowNetwork(numNodes int) FlowNetwork {
result := FlowNetwork{
numNodes: numNodes,
adjacencyList: make([]map[int]struct{}, numNodes+2),
capacity: make(map[edge]int64, 2*numNodes), // preallocate assuming avg. node degree = 2
preflow: make(map[edge]int64, 2*numNodes),
excess: make([]int64, numNodes+2),
label: make([]int, numNodes+2),
seen: make([]int, numNodes+2),
}
result.adjacencyList[sourceID] = make(map[int]struct{})
result.adjacencyList[sinkID] = make(map[int]struct{})
// by default, all nodes begin life connected to the source and sink nodes
for i := 0; i < numNodes; i++ {
result.adjacencyList[internalID(i)] = make(map[int]struct{})
result.addEdge(Source, i, math.MaxInt64)
result.addEdge(i, Sink, math.MaxInt64)
}
return result
}
// Outflow returns the amount of flow which leaves the network via the sink. After PushRelabel has
// been called, this will be the amount of flow entering the sink.
func (g FlowNetwork) Outflow() int64 {
result := int64(0)
for edge, flow := range g.preflow { // TODO: optimize via caching
if edge.to == sinkID {
result += flow
}
}
return result
}
// Flow returns the flow along an edge. Before PushRelabel is called this method returns 0.
func (g FlowNetwork) Flow(from, to int) int64 {
return g.preflow[newEdge(from, to)]
}
// Residual returns the residual flow along an edge, defined as capacity - flow.
func (g FlowNetwork) Residual(from, to int) int64 {
return g.residual(newEdge(from, to))
}
// Capacity returns the capacity of the provided edge.
func (g FlowNetwork) Capacity(from, to int) int64 {
return g.capacity[newEdge(from, to)]
}
// residual returns the same result as Residual, but could be cheaper for internal use.
func (g FlowNetwork) residual(e edge) int64 {
if g.capacity[e] == 0 {
return g.preflow[e.reverse()]
}
return g.capacity[e] - g.preflow[e]
}
// AddNode adds a new node to the graph and returns its ID, which must be used in subsequent
// calls.
func (g *FlowNetwork) AddNode() int {
id := g.numNodes
g.numNodes++
g.excess = append(g.excess, 0)
g.label = append(g.label, 0)
g.seen = append(g.seen, 0)
g.adjacencyList = append(g.adjacencyList, make(map[int]struct{}))
if !g.manualSource {
g.addEdge(Source, id, math.MaxInt64)
}
if !g.manualSink {
g.addEdge(id, Sink, math.MaxInt64)
}
return id
}
// AddEdge sets the capacity of an edge in the flow network. Adding an edge twice has no additional effect.
// Attempting to use flownet.Source as toId or flownet.Sink as fromID yields an error. An error is returned
// if either fromID or toID are not valid node IDs.
func (g *FlowNetwork) AddEdge(fromID, toID int, capacity int64) error {
if fromID == toID {
return fmt.Errorf("self-loops are not allowed, found one with %d -> %d", fromID, toID)
}
if fromID < -2 || fromID >= g.numNodes {
return fmt.Errorf("no node with ID %d is known", fromID)
}
if toID < -2 || toID >= g.numNodes {
return fmt.Errorf("no node with ID %d is known", toID)
}
if toID == Source {
return fmt.Errorf("no node can connect to the source pseudonode")
}
if fromID == Sink {
return fmt.Errorf("no node can be connected to from the sink pseudonode")
}
if capacity < 0 {
return fmt.Errorf("capacities must be non-negative")
}
if fromID == Source {
g.enableManualSource()
}
if toID == Sink {
g.enableManualSink()
}
// actually set the capacity! woo! (finally)
g.addEdge(fromID, toID, capacity)
// auto-remove any connections from/to the source/sink pseudonodes (if they're managed automatically)
if !g.manualSource {
delete(g.capacity, edge{sourceID, toID + 2})
delete(g.adjacencyList[sourceID], toID+2)
}
if !g.manualSink {
delete(g.capacity, edge{fromID + 2, sinkID})
delete(g.adjacencyList[fromID+2], sinkID)
}
return nil
}
func (g *FlowNetwork) addEdge(fromID, toID int, capacity int64) {
g.capacity[edge{fromID + 2, toID + 2}] = capacity
g.adjacencyList[fromID+2][toID+2] = struct{}{}
}
// SetNodeOrder sets the order in which nodes are initially visited by the PushRelabel algorithm. By default, nodes
// are first visited in order of ID, then in descending order of label. As long as all of the nodeIDs are
// contained in the provided array, the PushRelabel algorithm will work properly. If some nodeID is missing, an error
// is returned and the order will remain unchanged. If any node is added after SetNodeOrder is called, the node order
// will reset to the default.
//
// The node order set here only affects the initial node ordering for the purposes of the push-relabel
// algorithm. Any relabeling that occurs during the algorithm may alter this order in unintuitive ways.
func (g *FlowNetwork) SetNodeOrder(nodeIDs []int) error {
if len(nodeIDs) != g.numNodes {
return fmt.Errorf("wrong number of nodeIDs; expected exactly %d of them", g.numNodes)
}
ids := make(map[int]struct{})
mappedIds := make([]int, g.numNodes)
for i, id := range nodeIDs {
if id < 0 || id >= g.numNodes {
return fmt.Errorf("unknown node ID %d", id)
}
ids[id] = struct{}{}
// reverse the nodeIDs here, since PushRelabel's queue runs backwards
mappedIds[g.numNodes-1-i] = internalID(id)
}
if len(ids) != g.numNodes {
return fmt.Errorf("duplicate nodeIDs were present, saw %d unique ids", len(ids))
}
g.nodeOrder = mappedIds
return nil
}
// PushRelabel finds a maximum flow via the relabel-to-front variant of the push-relabel algorithm. More
// specifically, PushRelabel visits each node in the network in the node order and attempts to discharges
// excess flow from the node. This may update the node's label. When a node's label changes as a result of
// the algorithm, it is moved to the front of the node order, and all nodes are visited once more.
func (g *FlowNetwork) PushRelabel() {
// implementation based heavily on these notes:
// https://www.ccs.neu.edu/home/vip/teach/Algorithms/11_graphsC_networks/push_relabel.pdf
g.reset() // TODO: this makes it impossible to 'reflow'.
nodeQueue := append(make([]int, 0, g.numNodes), g.nodeOrder...)
p := len(nodeQueue) - 1
for p >= 0 {
u := nodeQueue[p]
oldLabel := g.label[u]
g.discharge(u)
if g.label[u] > oldLabel {
nodeQueue = append(nodeQueue[:p], nodeQueue[p+1:]...)
nodeQueue = append(nodeQueue, u)
p = len(nodeQueue) - 1
} else {
p--
}
}
}
// push moves as much excess flow across the provided edge as possible without violating the edge's capacity
// constraint.
func (g *FlowNetwork) push(e edge) {
delta := min64(g.excess[e.from], g.residual(e))
if g.capacity[e] > 0 {
g.preflow[e] += delta
} else {
g.preflow[e.reverse()] -= delta
}
g.excess[e.from] -= delta
g.excess[e.to] += delta
}
// relabel increases the label of an node with no excess to one larger than the minimum of its neighbors.
func (g *FlowNetwork) relabel(nodeID int) {
minHeight := math.MaxInt32 - 1
for _, u := range g.adjacencyVisitList[nodeID] {
if g.residual(edge{nodeID, u}) > 0 {
minHeight = min(minHeight, g.label[u])
g.label[nodeID] = minHeight + 1
}
}
if minHeight+1 == math.MaxInt32 {
// TODO: don't panic here, the client may disapprove.
log.Fatalf("could not relabel node %d", nodeID-2)
}
}
// discharge pushes as much excess from nodeID to its unseen neighbors as possible.
func (g *FlowNetwork) discharge(nodeID int) {
for g.excess[nodeID] > 0 {
if g.seen[nodeID] == len(g.adjacencyVisitList[nodeID]) {
g.relabel(nodeID)
g.seen[nodeID] = 0
} else {
v := g.adjacencyVisitList[nodeID][g.seen[nodeID]]
e := edge{nodeID, v}
if g.residual(e) > 0 && g.label[nodeID] == g.label[v]+1 {
g.push(e)
} else {
g.seen[nodeID]++
}
}
}
}
// reset prepares the network for computing a new flow.
func (g *FlowNetwork) reset() {
if len(g.nodeOrder) != g.numNodes {
g.nodeOrder = make([]int, 0, g.numNodes)
for i := 0; i < g.numNodes; i++ {
g.nodeOrder = append(g.nodeOrder, g.numNodes-1-i+2)
}
}
// construct an adjacency visit list that is compatible with nodeOrder (since nodeOrder may have changed.)
g.adjacencyVisitList = make([][]int, len(g.adjacencyList))
for u := range g.adjacencyList {
// TODO: we don't need to do this if the nodeOrder or set of nodes _hasn't_ changed.
for _, v := range append(g.nodeOrder, []int{sourceID, sinkID}...) {
_, ok1 := g.adjacencyList[u][v]
_, ok2 := g.adjacencyList[v][u]
if ok1 || ok2 {
g.adjacencyVisitList[u] = append([]int{v}, g.adjacencyVisitList[u]...)
}
}
}
g.label[sourceID] = g.numNodes + 2
g.label[sinkID] = 0
for i := 0; i < g.numNodes; i++ {
g.label[internalID(i)] = 0
}
for e := range g.preflow {
g.preflow[e] = 0
}
// set the capacity, excess, and flow for edges leading out from from source; using the max outgoing capacity of any node adjacent to source.
totalCapacity := int64(0)
for u := 2; u < g.numNodes+2; u++ {
if _, ok := g.capacity[edge{sourceID, u}]; !ok {
continue
}
outgoingCapacity := int64(0)
for v := range g.adjacencyList[u] {
if v == sinkID || v == sourceID {
continue
}
outgoingCapacity += g.capacity[edge{u, v}]
}
totalCapacity += outgoingCapacity
g.capacity[edge{sourceID, u}] = outgoingCapacity
g.excess[u] = outgoingCapacity
g.preflow[edge{sourceID, u}] = outgoingCapacity
}
g.excess[sourceID] = -totalCapacity
}
func (g *FlowNetwork) enableManualSource() {
if g.manualSource {
return
}
g.manualSource = true
// disconnect all nodes from source and sink; programmer wants to do it themselves.
for i := 2; i < g.numNodes+2; i++ {
delete(g.capacity, edge{sourceID, i})
delete(g.adjacencyList[sourceID], i)
}
}
func (g *FlowNetwork) enableManualSink() {
if g.manualSink {
return
}
g.manualSink = true
// disconnect all nodes from source and sink; programmer wants to do it themselves.
for i := 2; i < g.numNodes+2; i++ {
delete(g.capacity, edge{i, sinkID})
delete(g.adjacencyList[i], sinkID)
}
}
// TopSort returns a topological ordering of the nodes in the provided FlowNetwork, starting from the
// nodes connected to the source, using the provided less function to break any ties that are found.
// if the flow network is not a DAG (which is allowed) this function will report an error.
func TopSort(fn FlowNetwork, less func(int, int) bool) ([]int, error) {
unvisitedEdges := make([]map[int]struct{}, fn.numNodes+2) // list of nodeIDs to the set of their of incoming nodes
for edge, capacity := range fn.capacity {
if capacity <= 0 {
continue
}
if unvisitedEdges[edge.to] == nil {
unvisitedEdges[edge.to] = make(map[int]struct{})
}
unvisitedEdges[edge.to][edge.from] = struct{}{}
}
roots := &nodeHeap{ // stores all nodes with no incoming edge, sorted in order of less
nodeIDs: []int{sourceID},
less: less,
}
heap.Init(roots)
result := make([]int, 0, fn.numNodes)
for roots.Len() > 0 {
next := roots.Pop().(int)
if next != sourceID && next != sinkID {
result = append(result, next-2)
}
for neighbor := range fn.adjacencyList[next] {
delete(unvisitedEdges[neighbor], next)
if len(unvisitedEdges[neighbor]) == 0 {
heap.Push(roots, neighbor)
}
}
}
leftoverEdges := 0
for _, edges := range unvisitedEdges {
leftoverEdges += len(edges)
}
if leftoverEdges > 0 {
return nil, fmt.Errorf("graph has a cycle")
}
return result, nil
}
// nodeHeap stores a heap of nodeIDs sorted by the provided less function.
type nodeHeap struct {
nodeIDs []int
less func(int, int) bool
}
func (h nodeHeap) Len() int { return len(h.nodeIDs) }
func (h nodeHeap) Less(i, j int) bool { return h.less(h.nodeIDs[i], h.nodeIDs[j]) }
func (h nodeHeap) Swap(i, j int) { h.nodeIDs[i], h.nodeIDs[j] = h.nodeIDs[j], h.nodeIDs[i] }
func (h *nodeHeap) Push(x interface{}) {
h.nodeIDs = append(h.nodeIDs, x.(int))
}
func (h *nodeHeap) Pop() interface{} {
x := h.nodeIDs[len(h.nodeIDs)-1]
h.nodeIDs = h.nodeIDs[0 : len(h.nodeIDs)-1]
return x
}
func min64(x, y int64) int64 {
if x < y {
return x
}
return y
}
func min(x, y int) int {
if x < y {
return x
}
return y
}