-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwork_assess-process_R64-1-1-gff3_categorize-Trinity-transfrags_part-3.R
320 lines (267 loc) · 9.75 KB
/
work_assess-process_R64-1-1-gff3_categorize-Trinity-transfrags_part-3.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
#!/usr/bin/env Rscript
# work_assess-process_R64-1-1-gff3_categorize-Trinity-transfrags_part-3.R
# KA
# Script for identification of "wholly unique" transfrags: those that do not
#+ overlap "previously annotated ncRNAs" (e.g., CUTs, XUTs, NUTs, etc.)
# Get situated ---------------------------------------------------------------
suppressMessages(library(GenomicRanges))
suppressMessages(library(IRanges))
suppressMessages(library(plyr))
suppressMessages(library(readxl))
suppressMessages(library(rtracklayer))
suppressMessages(library(tidyverse))
options(scipen = 999)
options(ggrepel.max.overlaps = Inf)
if(stringr::str_detect(getwd(), "kalavattam")) {
p_local <- "/Users/kalavattam/Dropbox/FHCC"
} else {
p_local <- "/Users/kalavatt/projects-etc"
}
p_wd <- "2022-2023_RRP6-NAB3/results/2023-0215"
setwd(paste(p_local, p_wd, sep = "/"))
getwd()
rm(p_local, p_wd)
# Initialize functions -------------------------------------------------------
`%notin%` <- Negate(`%in%`)
calculate_percent_overlap <- function(x_start, x_end, y_start, y_end) {
x_length <- abs((x_end + 1) - x_start)
# Determine "largest" start
max_start <- max(c(
x_start, y_start
))
# Determine "smallest" end
min_end <- min(c(
(x_end + 1), (y_end + 1)
))
overlap <- ifelse(
(min_end - max_start) <= 0, 0, (min_end - max_start)
)
percent_overlap <- ((overlap / x_length) * 100)
return(percent_overlap)
}
make_simple_df <- function(df_Tr) {
tbl <- tibble::tibble(
seqnames = df_Tr$seqnames,
start = df_Tr$start,
end = df_Tr$end,
strand = df_Tr$strand,
feature = df_Tr$id,
assignment = df_Tr$assignment_detailed,
R64 = df_Tr$detailed_easy
)
return(tbl)
}
analyze_feature_intersections <- function(
overlap_Tr_v_ncRNA = overlap_Q_v_ncRNA,
s_Tr = s_Q,
s_ncRNA = s_ncRNA
) {
# Create a tibble of overlapping features --------------------------------
#+ ...in "gtf_Tr" overlapping features in "gtf_all"
wrt_Tr_ncRNA <- dplyr::bind_cols(
s_Tr[queryHits(overlap_Tr_v_ncRNA), ],
s_ncRNA[subjectHits(overlap_Tr_v_ncRNA), ]
) %>% dplyr::rename(
seqnames = seqnames...1,
start = start...2,
end = end...3,
strand = strand...4,
feature = feature...5,
seqnames_ncRNA = seqnames...8,
start_ncRNA = start...9,
end_ncRNA = end...10,
strand_ncRNA = strand...11,
feature_ncRNA = feature...12
)
# For any rows that overlap after stratifying for 'chr' and 'strand', then
#+ organize said rows into groups
wrt_Tr_ncRNA_group <- plyr::ddply(
wrt_Tr_ncRNA,
c("seqnames", "strand"),
function(x) {
# Check if a record should be linked with the previous record
y <- c(NA, x$end[-nrow(x)])
z <- ifelse(is.na(y), 0, y)
z <- cummax(z)
z[is.na(y)] <- NA
x$previous_end <- z
return(x)
}
)
wrt_Tr_ncRNA_group <- wrt_Tr_ncRNA_group %>%
dplyr::relocate(c(start_ncRNA, end_ncRNA), .after = end)
wrt_Tr_ncRNA_group$new_group <-
is.na(wrt_Tr_ncRNA_group$previous_end) |
(
wrt_Tr_ncRNA_group$start >=
wrt_Tr_ncRNA_group$previous_end
)
wrt_Tr_ncRNA_group$group <- cumsum(wrt_Tr_ncRNA_group$new_group)
wrt_Tr_ncRNA_group <- wrt_Tr_ncRNA_group %>%
dplyr::mutate(type_id_ncRNA = paste0(ncRNA, ": ", feature_ncRNA))
# Calculate pct. overlaps ------------------------------------------------
#+ ...between "Q" or "G1" and "all" features, and vice versa
wrt_Tr_ncRNA_group$pct_Tr_over_ncRNA <- mapply(
calculate_percent_overlap,
wrt_Tr_ncRNA_group$start,
wrt_Tr_ncRNA_group$end,
wrt_Tr_ncRNA_group$start_ncRNA,
wrt_Tr_ncRNA_group$end_ncRNA
)
wrt_Tr_ncRNA_group$pct_ncRNA_over_Tr <- mapply(
calculate_percent_overlap,
wrt_Tr_ncRNA_group$start_ncRNA,
wrt_Tr_ncRNA_group$end_ncRNA,
wrt_Tr_ncRNA_group$start,
wrt_Tr_ncRNA_group$end
)
wrt_Tr_ncRNA_group <- wrt_Tr_ncRNA_group %>%
dplyr::relocate(
c(pct_Tr_over_ncRNA, pct_ncRNA_over_Tr, type_id_ncRNA, group),
.after = end_ncRNA
)
# Aggregate the data -----------------------------------------------------
colnames(wrt_Tr_ncRNA_group)
wrt_Tr_ncRNA_agg <- plyr::ddply(
wrt_Tr_ncRNA_group,
.(seqnames, strand, group),
plyr::summarize,
start = min(start),
end = max(end),
width = (end - start) + 1,
feature = paste0(feature, collapse = ", "),
assignment = paste0(assignment, collapse = ", "),
R64 = paste0(R64, collapse = ", "),
feature_ncRNA = paste0(feature_ncRNA, collapse = " "),
category = paste0(ncRNA, collapse = ", "),
complete = paste0(type_id_ncRNA, collapse = ", "),
pct_Tr_over_ncRNA = paste0(round(pct_Tr_over_ncRNA, 2), collapse = ", "),
pct_ncRNA_over_Tr = paste0(round(pct_ncRNA_over_Tr, 2), collapse = ", ")
) %>%
dplyr::select(-group) %>%
dplyr::arrange(seqnames, start, strand) %>%
dplyr::relocate(
c(seqnames, start, end, width, strand), .before = feature
) %>%
dplyr::mutate(
n_features = stringr::str_count(complete, "\\:\ ")
) %>%
tibble::as_tibble()
# Collapse redundant strings in cells of column "feature"
wrt_Tr_ncRNA_agg$feature <- vapply(
stringr::str_split(wrt_Tr_ncRNA_agg$feature, ", "),
`[`,
1,
FUN.VALUE = character(1)
)
wrt_Tr_ncRNA_agg$assignment <- vapply(
stringr::str_split(wrt_Tr_ncRNA_agg$assignment, ", "),
`[`,
1,
FUN.VALUE = character(1)
)
wrt_Tr_not_ncRNA_agg <- s_Tr[s_Tr$feature %notin% wrt_Tr_ncRNA_agg$feature, ]
# Return the various data objects ----------------------------------------
list_return <- list()
list_return[["wrt_Tr_ncRNA"]] <- wrt_Tr_ncRNA
list_return[["wrt_Tr_ncRNA_group"]] <- wrt_Tr_ncRNA_group
list_return[["wrt_Tr_ncRNA_agg"]] <- wrt_Tr_ncRNA_agg
list_return[["wrt_Tr_not_ncRNA_agg"]] <- wrt_Tr_not_ncRNA_agg
return(list_return)
}
# Load dataframes of Trinity putative transcripts ----------------------------
#+ (dataframes were generated in part-2 of series of scripts)
p_main <- "outfiles_gtf-gff3"
# Load Trinity Q dataframe
p_Q <- paste(p_main, "Trinity-GG/Q_N/filtered/locus", sep = "/")
f_Q <- "dataframe_Trinity-assignments_Q.tsv"
df_Q <- readr::read_tsv(paste(p_Q, f_Q, sep = "/"), show_col_types = FALSE)
# Load Trinity G1 dataframe
p_G1 <- paste(p_main, "Trinity-GG/G_N/filtered/locus", sep = "/")
f_G1 <- "dataframe_Trinity-assignments_G1.tsv"
df_G1 <- readr::read_tsv(paste(p_G1, f_G1, sep = "/"), show_col_types = FALSE)
# Load pa-ncRNA gtf
p_ncRNA <- paste(p_main, "representation", sep = "/")
f_ncRNA <- "Greenlaw-et-al_representative-non-coding-transcriptome.gtf"
gtf_ncRNA <- rtracklayer::import(paste(p_ncRNA, f_ncRNA, sep = "/")) %>%
tibble::as_tibble() %>%
dplyr::select(-c(phase, score)) %>%
dplyr::arrange(seqnames, start, strand)
rm(p_Q, f_Q, p_G1, f_G1, p_ncRNA, f_ncRNA)
# Evaluate overlaps between custom-detected and R64 features -----------------
# Generate "simplified" (s) dataframes
s_Q <- make_simple_df(df_Q)
s_Q <- s_Q[
s_Q$assignment %in%
c("noncoding: novel, antisense", "noncoding: novel, intergenic"),
]
s_G1 <- make_simple_df(df_G1)
s_G1 <- s_G1[
s_G1$assignment %in%
c("noncoding: novel, antisense", "noncoding: novel, intergenic"),
]
s_ncRNA <- gtf_ncRNA %>%
dplyr::select(-c(
width, source, type, transcript_id, details_type, details_id,
details_all, n_types, n_features, n_types_features, length
)) %>%
dplyr::rename(
feature = gene_id,
ncRNA = details_type_alpha
)
# Identify the overlaps after initializing necessary variables
g_Q <- makeGRangesFromDataFrame(s_Q, keep.extra.columns = TRUE)
g_G1 <- makeGRangesFromDataFrame(s_G1, keep.extra.columns = TRUE)
g_ncRNA <- makeGRangesFromDataFrame(gtf_ncRNA, keep.extra.columns = TRUE)
run <- TRUE
if(base::isTRUE(run)) {
g_Q %>% as.data.frame() %>% head() %>% print()
cat("\n")
g_G1 %>% as.data.frame() %>% head() %>% print()
cat("\n")
g_ncRNA %>% as.data.frame() %>% head() %>% print()
cat("\n")
}
overlap_Q_v_ncRNA <- IRanges::findOverlaps(g_Q, g_ncRNA)
overlap_G1_v_ncRNA <- IRanges::findOverlaps(g_G1, g_ncRNA)
analyses_Q <- analyze_feature_intersections(
overlap_Tr_v_ncRNA = overlap_Q_v_ncRNA,
s_Tr = s_Q,
s_ncRNA = s_ncRNA
)
agg_Q <- analyses_Q$wrt_Tr_ncRNA_agg
uniq_Q <- analyses_Q$wrt_Tr_not_ncRNA_agg
analyses_G1 <- analyze_feature_intersections(
overlap_Tr_v_ncRNA = overlap_G1_v_ncRNA,
s_Tr = s_G1,
s_ncRNA = s_ncRNA
)
agg_G1 <- analyses_G1$wrt_Tr_ncRNA_agg
uniq_G1 <- analyses_G1$wrt_Tr_not_ncRNA_agg
run <- FALSE
if(base::isTRUE(run)) {
agg_Q %>%
readr::write_tsv(paste(
getwd(),
"Trinity_putative-transcripts.2023-0620.overlap-pa-ncRNA.Q.tsv",
sep = "/"
))
uniq_Q %>%
readr::write_tsv(paste(
getwd(),
"Trinity_putative-transcripts.2023-0620.unique.Q.tsv",
sep = "/"
))
agg_G1 %>%
readr::write_tsv(paste(
getwd(),
"Trinity_putative-transcripts.2023-0620.overlap-pa-ncRNA.G1.tsv",
sep = "/"
))
uniq_G1 %>%
readr::write_tsv(paste(
getwd(),
"Trinity_putative-transcripts.2023-0620.unique.G1.tsv",
sep = "/"
))
}