forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathatari.py
252 lines (218 loc) · 7.54 KB
/
atari.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Lint as: python3
# Copyright 2020 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Atari RL Unplugged datasets.
Examples in the dataset represent SARSA transitions stored during a
DQN training run as described in https://arxiv.org/pdf/1907.04543.
For every training run we have recorded all 50 million transitions corresponding
to 200 million environment steps (4x factor because of frame skipping). There
are 5 separate datasets for each of the 45 games.
Every transition in the dataset is a tuple containing the following features:
* o_t: Observation at time t. Observations have been processed using the
canonical Atari frame processing, including 4x frame stacking. The shape
of a single observation is [84, 84, 4].
* a_t: Action taken at time t.
* r_t: Reward after a_t.
* d_t: Discount after a_t.
* o_tp1: Observation at time t+1.
* a_tp1: Action at time t+1.
* extras:
* episode_id: Episode identifier.
* episode_return: Total episode return computed using per-step [-1, 1]
clipping.
"""
import functools
import os
from typing import Dict
from acme import wrappers
import dm_env
from dm_env import specs
from dopamine.discrete_domains import atari_lib
import reverb
import tensorflow as tf
# 9 tuning games.
TUNING_SUITE = [
'BeamRider',
'DemonAttack',
'DoubleDunk',
'IceHockey',
'MsPacman',
'Pooyan',
'RoadRunner',
'Robotank',
'Zaxxon',
]
# 36 testing games.
TESTING_SUITE = [
'Alien',
'Amidar',
'Assault',
'Asterix',
'Atlantis',
'BankHeist',
'BattleZone',
'Boxing',
'Breakout',
'Carnival',
'Centipede',
'ChopperCommand',
'CrazyClimber',
'Enduro',
'FishingDerby',
'Freeway',
'Frostbite',
'Gopher',
'Gravitar',
'Hero',
'Jamesbond',
'Kangaroo',
'Krull',
'KungFuMaster',
'NameThisGame',
'Phoenix',
'Pong',
'Qbert',
'Riverraid',
'Seaquest',
'SpaceInvaders',
'StarGunner',
'TimePilot',
'UpNDown',
'VideoPinball',
'WizardOfWor',
'YarsRevenge',
]
# Total of 45 games.
ALL = TUNING_SUITE + TESTING_SUITE
def _decode_frames(pngs: tf.Tensor):
"""Decode PNGs.
Args:
pngs: String Tensor of size (4,) containing PNG encoded images.
Returns:
4 84x84 grayscale images packed in a (84, 84, 4) uint8 Tensor.
"""
# Statically unroll png decoding
frames = [tf.image.decode_png(pngs[i], channels=1) for i in range(4)]
frames = tf.concat(frames, axis=2)
frames.set_shape((84, 84, 4))
return frames
def _make_reverb_sample(o_t: tf.Tensor,
a_t: tf.Tensor,
r_t: tf.Tensor,
d_t: tf.Tensor,
o_tp1: tf.Tensor,
a_tp1: tf.Tensor,
extras: Dict[str, tf.Tensor]) -> reverb.ReplaySample:
"""Create Reverb sample with offline data.
Args:
o_t: Observation at time t.
a_t: Action at time t.
r_t: Reward at time t.
d_t: Discount at time t.
o_tp1: Observation at time t+1.
a_tp1: Action at time t+1.
extras: Dictionary with extra features.
Returns:
Replay sample with fake info: key=0, probability=1, table_size=0.
"""
info = reverb.SampleInfo(key=tf.constant(0, tf.uint64),
probability=tf.constant(1.0, tf.float64),
table_size=tf.constant(0, tf.int64),
priority=tf.constant(1.0, tf.float64))
data = (o_t, a_t, r_t, d_t, o_tp1, a_tp1, extras)
return reverb.ReplaySample(info=info, data=data)
def _tf_example_to_reverb_sample(tf_example: tf.train.Example
) -> reverb.ReplaySample:
"""Create a Reverb replay sample from a TF example."""
# Parse tf.Example.
feature_description = {
'o_t': tf.io.FixedLenFeature([4], tf.string),
'o_tp1': tf.io.FixedLenFeature([4], tf.string),
'a_t': tf.io.FixedLenFeature([], tf.int64),
'a_tp1': tf.io.FixedLenFeature([], tf.int64),
'r_t': tf.io.FixedLenFeature([], tf.float32),
'd_t': tf.io.FixedLenFeature([], tf.float32),
'episode_id': tf.io.FixedLenFeature([], tf.int64),
'episode_return': tf.io.FixedLenFeature([], tf.float32),
}
data = tf.io.parse_single_example(tf_example, feature_description)
# Process data.
o_t = _decode_frames(data['o_t'])
o_tp1 = _decode_frames(data['o_tp1'])
a_t = tf.cast(data['a_t'], tf.int32)
a_tp1 = tf.cast(data['a_tp1'], tf.int32)
episode_id = tf.bitcast(data['episode_id'], tf.uint64)
# Build Reverb replay sample.
extras = {
'episode_id': episode_id,
'return': data['episode_return']
}
return _make_reverb_sample(o_t, a_t, data['r_t'], data['d_t'], o_tp1, a_tp1,
extras)
def dataset(path: str,
game: str,
run: int,
num_shards: int = 100,
shuffle_buffer_size: int = 100000) -> tf.data.Dataset:
"""TF dataset of Atari SARSA tuples."""
path = os.path.join(path, f'{game}/run_{run}')
filenames = [f'{path}-{i:05d}-of-{num_shards:05d}' for i in range(num_shards)]
file_ds = tf.data.Dataset.from_tensor_slices(filenames)
file_ds = file_ds.repeat().shuffle(num_shards)
example_ds = file_ds.interleave(
functools.partial(tf.data.TFRecordDataset, compression_type='GZIP'),
cycle_length=tf.data.experimental.AUTOTUNE,
block_length=5)
example_ds = example_ds.shuffle(shuffle_buffer_size)
return example_ds.map(_tf_example_to_reverb_sample,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
class AtariDopamineWrapper(dm_env.Environment):
"""Wrapper for Atari Dopamine environmnet."""
def __init__(self, env, max_episode_steps=108000):
self._env = env
self._max_episode_steps = max_episode_steps
self._episode_steps = 0
self._reset_next_episode = True
def reset(self):
self._episode_steps = 0
self._reset_next_step = False
observation = self._env.reset()
return dm_env.restart(observation.squeeze(-1))
def step(self, action):
if self._reset_next_step:
return self.reset()
observation, reward, terminal, _ = self._env.step(action.item())
observation = observation.squeeze(-1)
discount = 1 - float(terminal)
self._episode_steps += 1
if terminal:
self._reset_next_episode = True
return dm_env.termination(reward, observation)
elif self._episode_steps == self._max_episode_steps:
self._reset_next_episode = True
return dm_env.truncation(reward, observation, discount)
else:
return dm_env.transition(reward, observation, discount)
def observation_spec(self):
space = self._env.observation_space
return specs.Array(space.shape[:-1], space.dtype)
def action_spec(self):
return specs.DiscreteArray(self._env.action_space.n)
def environment(game: str) -> dm_env.Environment:
"""Atari environment."""
env = atari_lib.create_atari_environment(game_name=game,
sticky_actions=True)
env = AtariDopamineWrapper(env)
env = wrappers.FrameStackingWrapper(env, num_frames=4)
return wrappers.SinglePrecisionWrapper(env)