forked from Zielon/metrical-tracker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_uv_and_mask.py
268 lines (207 loc) · 9.87 KB
/
get_uv_and_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import cv2
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import trimesh
from glob import glob
import os
from loguru import logger
from pytorch3d.io import load_obj
from pytorch3d.renderer import RasterizationSettings, PointLights, MeshRenderer, MeshRasterizer, TexturesVertex, SoftPhongShader, look_at_view_transform, PerspectiveCameras, BlendParams
from pytorch3d.structures import Meshes
from pytorch3d.transforms import matrix_to_rotation_6d, rotation_6d_to_matrix
from pytorch3d.utils import opencv_from_cameras_projection
from pytorch3d.ops.interp_face_attrs import interpolate_face_attributes
from pytorch3d.renderer.blending import hard_rgb_blend, BlendParams
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from flame.FLAME import FLAME, FLAMETex
from renderer import Renderer
from configs.config import parse_args, get_cfg_defaults, update_cfg
from pathlib import Path
import matplotlib.pyplot as plt
class UVRenderer:
def __init__(self, config, image_size, device):
self.config = config
self.device = device
self.image_size = image_size
self.setup_renderer()
self.mask_image = torch.from_numpy(self.get_mask_image()).to(self.device)
def get_mask_image(self):
mask_image = cv2.imread(self.config.mask_image_path, cv2.IMREAD_GRAYSCALE)
mask_image = cv2.resize(mask_image, self.image_size[0])
mask_image = mask_image.astype(np.float32) / 255.0
return mask_image
def get_image_size(self):
return self.image_size[0][0].item(), self.image_size[0][1].item()
def setup_renderer(self):
mesh_file = self.config.flame_template_path
self.config.image_size = self.get_image_size()
self.flame = FLAME(self.config).to(self.device)
self.flametex = FLAMETex(self.config).to(self.device)
self.diff_renderer = Renderer(self.image_size, obj_filename=mesh_file).to(self.device)
self.faces = load_obj(mesh_file)[1]
self.uvs = load_obj(mesh_file)[-1].verts_uvs
self.uvs = self.uvs * 2 - 1
self.uvs[:, 1] = -self.uvs[:, 1]
raster_settings = RasterizationSettings(
image_size=self.get_image_size(),
faces_per_pixel=1,
cull_backfaces=True,
perspective_correct=True
)
self.blend_params = BlendParams(sigma=1e-4, gamma=1e-4, background_color=[0, 0, 0])
self.lights = PointLights(
device=self.device,
location=((0.0, 0.0, 5.0),),
ambient_color=((0.5, 0.5, 0.5),),
diffuse_color=((0.5, 0.5, 0.5),)
)
self.mesh_rasterizer = MeshRasterizer(raster_settings=raster_settings)
self.debug_renderer = MeshRenderer(
rasterizer=self.mesh_rasterizer,
shader=SoftPhongShader(device=self.device, lights=self.lights)
)
def update_frame(self, frame_checkpoint):
payload = torch.load(frame_checkpoint, map_location=self.device)
camera_params = payload['camera']
self.R = torch.from_numpy(camera_params['R']).to(self.device)
self.t = torch.from_numpy(camera_params['t']).to(self.device)
self.focal_length = torch.from_numpy(camera_params['fl']).to(self.device)
self.principal_point = torch.from_numpy(camera_params['pp']).to(self.device)
flame_params = payload['flame']
self.tex = torch.from_numpy(flame_params['tex']).to(self.device)
self.exp = torch.from_numpy(flame_params['exp']).to(self.device)
self.sh = torch.from_numpy(flame_params['sh']).to(self.device)
self.shape = torch.from_numpy(flame_params['shape']).to(self.device)
self.mica_shape = torch.from_numpy(flame_params['shape']).to(self.device)
self.eyes = torch.from_numpy(flame_params['eyes']).to(self.device)
self.eyelids = torch.from_numpy(flame_params['eyelids']).to(self.device)
self.jaw = torch.from_numpy(flame_params['jaw']).to(self.device)
self.frame = int(payload['frame_id'])
self.image_size = torch.from_numpy(payload['img_size'])[None].to(self.device)
def set_inference_params(self, exp, jaw):
self.exp = torch.tensor(exp).to(self.device)
self.jaw = torch.tensor(jaw).to(self.device)
def get_uv(self):
self.diff_renderer.rasterizer.reset()
self.cameras = PerspectiveCameras(
device=self.device,
principal_point=self.principal_point,
focal_length=self.focal_length,
R=rotation_6d_to_matrix(self.R), T=self.t,
image_size=self.image_size
)
vertices, lmk68, lmkMP = self.flame(
cameras=torch.inverse(self.cameras.R),
shape_params=self.shape,
expression_params=self.exp,
eye_pose_params=self.eyes,
jaw_pose_params=self.jaw,
eyelid_params=self.eyelids
)
B = vertices.shape[0]
faces = self.faces.verts_idx.cuda()[None].repeat(B, 1, 1)
meshes_world = Meshes(verts=[vertices[i] for i in range(B)], faces=[faces[i] for i in range(B)])
fragments = self.mesh_rasterizer(meshes_world, cameras=self.cameras)
uv_map = self.fragment_to_uv(fragments)
return uv_map[0].permute((1, 2, 0)).cpu().numpy()
def get_mask(self, jaw_values=[0.1, -0.2, -0.4]):
B = self.jaw.shape[0]
texture_maps = (
self.mask_image[None, ...].repeat(B, 1, 1, 1).to(self.device).float()
)
# Don't need to call self.cameras here because it's already been called in get_uv
jaw = self.jaw.clone()
output = torch.zeros(*self.get_image_size()).to(self.device)
for jaw_value in [*jaw_values, jaw[0, 5]]:
jaw = self.jaw.clone()
jaw[..., 5] = jaw_value
vertices, lmk68, lmkMP = self.flame(
cameras=torch.inverse(self.cameras.R),
shape_params=self.shape,
expression_params=self.exp,
eye_pose_params=self.eyes,
jaw_pose_params=jaw,
eyelid_params=self.eyelids
)
B = vertices.shape[0]
faces = self.faces.verts_idx.cuda()[None].repeat(B, 1, 1)
meshes_world = Meshes(verts=[vertices[i] for i in range(B)], faces=[faces[i] for i in range(B)])
fragments = self.mesh_rasterizer(meshes_world, cameras=self.cameras)
uv_map = self.fragment_to_uv(fragments)
# Sample Mask Texture
alpha = (1 - (uv_map == 0).all(dim=1, keepdim=True).float())
mask = F.grid_sample(
texture_maps,
uv_map.permute(0, 2, 3, 1)[..., :2],
align_corners=True,
padding_mode="reflection"
)
mask = (mask * alpha).squeeze()
output = torch.maximum(output, mask)
return output[..., None].detach().cpu().numpy()
def fragment_to_uv(self, fragments):
N, H_out, W_out, K = fragments.pix_to_face.shape
uvs, face_uvs = self.uvs, self.faces.textures_idx
uvs = uvs[face_uvs, ..., :2].to(self.device)
uvs = uvs[None].repeat(N, 1, 1, 1).reshape((-1, 3, 2))
raster = interpolate_face_attributes(fragments.pix_to_face, fragments.bary_coords, uvs)
raster = torch.cat((raster, torch.zeros_like(raster[..., 0:1])), dim=-1)
render = hard_rgb_blend(raster, fragments, self.blend_params).permute((0, 3, 1, 2))
return render[:, :3]
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, required=True)
parser.add_argument('--checkpoint_dir', type=str, required=True)
parser.add_argument('--output_dir', type=str, required=True)
parser.add_argument('--inference_params', type=str, required=False, default=None)
args = parser.parse_args()
#print(args, end='\n\n')
cfg = get_cfg_defaults()
if args.cfg is not None:
cfg_file = args.cfg
cfg = update_cfg(cfg, args.cfg)
cfg.cfg_file = cfg_file
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
cfg.config_name = Path(args.cfg).stem
checkpoints = glob(os.path.join(args.checkpoint_dir, '*.frame'))
checkpoints = sorted(checkpoints)
print(args.checkpoint_dir, len(checkpoints))
frame_checkpoint = checkpoints[0]
image_size = [torch.load(frame_checkpoint, map_location='cpu')['img_size']]
model = UVRenderer(cfg, image_size, 'cuda:0')
n_frames = len(checkpoints)
# Inference Params
if args.inference_params is not None:
inference_params = {**np.load(args.inference_params)}
inference_exp = inference_params['exp']
inference_jaw = inference_params['jaw']
n_inf_frames = inference_exp.shape[0]
if n_inf_frames > n_frames:
print(f'Inference params has {n_inf_frames} frames, but only {n_frames} checkpoints were found. Truncating inference params.')
inference_exp = inference_exp[:n_frames]
inference_jaw = inference_jaw[:n_frames]
n_frames = min(n_frames, n_inf_frames)
for i, frame_checkpoint in tqdm(enumerate(checkpoints)):
if i > n_frames:
break
#print(f'Frame {i}', os.path.join(args.output_dir, f'{i:05d}.png'))
model.update_frame(frame_checkpoint)
if args.inference_params is not None:
model.set_inference_params(inference_exp[i], inference_jaw[i])
uv = model.get_uv()
# Map uvs to [0, 1]
uvs_mask = (uv == 0).all(axis=-1)
uv = (uv + 1) / 2
uv[uvs_mask] = 1
mask = model.get_mask()
out = np.concatenate((uv[..., :2], mask), axis=-1)
#out = out.permute((1, 2, 0)).cpu().numpy()
out = (out * 255).astype(np.uint8)
cv2.imwrite(os.path.join(args.output_dir, f'{i:05d}.png'), out)