-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathdemo_vis.py
33 lines (29 loc) · 1.11 KB
/
demo_vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# USAGE
# python demo_vis.py --base-model $CAFFE_ROOT/models/bvlc_googlenet \
# --image initial_images/fear_and_loathing/fal_01.jpg \
# --vis examples/output/visualizations
# import the necessary packages
from batcountry import BatCountry
from PIL import Image
import numpy as np
import argparse
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-b", "--base-model", required=True, help="base model path")
ap.add_argument("-l", "--layer", type=str, default="conv2/3x3",
help="layer of CNN to use")
ap.add_argument("-i", "--image", required=True, help="path to base image")
ap.add_argument("-v", "--vis", required=True,
help="path to output directory for visualizations")
args = ap.parse_args()
# we can't stop here...
bc = BatCountry(args.base_model)
(image, visualizations) = bc.dream(np.float32(Image.open(args.image)),
end=args.layer, visualize=True)
bc.cleanup()
# loop over the visualizations
for (k, vis) in visualizations:
# write the visualization to file
outputPath = "{}/{}.jpg".format(args.vis, k)
result = Image.fromarray(np.uint8(vis))
result.save(outputPath)