-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathread_text.py
264 lines (229 loc) · 9.01 KB
/
read_text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import cv2
import numpy as np
import matplotlib.pyplot as plt
import glob
import math
from keras.models import load_model
redni=1
ukupnoZaPrevod=[]
ucitaneImg = []
for im in glob.glob("for_reading/*.png"):
n= cv2.imread(im)
ucitaneImg.append(n)
def load_image(loaded):
return cv2.cvtColor(loaded, cv2.COLOR_BGR2RGB)
def image_gray(image):
return cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
def image_bin(image_gs):
height, width = image_gs.shape[0:2]
ret,image_bin = cv2.threshold(image_gs, 127, 255, cv2.THRESH_BINARY)
return image_bin
def image_bin_txt(image_gs):
height, width = image_gs.shape[0:2]
ret,image_bin = cv2.threshold(image_gs, 40, 255, cv2.THRESH_BINARY)
return image_bin
def invert(image):
return 255-image
def display_image(image, color= False):
if color:
plt.imshow(image)
else:
plt.imshow(image, 'gray')
def dilate(image):
kernel = np.ones((2,4))
return cv2.dilate(image, kernel, iterations=10)
def dilate_inv(image):
kernel = np.ones((5,1))
return cv2.dilate(image, kernel, iterations=1)
def scale_to_range(image):
return image/255
def matrix_to_vector(image):
return image.flatten()
def prepare_for_ann(regions):
ready_for_ann = []
for region in regions:
scale = scale_to_range(region)
ready_for_ann.append(matrix_to_vector(scale))
return ready_for_ann
def erode(image):
kernel = np.ones((4,2)) # strukturni element 3x3 blok
return cv2.erode(image, kernel, iterations=1)
def resize_region(region):
return cv2.resize(region,(28,28), interpolation = cv2.INTER_NEAREST)
def winner(output):
return max(enumerate(output), key=lambda x: x[1])[0]
def display_result(outputs, alphabet):
recenica=""
for output in outputs:
recenica+=str((alphabet[winner(output)]))
return recenica
def dbsc(konture,eps,minKon):
samo_slova=[]
labels = [0]*len(konture)
C=0
for k in range(0, len(konture)):
if not (labels[k] == 0):
continue
komsije = pretrazi_region(konture, k, eps)
if len(komsije) < minKon:
labels[k] = -1
else:
C += 1
growCluster(konture, labels, k, komsije, C, eps, minKon)
for ind in range(len(labels)):
if labels[ind]!=-1:
samo_slova.append(konture[ind])
return samo_slova
def growCluster(konture, labels, k, komsije, C, eps, minKon):
labels[k] = C
i = 0
while i < len(komsije):
Pn = komsije[i]
if labels[Pn]==-1:
labels[Pn] = C
PnKomsije = pretrazi_region(konture, Pn, eps-15)
komsije = komsije + PnKomsije
elif labels[Pn] == 0:
labels[Pn] = C
PnKomsije = pretrazi_region(konture, Pn, eps-15)
komsije = komsije + PnKomsije
i += 1
def pretrazi_region(konture, k, eps):
komsije = []
for Pn in range(0, len(konture)):
konture=np.array(konture)
if np.linalg.norm(konture[k] - konture[Pn]) < eps:
komsije.append(Pn)
return komsije
def select_roi(image_orig, image_bin):
img, contours, hierarchy = cv2.findContours(image_bin.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
x,y,w,h = cv2.boundingRect(contour)
if h < 50 and h > 30 and w >22 and w< 70 :
cv2.rectangle(image_orig,(x,y),(x+w,y+h),(255,0,0),5)
return image_orig
def find_obl(prvaSlova):
hsv = cv2.cvtColor(prvaSlova, cv2.COLOR_BGR2HSV)
lower_blue = np.array([110,50,50])
upper_blue = np.array([130,255,255])
mask = cv2.inRange(hsv, lower_blue, upper_blue)
res = cv2.bitwise_and(prvaSlova,prvaSlova, mask= mask)
return res
def find_cele_obl(original,original_b, oblacici_b):
_, oblaci, _ = cv2.findContours(oblacici_b, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
koordinate_oblaci = []
for oblak in oblaci: # za svaku konturu
x,y,w,h = cv2.boundingRect(oblak)
area = cv2.contourArea(oblak)
crnobelo = original_b[y:y+h,x:x+w]
procenat = cv2.countNonZero(crnobelo) / (w*h)
_, _, rotation = cv2.minAreaRect(oblak)
rotation = int(round(100*(abs(math.sin(math.radians(rotation))) + abs(math.cos(math.radians(rotation))))))
rect = cv2.minAreaRect(oblak)
box = cv2.boxPoints(rect)
box = np.int0(box)
cv2.drawContours(original,[box],0,(0,0,255),2)
if ((procenat>0.7 and rotation < 110 ) or (area>64000 and procenat>0.5)):
if(w>185 and h>30):
x=x-20
y=y-20
w=w+20
h=h+20
cv2.rectangle(original,(x,y),(x+w,y+h),(0,255,0),5)
koordinate_oblaci.append((x,y,w,h))
koordinate_oblaci = sorted(koordinate_oblaci, key = lambda nzm: nzm[1])
return koordinate_oblaci,original
def trazi_tekst(koordinate,original_b):
izvuceni_tekstovi=[]
izvuceni_koo=[]
for oblak_koo in koordinate:
x,y,w,h=oblak_koo
izvucen = original_b[y:y+h,x:x+w]
izvuceni_tekstovi.append(izvucen)
izvuceni_koo.append((x,y,w,h))
return ime,izvuceni_tekstovi,izvuceni_koo
def trazi_slova(image_orig, image_bin):
_, contours,_ = cv2.findContours(image_bin.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
regions_array = []
slovo=[]
samo_slova=[]
for contour in contours:
x,y,w,h = cv2.boundingRect(contour)
if h < 50 and h > 30 and w< 80 :
cv2.rectangle(image_orig,(x,y),(x+w,y+h),(0,255,0),3)
if w>45:
w1=round(w/2)
slovo.append([x,y,w1,h])
slovo.append([x+w1,y,w1,h])
else:
slovo.append([x,y,w,h])
samo_slova=dbsc(slovo,70,6)
if len(samo_slova)==0:
return regions_array
for samo in samo_slova:
x,y,w,h=samo
cv2.rectangle(image_orig,(x,y),(x+w,y+h),(255,0,0),2)
samo_slova.sort(key=lambda b: b[1])
line_bottom = samo_slova[0][1]+samo_slova[0][3]-1
line_begin_idx = 0
for i in range(1,len(samo_slova)):
if samo_slova[i][1] > line_bottom:
samo_slova[line_begin_idx:i] = sorted(samo_slova[line_begin_idx:i], key=lambda b: b[0])
line_begin_idx = i
line_bottom = max(samo_slova[i][1]+samo_slova[i][3]-1, line_bottom)
samo_slova[line_begin_idx:] = sorted(samo_slova[line_begin_idx:], key=lambda b: b[0])
for i in range(0, len(samo_slova)):
distance=0
distanceY=0
x=samo_slova[i][0]
y=samo_slova[i][1]
w=samo_slova[i][2]
h=samo_slova[i][3]
if(i<len(samo_slova)-1):
nextX = samo_slova[i+1][0]
nextY = samo_slova[i+1][1]
distance= nextX-(x+w)
distanceY= nextY-(y+h)
region = image_bin[y:y+h+1,x:x+w+1]
region=resize_region(region)
regions_array.append(invert(region))
if(abs(distance)>10 or distanceY>5):
regions_array.append(invert(razmak))
return regions_array
def ispisi_tekst(izvuceni_tekst,original,izvuceni_koo,redni):
model = load_model('my_model.h5')
for index in range(len(izvuceni_tekst)):
izvuceni_tekst[index]=image_bin(izvuceni_tekst[index])
sortirana_slova = trazi_slova(original,izvuceni_tekst[index])
if len(sortirana_slova)>0:
x,y,w,h=izvuceni_koo[index]
test_inputs = prepare_for_ann(sortirana_slova)
result = model.predict(np.array(test_inputs, np.float32))
procitano=display_result(result, alphabet)
text_file = open('result/'+str(redni)+"_stranica.txt", "a+")
text_file.write("OBLAK %d: %s \n\n" % (index,procitano))
text_file.close()
razmak = cv2.imread('slova/razmak/razmak.png')
razmak = load_image(razmak)
razmak= image_gray(razmak)
razmak= image_bin(razmak)
alphabet = [0,1,2,3,4,5,6,7,8,9,'A','B','C','Č','Ć','D','Đ','E','F','G','H','I','J','K','/','L','M','N','O','P','R',' ','S','Š','T','U','V','W','X','-','Y','Z','Ž']
for loadedim in ucitaneImg:
image = load_image(loadedim)
original = image.copy()
orginal_fin= image.copy()
image_g = image_gray(image)
image_b = image_bin(image_g)
image_b_txt = image_bin_txt(image_g)
original_b = image_b.copy()
original_b_txt = image_b_txt.copy()
prvaSlova = select_roi(image,image_b)
oblacici = find_obl(prvaSlova)
oblacici = dilate(oblacici)
oblacici = cv2.cvtColor(oblacici, cv2.COLOR_BGR2GRAY)
_, oblacici_b = cv2.threshold(oblacici, 0, 255, cv2.THRESH_OTSU)
original_b_txt = erode(original_b_txt)
koordinate_oblaci,naoblacena = find_cele_obl(original,original_b,oblacici_b)
ime,izvuceni_tekstovi,izvuceni_koo = trazi_tekst(koordinate_oblaci,original_b_txt)
ispisi_tekst(izvuceni_tekstovi,orginal_fin,izvuceni_koo,redni)
redni+=1