This repository has been archived by the owner on Dec 19, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassic_control_q_learn.py
executable file
·208 lines (174 loc) · 8.16 KB
/
classic_control_q_learn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import gym
import math
import keras
import pprint
import logging
import argparse
import numpy as np
import keras.backend as K
import matplotlib.pyplot as plt
from gym import envs
from gym import wrappers
from tendo import colorer
from collections import deque
from keras.models import Model
from keras.optimizers import Adam
from keras.layers import (Dense, Input, Dropout, Lambda)
logging.basicConfig()
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# TODO: Implement prioratized experience replay
# TODO: Allow multi-layer MLPs
# TODO: Try "target" network
# TODO: Add tensorboard summaries
# TODO: Add a more clever check-pointing
def check_args(args):
avail_envs = [e.id for e in envs.registry.all()]
if args.env not in avail_envs:
logger.error("{} is not a valid env".format(args.env))
raise ValueError("env must be one of:\n{}".format(pprint.pformat(sorted(avail_envs))))
def get_model(hidden_size, num_actions, space_shape):
""" Defines an MLP Q-network takes an observation from the environment
and outputs a Q value per action.
In this case there are two actions, i.e: force applyied to the cart (-1, +1)
"""
inp = Input(shape=space_shape)
x = Dense(hidden_size, activation="relu")(inp)
x = Dropout(p=0.25)(x)
q = Dense(num_actions, activation="linear")(x)
model = Model(input=inp, output=q)
print(model.summary())
return model
def get_dueling_model(hidden_size, num_actions, space_shape, mode):
""" Defines a dueling Q-network with three different aggregation modes: {avg, max, naive}
Takes an observation from the environment and outputs a Q value per action
"""
inp = Input(shape=space_shape)
h = Dense(hidden_size, activation="relu")(inp)
# h = Dropout(p=0.25)(h)
y = Dense(num_actions + 1)(h)
if mode == 'avg':
z = Lambda(lambda a: K.expand_dims(a[:, 0], axis=-1) + a[:, 1:] - K.mean(a[:, 1:], keepdims=True),
output_shape=(A,))(y)
elif mode == 'max':
z = Lambda(lambda a: K.expand_dims(a[:, 0], axis=-1) + a[:, 1:] - K.max(a[:, 1:], keepdims=True),
output_shape=(A,))(y)
elif mode == 'naive':
z = Lambda(lambda a: K.expand_dims(a[:, 0], axis=-1) + a[:, 1:], output_shape=(num_actions,))(y)
else:
raise ValueError("Invalid mode: {} ".format(mode))
model = Model(input=inp, output=z)
print(model.summary())
return model
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('env', default='CartPole-v0', help="GYM Environment")
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--hidden_size', type=int, default=150)
parser.add_argument('--replay_size', type=int, default=100)
parser.add_argument('--train_repeat', type=int, default=10)
parser.add_argument('--gamma', type=float, default=0.99, help="reward discount factor")
parser.add_argument('--lr', type=float, default=1e-3, help="learning rate")
parser.add_argument('--epsilon', type=float, default=0.1, help="Exploration probability")
parser.add_argument('--exploration_decay', type=float, default=1e-5)
parser.add_argument('--max_episodes', type=int, default=200)
parser.add_argument('--nn_mode', default="max", help="aggregation mode for dueling network or MLP")
parser.add_argument('--model_path', default="cart-pole-mlp")
parser.add_argument('--render', type=float, default=100, help="minimum avg reward to start rendering")
parser.add_argument('--save_every', type=float, default=100, help="save model every num-episodes")
args = parser.parse_args()
# check coherence of arguments
check_args(args)
# We aim to solve the balancing pole
env = gym.make(args.env)
env_name = args.env.split("-")[0]
env = wrappers.Monitor(env, '/tmp/{}-experiment-1'.format(env_name), force=True)
# Environment parameters
A = env.action_space.n
D = env.observation_space.shape
if args.batch_size > args.replay_size:
logger.warning("Replay size should be bigger than replay size to guarantee batches of the given size")
# define and maybe load model
if args.nn_mode == "mlp":
model = get_model(args.hidden_size, A, D)
else:
model = get_dueling_model(args.hidden_size, A, D, mode=args.nn_mode)
# load model if exists
if os.path.exists(args.model_path):
logger.info("Loading model from: {}".format(args.model_path))
model.load_weights(args.model_path)
optim = Adam(lr=args.lr, decay=1e-5)
model.compile(optimizer=optim, loss='mse')
# per episode data holders
pre_states = deque([], args.replay_size)
actions = deque([], args.replay_size)
rewards = deque([], args.replay_size)
post_states = deque([], args.replay_size)
terminal = deque([], args.replay_size)
timesteps = 0
total_reward = 0
avg_reward = -float("inf")
episode_number = 1
episode_reward = 0
rendering = False
exploration_factor = args.epsilon
observation = env.reset() # Obtain an initial observation of the environment
while episode_number <= args.max_episodes:
if avg_reward >= args.render:
env.render()
# epsilon-greedy policy
if np.random.uniform() < exploration_factor:
action = np.random.randint(A)
else:
s = np.array([observation])
q = model.predict(s)[0]
action = np.argmax(q)
pre_states.append(observation) # observation
actions.append(action)
# take a step and get new measurements
observation, reward, done, info = env.step(action)
episode_reward += reward
timesteps += 1
# record reward (has to be done after we call step() to get reward for previous action)
rewards.append(reward)
post_states.append(observation)
terminal.append(done)
# Experience replay (helps to break temporal correlations and gains in efficiency due to batching)
if len(pre_states) >= args.replay_size:
for k in range(args.train_repeat):
# sample from experience buffer
sample_idx = np.random.choice(len(pre_states), size=args.batch_size)
# get Q values for all the sample states s --> s' (we use a TD(0))
# (sample backup as we only take one action into account for the update)
q_pre_states = model.predict(np.array(pre_states)[sample_idx]) # q_t(s,a)
q_post_states = model.predict(np.array(post_states)[sample_idx]) # q_t+1(s,a)
# compute deltas
for i, idx in enumerate(sample_idx):
if terminal[idx]: # there's no post_state, i.e: s_(t+1), as the episode finished
q_pre_states[i, actions[idx]] = np.array(rewards)[idx]
else:
q_pre_states[i, actions[idx]] = np.array(rewards)[idx] + args.gamma * np.max(q_post_states[i])
# train model
logger.debug("episode: {} - {}th training on batch".format(episode_number, k))
model.train_on_batch(np.array(pre_states)[sample_idx], q_pre_states)
# end of the episode
if done:
total_reward += episode_reward
avg_reward = total_reward / episode_number
logger.info("Episode {} finished after {} timesteps,"
" episode reward {}, avg reward: {:.3f}".format(episode_number, timesteps,
episode_reward, avg_reward))
# reset vars
timesteps = 0
episode_reward = 0
episode_number += 1
exploration_factor /= (1.0 + args.exploration_decay)
observation = env.reset()
if episode_number % args.save_every == 0:
logger.info("saving model as {}".format(args.model_path))
model.save(args.model_path)
logger.info("Average reward per episode {}".format(total_reward / args.max_episodes))
logger.info('{} Episodes completed.'.format(args.max_episodes))
logger.info("saving model as {}".format(args.model_path))
model.save(args.model_path)