forked from aditya1503/Siamese-LSTM
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnegative_sampling.py
60 lines (46 loc) · 2 KB
/
negative_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import random
import copy
from util_files.data_utils import sentence_unigram_probability
def weighted_choice_sub(weights):
assert sum(weights) != 0, "all weights are 0"
rnd = random.random() * sum(weights)
for i, w in enumerate(weights):
rnd -= w
if rnd < 0:
return i
negative_score = 2.0
def build_negative_sample(curr_sent, sent_prob):
sent_prob_pairs = list(sent_prob.iteritems())
rand_idx = weighted_choice_sub(list(sent_prob.itervalues()))
neg_sent, _ = sent_prob_pairs[rand_idx]
return [curr_sent, neg_sent, negative_score] # the most negative score is 1.0 (where the range in the data is 1-5)
def build_sent_probability_dict_w2v(data, power=0.75):
sent_prob = dict()
for sent_pair in data:
sent1, sent2 = sent_pair[:2]
sent_prob[sent1] = sentence_unigram_probability(sent1) ** power # power of 3/4 like w2v
sent_prob[sent2] = sentence_unigram_probability(sent2) ** power
total_prob = sum(sent_prob.itervalues())
for sent, prob in sent_prob.iteritems(): # normalize probabilities
sent_prob[sent] = prob / total_prob
return sent_prob
def build_sent_probability_dict_random(data):
sent_prob = dict()
for sent_pair in data:
sent1, sent2 = sent_pair[:2]
sent_prob[sent1] = 1.0 # same prob for all
sent_prob[sent2] = 1.0
total_prob = sum(sent_prob.itervalues())
for sent, prob in sent_prob.iteritems(): # normalize probabilities
sent_prob[sent] = prob / total_prob
return sent_prob
new_examples_amout = 5000
def extend_negative_samples(data):
new_data = copy.deepcopy(data)
sent_prob = build_sent_probability_dict_w2v(new_data)
sent_pool = list(sent_prob.iterkeys())
print "neg score ", negative_score
for sent in [random.sample(sent_pool, 1)[0] for _ in range(new_examples_amout)]: # new neg samples
new_data.append(build_negative_sample(sent, sent_prob))
print "generated " + str(new_examples_amout) + " examples"
return new_data