forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimagenet_main.py
214 lines (163 loc) · 7.35 KB
/
imagenet_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import tensorflow as tf
import imagenet
import resnet_model
import vgg_preprocessing
parser = argparse.ArgumentParser()
parser.add_argument(
'--data_dir', type=str, default='',
help='The directory where the ImageNet input data is stored.')
parser.add_argument(
'--model_dir', type=str, default='/tmp/resnet_model',
help='The directory where the model will be stored.')
parser.add_argument(
'--resnet_size', type=int, default=50, choices=[18, 34, 50, 101, 152, 200],
help='The size of the ResNet model to use.')
parser.add_argument(
'--train_steps', type=int, default=6400000,
help='The number of steps to use for training.')
parser.add_argument(
'--steps_per_eval', type=int, default=40000,
help='The number of training steps to run between evaluations.')
parser.add_argument(
'--train_batch_size', type=int, default=32, help='Batch size for training.')
parser.add_argument(
'--eval_batch_size', type=int, default=100,
help='Batch size for evaluation.')
parser.add_argument(
'--first_cycle_steps', type=int, default=None,
help='The number of steps to run before the first evaluation. Useful if '
'you have stopped partway through a training cycle.')
FLAGS = parser.parse_args()
_EVAL_STEPS = 50000 // FLAGS.eval_batch_size
# Scale the learning rate linearly with the batch size. When the batch size is
# 256, the learning rate should be 0.1.
_INITIAL_LEARNING_RATE = 0.1 * FLAGS.train_batch_size / 256
_MOMENTUM = 0.9
_WEIGHT_DECAY = 1e-4
train_dataset = imagenet.get_split('train', FLAGS.data_dir)
eval_dataset = imagenet.get_split('validation', FLAGS.data_dir)
image_preprocessing_fn = vgg_preprocessing.preprocess_image
network = resnet_model.resnet_v2(
resnet_size=FLAGS.resnet_size, num_classes=train_dataset.num_classes)
batches_per_epoch = train_dataset.num_samples / FLAGS.train_batch_size
def input_fn(is_training):
"""Input function which provides a single batch for train or eval."""
batch_size = FLAGS.train_batch_size if is_training else FLAGS.eval_batch_size
dataset = train_dataset if is_training else eval_dataset
capacity_multiplier = 20 if is_training else 2
min_multiplier = 10 if is_training else 1
provider = tf.contrib.slim.dataset_data_provider.DatasetDataProvider(
dataset=dataset,
num_readers=4,
common_queue_capacity=capacity_multiplier * batch_size,
common_queue_min=min_multiplier * batch_size)
image, label = provider.get(['image', 'label'])
image = image_preprocessing_fn(image=image,
output_height=network.default_image_size,
output_width=network.default_image_size,
is_training=is_training)
images, labels = tf.train.batch(tensors=[image, label],
batch_size=batch_size,
num_threads=4,
capacity=5 * batch_size)
labels = tf.one_hot(labels, imagenet._NUM_CLASSES)
return images, labels
def resnet_model_fn(features, labels, mode):
""" Our model_fn for ResNet to be used with our Estimator."""
tf.summary.image('images', features, max_outputs=6)
logits = network(
inputs=features, is_training=(mode == tf.estimator.ModeKeys.TRAIN))
predictions = {
'classes': tf.argmax(logits, axis=1),
'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate loss, which includes softmax cross entropy and L2 regularization.
cross_entropy = tf.losses.softmax_cross_entropy(
logits=logits, onehot_labels=labels)
# Create a tensor named cross_entropy for logging purposes.
tf.identity(cross_entropy, name='cross_entropy')
tf.summary.scalar('cross_entropy', cross_entropy)
# Add weight decay to the loss. We perform weight decay on all trainable
# variables, which includes batch norm beta and gamma variables.
loss = cross_entropy + _WEIGHT_DECAY * tf.add_n(
[tf.nn.l2_loss(v) for v in tf.trainable_variables()])
if mode == tf.estimator.ModeKeys.TRAIN:
global_step = tf.train.get_or_create_global_step()
# Multiply the learning rate by 0.1 at 30, 60, 120, and 150 epochs.
boundaries = [
int(batches_per_epoch * epoch) for epoch in [30, 60, 120, 150]]
values = [
_INITIAL_LEARNING_RATE * decay for decay in [1, 0.1, 0.01, 1e-3, 1e-4]]
learning_rate = tf.train.piecewise_constant(
tf.cast(global_step, tf.int32), boundaries, values)
# Create a tensor named learning_rate for logging purposes.
tf.identity(learning_rate, name='learning_rate')
tf.summary.scalar('learning_rate', learning_rate)
optimizer = tf.train.MomentumOptimizer(
learning_rate=learning_rate,
momentum=_MOMENTUM)
# Batch norm requires update_ops to be added as a train_op dependency.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss, global_step)
else:
train_op = None
accuracy = tf.metrics.accuracy(
tf.argmax(labels, axis=1), predictions['classes'])
metrics = {'accuracy': accuracy}
# Create a tensor named train_accuracy for logging purposes.
tf.identity(accuracy[1], name='train_accuracy')
tf.summary.scalar('train_accuracy', accuracy[1])
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,
eval_metric_ops=metrics)
def main(unused_argv):
# Using the Winograd non-fused algorithms provides a small performance boost.
os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'
resnet_classifier = tf.estimator.Estimator(
model_fn=resnet_model_fn, model_dir=FLAGS.model_dir)
for cycle in range(FLAGS.train_steps // FLAGS.steps_per_eval):
tensors_to_log = {
'learning_rate': 'learning_rate',
'cross_entropy': 'cross_entropy',
'train_accuracy': 'train_accuracy'
}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=100)
print('Starting a training cycle.')
resnet_classifier.train(
input_fn=lambda: input_fn(True),
steps=FLAGS.first_cycle_steps or FLAGS.steps_per_eval,
hooks=[logging_hook])
FLAGS.first_cycle_steps = None
print('Starting to evaluate.')
eval_results = resnet_classifier.evaluate(
input_fn=lambda: input_fn(False), steps=_EVAL_STEPS)
print(eval_results)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run()