forked from jopohl/urh
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_filter.py
123 lines (91 loc) · 5.2 KB
/
test_filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import unittest
import numpy as np
import time
from tests.QtTestCase import QtTestCase
from urh.controller.widgets.SignalFrame import SignalFrame
from urh.signalprocessing.Filter import Filter
class TestFilter(QtTestCase):
def setUp(self):
super().setUp()
self.add_signal_to_form("unaveraged.coco")
self.sig_frame = self.form.signal_tab_controller.signal_frames[0] # type: SignalFrame
def test_fir_filter(self):
input_signal = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 42], dtype=np.complex64)
filter_taps = [0.25, 0.25, 0.25, 0.25]
fir_filter = Filter(filter_taps)
filtered_signal = fir_filter.apply_fir_filter(input_signal.flatten())
expected_filtered_signal = np.array([0.25, 0.75, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 16.5], dtype=np.complex64)
self.assertTrue(np.array_equal(filtered_signal, expected_filtered_signal))
def test_filter_full_signal(self):
expected = "5555599595999995cccaccd"
samples_per_symbol = 1000
center = 0
self.sig_frame.ui.btnFilter.click()
self.sig_frame.ui.cbModulationType.setCurrentText("FSK")
self.sig_frame.ui.spinBoxSamplesPerSymbol.setValue(samples_per_symbol)
self.sig_frame.ui.spinBoxSamplesPerSymbol.editingFinished.emit()
self.sig_frame.ui.spinBoxCenterOffset.setValue(center)
self.sig_frame.ui.spinBoxCenterOffset.editingFinished.emit()
self.sig_frame.ui.spinBoxTolerance.setValue(5)
self.sig_frame.ui.spinBoxTolerance.editingFinished.emit()
self.assertTrue(self.sig_frame.proto_analyzer.plain_hex_str[0].startswith(expected),
msg=self.sig_frame.proto_analyzer.plain_hex_str[0])
def test_filter_selection(self):
self.sig_frame.apply_filter_to_selection_only.trigger()
self.assertTrue(self.sig_frame.apply_filter_to_selection_only.isChecked())
selection_start, selection_end = 100, 200
self.sig_frame.ui.spinBoxSelectionStart.setValue(selection_start)
self.sig_frame.ui.spinBoxSelectionStart.editingFinished.emit()
self.sig_frame.ui.spinBoxSelectionEnd.setValue(selection_end)
self.sig_frame.ui.spinBoxSelectionEnd.editingFinished.emit()
old_signal = self.sig_frame.signal.iq_array.data.copy()
self.assertFalse(self.sig_frame.undo_stack.canUndo())
self.sig_frame.ui.btnFilter.click()
self.assertTrue(self.sig_frame.undo_stack.canUndo())
filtered_signal = self.sig_frame.signal.iq_array.data
self.assertEqual(len(old_signal), len(filtered_signal))
for i in range(0, len(old_signal), 2):
old_sample = complex(old_signal[i, 0], old_signal[i, 1])
filtered_sample = complex(filtered_signal[i, 0], filtered_signal[i, 1])
if i in range(selection_start, selection_end):
self.assertNotEqual(old_sample, filtered_sample, msg=str(i))
else:
self.assertEqual(old_sample, filtered_sample, msg=str(i))
self.sig_frame.undo_stack.command(0).undo()
self.assertTrue(np.array_equal(old_signal, self.sig_frame.signal.iq_array.data))
self.sig_frame.undo_stack.command(0).redo()
self.assertTrue(np.array_equal(filtered_signal, self.sig_frame.signal.iq_array.data))
def test_filter_caption(self):
self.assertIn("moving average", self.sig_frame.ui.btnFilter.text())
self.assertFalse(self.sig_frame.filter_dialog.ui.lineEditCustomTaps.isEnabled())
self.assertFalse(self.sig_frame.filter_dialog.ui.radioButtonCustomTaps.isChecked())
self.sig_frame.filter_dialog.ui.radioButtonCustomTaps.click()
self.assertTrue(self.sig_frame.filter_dialog.ui.lineEditCustomTaps.isEnabled())
self.sig_frame.filter_dialog.ui.buttonBox.accepted.emit()
self.assertIn("custom", self.sig_frame.ui.btnFilter.text())
def test_fft_convolution(self):
x = np.array([1, 2, 3])
h = np.array([0, 1, 0.5])
expected_result = np.array([1., 2.5, 4.])
result_np = np.convolve(x, h, 'same')
self.assertTrue(np.array_equal(result_np, expected_result))
result_fft = Filter.fft_convolve_1d(x, h)
self.assertEqual(len(expected_result), len(result_fft))
for i in range(len(expected_result)):
self.assertAlmostEqual(expected_result[i], result_fft[i], places=8, msg=str(i))
x = np.linspace(0, 1, num=10 ** 3).astype(np.complex64)
h = Filter.design_windowed_sinc_bandpass(0.1, 0.4, 0.01)
# fft convolve is faster if IR is round about 400 samples or windowed sinc has bandwidth of 0.01
result_np = np.convolve(x, h, mode="same")
result_fft = Filter.fft_convolve_1d(x, h)
np.testing.assert_array_almost_equal(result_np, result_fft)
def test_bandpass_filter(self):
# GUI tests for bandpass filter are in test_spectrogram.py
sig1 = np.sin(2 * np.pi * 0.2 * np.arange(0, 100))
sig2 = np.sin(2 * np.pi * 0.3 * np.arange(0, 100))
sig = sig1 + sig2
filtered1 = Filter.apply_bandpass_filter(sig, 0.1, 0.2)
filtered2 = Filter.apply_bandpass_filter(sig, 0.2, 0.1)
self.assertTrue(np.array_equal(filtered1, filtered2))
if __name__ == '__main__':
unittest.main()