forked from jopohl/urh
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpectrogramTest.py
218 lines (160 loc) · 7.54 KB
/
SpectrogramTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import unittest
import numpy as np
from tests.utils_testing import get_path_for_data_file
from urh.signalprocessing.Filter import Filter
from urh.signalprocessing.Modulator import Modulator
from urh.signalprocessing.Signal import Signal
import array
from matplotlib import pyplot as plt
from urh.cythonext import signal_functions
from urh.signalprocessing.Spectrogram import Spectrogram
class SpectrogramTest(unittest.TestCase):
""" short time fourier transform of audio signal """
def stft(self, samples, window_size, overlap_factor=0.5, window_function=np.hanning):
"""
Perform Short-time Fourier transform to get the spectrogram for the given samples
:param samples: Complex samples
:param window_size: Size of DFT window
:param overlap_factor: Value between 0 (= No Overlapping) and 1 (= Full overlapping) of windows
:param window_function: Function for DFT window
:return: short-time Fourier transform of the given signal
"""
window = window_function(window_size)
# hop size determines by how many samples the window is advanced
hop_size = window_size - int(overlap_factor * window_size)
# pad with zeros to ensure last window fits signal
padded_samples = np.append(samples, np.zeros((len(samples) - window_size) % hop_size))
num_frames = ((len(padded_samples) - window_size) // hop_size) + 1
frames = [padded_samples[i*hop_size:i*hop_size+window_size] * window for i in range(num_frames)]
return np.fft.fft(frames)
def setUp(self):
self.signal = Signal(get_path_for_data_file("two_participants.complex16s"), "test")
def test_numpy_impl(self):
sample_rate = 1e6
spectrogram = np.fft.fftshift(self.stft(self.signal.iq_array.data, 2**10, overlap_factor=0.5)) / 1024
ims = 10 * np.log10(spectrogram.real ** 2 + spectrogram.imag ** 2) # convert amplitudes to decibel
num_time_bins, num_freq_bins = np.shape(ims)
plt.imshow(np.transpose(ims), aspect="auto", cmap="magma")
plt.colorbar()
plt.xlabel("time in seconds")
plt.ylabel("frequency in Hz")
plt.ylim(ymin=0, ymax=num_freq_bins)
x_tick_pos = np.linspace(0, num_time_bins - 1, 5, dtype=np.float32)
plt.xticks(x_tick_pos, ["%.02f" % l for l in (x_tick_pos * len(self.signal.iq_array.data) / num_time_bins) / sample_rate])
y_tick_pos = np.linspace(0, num_freq_bins - 1, 10, dtype=np.int16)
frequencies = np.fft.fftshift(np.fft.fftfreq(num_freq_bins, 1/sample_rate))
plt.yticks(y_tick_pos, ["%.02f" % frequencies[i] for i in y_tick_pos])
plt.show()
def narrowband_iir(self, fc, bw, fs):
fc /= fs
bw /= fs
R = 1 - 3 * bw
K = (1 - 2 * R * np.cos(2 * np.pi * fc) + R ** 2) / (2 - 2*np.cos(2 * np.pi * fc))
a = np.array([K, -2*K*np.cos(2 * np.pi * fc), K], dtype=np.float64)
b = np.array([2 * R * np.cos(2 * np.pi * fc), -R**2], dtype=np.float64)
return a, b
def test_bandpass(self):
# Generate a noisy signal
fs = 2000
T = 0.1
nsamples = T * fs
t = np.linspace(0, T, nsamples, endpoint=False)
a = 0.02
f0 = 600
x = 0.25 * np.sin(2 * np.pi * 0.25*f0 * t)
x += 0.25 * np.sin(2 * np.pi * f0 * t)
x += 0.25 * np.sin(2 * np.pi * 2*f0 * t)
x += 0.25 * np.sin(2 * np.pi * 3*f0 * t)
import time
lowcut = f0 - 200
highcut = f0 + 200
# Define the parameters
fc = f0 / fs
b = 0.05
data = x
y = Filter.apply_bandpass_filter(data, lowcut / fs, highcut / fs, filter_bw=b)
plt.plot(y, label='Filtered signal (%g Hz)' % f0)
plt.plot(data, label='Noisy signal')
plt.legend(loc='upper left')
plt.show()
def test_iir_bandpass(self):
# Generate a noisy signal
fs = 2400
T = 6
nsamples = T * fs
t = np.linspace(0, T, nsamples, endpoint=False)
a = 0.02
f0 = 300
x = 0.5 * np.sin(2 * np.pi * f0 * t)
x += 0.25 * np.sin(2 * np.pi * 2 * f0 * t)
x += 0.25 * np.sin(2 * np.pi * 3 * f0 * t)
#data = x.astype(np.complex64)
data = np.sin(2 * np.pi * f0 * t).astype(np.complex64)
print("Len data", len(data))
a, b = self.narrowband_iir(f0, 100, fs)
s = a.sum() + b.sum()
#a /= s
#b /= s
print(a, b)
filtered_data = signal_functions.iir_filter(a, b, data)
#plt.plot(data, label='Noisy signal')
plt.plot(np.fft.fft(filtered_data), label='Filtered signal (%g Hz)' % f0)
plt.legend(loc='upper left')
plt.show()
def test_channels(self):
sample_rate = 10 ** 6
channel1_freq = 40 * 10 ** 3
channel2_freq = 240 * 10 ** 3
channel1_data = array.array("B", [1, 0, 1, 0, 1, 0, 0, 1])
channel2_data = array.array("B", [1, 1, 0, 0, 1, 1, 0, 1])
channel3_data = array.array("B", [1, 0, 0, 1, 0, 1, 1, 1])
filter_bw = 0.1
filter_freq1_high = 1.5 * channel1_freq
filter_freq1_low = 0.5 * channel1_freq
filter_freq2_high = 1.5*channel2_freq
filter_freq2_low = 0.5 * channel2_freq
modulator1, modulator2, modulator3 = Modulator("test"), Modulator("test2"), Modulator("test3")
modulator1.carrier_freq_hz = channel1_freq
modulator2.carrier_freq_hz = channel2_freq
modulator3.carrier_freq_hz = -channel2_freq
modulator1.sample_rate = modulator2.sample_rate = modulator3.sample_rate = sample_rate
data1 = modulator1.modulate(channel1_data)
data2 = modulator2.modulate(channel2_data)
data3 = modulator3.modulate(channel3_data)
mixed_signal = data1 + data2 + data3
mixed_signal.tofile("/tmp/three_channels.complex")
plt.subplot("221")
plt.title("Signal")
plt.plot(mixed_signal)
spectrogram = Spectrogram(mixed_signal)
plt.subplot("222")
plt.title("Spectrogram")
plt.imshow(np.transpose(spectrogram.data), aspect="auto", cmap="magma")
plt.ylim(0, spectrogram.freq_bins)
chann1_filtered = Filter.apply_bandpass_filter(mixed_signal, filter_freq1_low / sample_rate, filter_freq1_high / sample_rate, filter_bw)
plt.subplot("223")
plt.title("Channel 1 Filtered ({})".format("".join(map(str, channel1_data))))
plt.plot(chann1_filtered)
chann2_filtered = Filter.apply_bandpass_filter(mixed_signal, filter_freq2_low / sample_rate, filter_freq2_high / sample_rate, filter_bw)
plt.subplot("224")
plt.title("Channel 2 Filtered ({})".format("".join(map(str, channel2_data))))
plt.plot(chann2_filtered)
plt.show()
def test_bandpass_h(self):
f_low = -0.4
f_high = -0.3
bw = 0.01
f_shift = (f_low + f_high) / 2
f_c = (f_high - f_low) / 2
N = Filter.get_filter_length_from_bandwidth(bw)
h = Filter.design_windowed_sinc_lpf(f_c, bw=bw) * np.exp(np.complex(0,1) * np.pi * 2 * f_shift * np.arange(0, N, dtype=complex))
#h = Filter.design_windowed_sinc_bandpass(f_low=f_low, f_high=f_high, bw=bw)
#h = Filter.design_windowed_sinc_lpf(0.42, bw=0.08)
impulse = np.exp(1j * np.linspace(0, 1, 50))
plt.subplot("221")
plt.title("f_low={} f_high={} bw={}".format(f_low, f_high, bw))
plt.plot(np.fft.fftfreq(1024), np.fft.fft(h, 1024))
plt.subplot("222")
plt.plot(h)
plt.show()
# h = cls.design_windowed_sinc_bandpass(f_low, f_high, filter_bw)