-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
45 lines (30 loc) · 1.24 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# tmtyro <a href="https://jmclawson.github.io/tmtyro/"><img src="man/figures/logo.png" align="right" height="208" alt="tmtyro website" /></a>
<!-- badges: start -->
<!-- badges: end -->
tmtyro is designed to help beginners work with and analyze text for simple and complex features. Adopting tidytext principles, tmtyro abstracts processes a few levels further to allow tyros apply text mining techniques before they're deeply familiar with R code.
## Installation
You can install the development version of tmtyro from GitHub with:
``` r
# install.packages("remotes")
remotes::install_github("jmclawson/tmtyro")
```
## Use
When you're ready, begin with the [introduction](https://jmclawson.github.io/tmtyro/articles/tmtyro.html), or start using the package right away to load texts from a directory, measure sentiment, and visualize the results:
```{r example1, echo=TRUE, eval=FALSE}
library(tmtyro)
mysteries <- load_texts("mycorpus")
mysteries <- add_sentiment(mysteries)
visualize(mysteries)
```