-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBDD_dedup.thy
36 lines (28 loc) · 1.17 KB
/
BDD_dedup.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
theory BDD_dedup
imports BDD_select
begin
fun elim_dup :: "BDD \<Rightarrow> BDD" where
"elim_dup (Select v t e) = (select v (elim_dup t) (elim_dup e))" |
"elim_dup b = b"
theorem elim_dup_dedups [simp]: "ordered n a \<Longrightarrow> norm n (elim_dup a)"
apply (induction a rule: ordered.induct)
apply auto
done
theorem elim_dup_noop [simp]: "norm n a \<Longrightarrow> elim_dup a = a"
apply (induction n a rule: norm.induct)
by auto
theorem elim_dup_idem [simp]: "elim_dup (elim_dup a) = elim_dup a"
apply (induction a)
by (auto simp add: select_def)
lemma elim_dup_correctl: "contains a f \<Longrightarrow> contains (elim_dup a) f"
apply (induction a f rule: contains.induct)
by (auto simp add: select_def contains_sel_t contains_sel_e)
lemma elim_dup_correctr: "contains (elim_dup a) f \<Longrightarrow> contains a f"
apply (induction a rule: elim_dup.induct)
apply (auto simp add: select_def)
apply (case_tac "elim_dup t = elim_dup e")
apply (metis (full_types) contains_sel_e contains_sel_t)
by (simp add: contains_p_correct)
theorem elim_dup_correct [simp]: "contains (elim_dup a) f = contains a f"
by (metis elim_dup_correctl elim_dup_correctr)
end