-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistill_step_by_step.py
225 lines (179 loc) · 8.2 KB
/
distill_step_by_step.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright 2023 The Distilling-step-by-step authors
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# https://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import shutil
import logging
from transformers import Seq2SeqTrainingArguments, Seq2SeqTrainer
from transformers import T5ForConditionalGeneration
from transformers import DataCollatorForSeq2Seq
from datasets import load_dataset
from transformers import AutoTokenizer, T5ForConditionalGeneration
from model_utils import TaskPrefixTrainer, TaskPrefixDataCollator
from santacoder_model import FIM_PREFIX, FIM_MIDDLE, FIM_SUFFIX
from metrics import compute_metrics_text
os.environ["WANDB_PROJECT"] = "Tabby"
os.environ["WANDB_WATCH"]="all"
def get_config_dir(args):
return f'{args.dataset}/{args.from_pretrained.split("/")[1]}'
def train_and_evaluate(args, run, tokenizer, tokenized_datasets, compute_metrics):
# set_seed(run)
model = T5ForConditionalGeneration.from_pretrained(args.from_pretrained)
model.resize_token_embeddings(len(tokenizer))
if args.parallelize:
model.parallelize()
config_dir = get_config_dir(args)
output_dir = f'ckpts/{config_dir}/{run}' # for model ckpts
logging_dir = f'logs/{config_dir}/{run}' # for training logs
if args.no_log:
logging_strategy = 'no'
logging_dir = None
else:
logging_strategy = 'steps'
# clear output dir if already exists
if os.path.exists(output_dir):
logging.info('Found existing ckpt directory. Deleted the old directory for the latest run.')
shutil.rmtree(output_dir)
training_args = Seq2SeqTrainingArguments(
output_dir,
remove_unused_columns = False,
evaluation_strategy = 'steps',
eval_steps=args.eval_steps,
save_strategy='no',
save_steps=args.eval_steps,
logging_dir=logging_dir,
logging_strategy=logging_strategy,
logging_steps=args.eval_steps,
warmup_steps=args.warmup_steps,
max_steps=args.max_steps,
learning_rate=args.lr,
lr_scheduler_type=args.lr_scheduler_type,
gradient_accumulation_steps=args.grad_steps,
per_device_train_batch_size=args.batch_size,
per_device_eval_batch_size=args.batch_size,
predict_with_generate=True,
seed=run,
local_rank=args.local_rank,
bf16=args.bf16,
generation_max_length=args.gen_max_len,
prediction_loss_only=False,
report_to="wandb" if args.wandb_run_name else None,
run_name=args.wandb_run_name,
)
if args.model_type == 'task_prefix':
data_collator = TaskPrefixDataCollator(tokenizer=tokenizer, model=model)
elif args.model_type == 'standard':
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)
else:
raise ValueError
trainer_kwargs = {
'alpha': args.alpha,
'output_rationale': args.output_rationale,
'model': model,
'args': training_args,
'train_dataset': tokenized_datasets["train"],
'eval_dataset': {'test': tokenized_datasets["test"],},
'data_collator': data_collator,
'tokenizer': tokenizer,
'compute_metrics': compute_metrics,
}
if args.model_type == 'task_prefix':
trainer = TaskPrefixTrainer(**trainer_kwargs)
elif args.model_type == 'standard':
trainer_kwargs.pop('alpha')
trainer_kwargs.pop('output_rationale')
trainer = Seq2SeqTrainer(**trainer_kwargs)
else:
raise ValueError
trainer.train()
def run(args):
#### Prepare datasets
datasets = load_dataset(args.dataset, split="train")
datasets = datasets.rename_column('santacoder_outputs', "label")
datasets = datasets.rename_column('openai_rationales', "rationale")
datasets = datasets.rename_column('fim_inputs', "input")
datasets = datasets.remove_columns(['santacoder_prompts', 'label_middles'])
if args.subsample < 1.0:
datasets['train'] = datasets['train'].train_test_split(test_size=1.0-args.subsample, seed=args.run)['train']
#### Prepare datasets Prepare data for training
tokenizer = AutoTokenizer.from_pretrained(args.from_pretrained)
addtional_tokens = tokenizer.special_tokens_map['additional_special_tokens']
addtional_tokens.extend([FIM_PREFIX, FIM_MIDDLE, FIM_SUFFIX])
tokenizer.add_special_tokens({
"additional_special_tokens": addtional_tokens,
})
def tokenize_function(examples):
model_inputs = tokenizer(
[
text.replace(" ", "\t") # space issue in T5Tokenizer
for text in examples['input']
],
max_length=args.max_input_length,
truncation=True,
padding=True,
)
prompt = "Explain the below moonscript code within 50 words:"
expl_model_inputs = tokenizer(
[
prompt + "\n" + text.replace(" ", "\t")
for text in examples['input']
],
max_length=args.max_input_length,
truncation=True,
padding=True,
)
model_inputs['expl_input_ids'] = expl_model_inputs['input_ids']
model_inputs['expl_attention_mask'] = expl_model_inputs['attention_mask']
with tokenizer.as_target_tokenizer():
label_output_encodings = tokenizer(examples['label'], max_length=512, truncation=True, padding=True,)
rationale_output_encodings = tokenizer(examples['rationale'], max_length=256, truncation=True, padding=True,)
model_inputs['labels'] = label_output_encodings['input_ids']
model_inputs['aux_labels'] = rationale_output_encodings['input_ids']
return model_inputs
tokenized_datasets = datasets.map(
tokenize_function,
remove_columns=['input', 'label', 'rationale'],
batched=True
)
compute_metrics = compute_metrics_text(tokenizer)
tokenized_datasets= tokenized_datasets.train_test_split(0.2)
train_and_evaluate(args, args.run, tokenizer, tokenized_datasets, compute_metrics)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, required=True)
parser.add_argument('--subsample', type=float, default=1.0)
parser.add_argument('--alpha', type=float, default=0.5)
parser.add_argument('--warmup_steps', type=int, default=8)
parser.add_argument('--max_steps', type=int, default=100)
parser.add_argument('--eval_steps', type=int, default=250)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--optimizer_name', type=str, default='AdamW')
parser.add_argument('--lr', type=float, default=5e-5)
parser.add_argument('--lr_scheduler_type', type=str, default="cosine")
parser.add_argument('--run', type=int, default=0)
parser.add_argument('--from_pretrained', type=str, default='google/t5-v1_1-base')
parser.add_argument('--label_type', type=str, default='gt')
parser.add_argument('--llm', type=str, default='palm')
parser.add_argument('--max_input_length', type=int, default=1024)
parser.add_argument('--grad_steps', type=int, default=2)
parser.add_argument('--local_rank', type=int, default=-1)
parser.add_argument('--gen_max_len', type=int, default=512)
parser.add_argument('--parallelize', action='store_true')
parser.add_argument('--model_type', type=str, default='task_prefix')
parser.add_argument('--bf16', action='store_true')
parser.add_argument('--wandb_run_name', type=str, default='santacoder-distillation')
parser.add_argument('--wandb_watch', type=str, default='gradients')
parser.add_argument('--no_log', action='store_true')
parser.add_argument('--output_rationale', action='store_true')
args = parser.parse_args()
if len(args.wandb_watch) > 0:
os.environ["WANDB_WATCH"] = args.wandb_watch
run(args)