forked from ofiwg/libfabric
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhmem_cuda.c
1052 lines (891 loc) · 27.2 KB
/
hmem_cuda.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* (C) Copyright 2020 Hewlett Packard Enterprise Development LP
* (C) Copyright Amazon.com, Inc. or its affiliates.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#if HAVE_CONFIG_H
#include <config.h>
#endif
#include "ofi_hmem.h"
#include "ofi.h"
#include "ofi_mem.h"
#if HAVE_CUDA
#include <cuda.h>
#include <cuda_runtime.h>
#include <nvml.h>
#if ENABLE_CUDA_DLOPEN
#include <dlfcn.h>
#endif
/*
* Convenience higher-order macros for enumerating CUDA driver/runtime and
* NVML API function names
*/
#if HAVE_CUDA_DMABUF
#define CUDA_DRIVER_DMABUF_FUNCS_DEF(_) \
_(cuMemGetHandleForAddressRange)
#else
#define CUDA_DRIVER_DMABUF_FUNCS_DEF(_)
#endif
#define CUDA_DRIVER_FUNCS_DEF(_) \
_(cuGetErrorName) \
_(cuGetErrorString) \
_(cuPointerGetAttribute) \
_(cuPointerGetAttributes) \
_(cuPointerSetAttribute) \
_(cuDeviceCanAccessPeer) \
_(cuMemGetAddressRange) \
_(cuDeviceGetAttribute) \
_(cuDeviceGet) \
CUDA_DRIVER_DMABUF_FUNCS_DEF(_)
#define CUDA_RUNTIME_FUNCS_DEF(_) \
_(cudaMemcpy) \
_(cudaDeviceSynchronize) \
_(cudaFree) \
_(cudaMalloc) \
_(cudaGetErrorName) \
_(cudaGetErrorString) \
_(cudaHostRegister) \
_(cudaHostUnregister) \
_(cudaGetDeviceCount) \
_(cudaGetDevice) \
_(cudaSetDevice) \
_(cudaIpcOpenMemHandle) \
_(cudaIpcGetMemHandle) \
_(cudaIpcCloseMemHandle)
#define NVML_FUNCS_DEF(_) \
_(nvmlInit_v2) \
_(nvmlDeviceGetCount_v2) \
_(nvmlShutdown)
static struct {
int device_count;
bool p2p_access_supported;
bool use_gdrcopy;
bool use_ipc;
bool dmabuf_supported;
void *driver_handle;
void *runtime_handle;
void *nvml_handle;
} cuda_attr = {
.device_count = -1,
.p2p_access_supported = false,
.use_gdrcopy = false,
.use_ipc = false,
.dmabuf_supported = false,
.driver_handle = NULL,
.runtime_handle = NULL,
.nvml_handle = NULL
};
static struct {
cudaError_t (*cudaMemcpy)(void *dst, const void *src, size_t size,
enum cudaMemcpyKind kind);
cudaError_t (*cudaDeviceSynchronize)(void);
cudaError_t (*cudaFree)(void* ptr);
cudaError_t (*cudaMalloc)(void** ptr, size_t size);
const char *(*cudaGetErrorName)(cudaError_t error);
const char *(*cudaGetErrorString)(cudaError_t error);
CUresult (*cuGetErrorName)(CUresult error, const char** pStr);
CUresult (*cuGetErrorString)(CUresult error, const char** pStr);
CUresult (*cuPointerGetAttribute)(void *data,
CUpointer_attribute attribute,
CUdeviceptr ptr);
CUresult (*cuPointerGetAttributes)(unsigned int num_attributes,
CUpointer_attribute *attributes,
void **data,
CUdeviceptr ptr);
CUresult (*cuPointerSetAttribute)(const void *data,
CUpointer_attribute attribute,
CUdeviceptr ptr);
CUresult (*cuMemGetAddressRange)( CUdeviceptr* pbase,
size_t* psize, CUdeviceptr dptr);
CUresult (*cuDeviceCanAccessPeer)(int *canAccessPeer,
CUdevice srcDevice, CUdevice dstDevice);
#if HAVE_CUDA_DMABUF
CUresult (*cuMemGetHandleForAddressRange)(void* handle,
CUdeviceptr dptr, size_t size,
CUmemRangeHandleType handleType,
unsigned long long flags);
#endif /* HAVE_CUDA_DMABUF */
CUresult (*cuDeviceGetAttribute)(int* pi,
CUdevice_attribute attrib, CUdevice dev);
CUresult (*cuDeviceGet)(CUdevice* device, int ordinal);
cudaError_t (*cudaHostRegister)(void *ptr, size_t size,
unsigned int flags);
cudaError_t (*cudaHostUnregister)(void *ptr);
cudaError_t (*cudaGetDeviceCount)(int *count);
cudaError_t (*cudaGetDevice)(int *device);
cudaError_t (*cudaSetDevice)(int device);
cudaError_t (*cudaIpcOpenMemHandle)(void **devptr,
cudaIpcMemHandle_t handle,
unsigned int flags);
cudaError_t (*cudaIpcGetMemHandle)(cudaIpcMemHandle_t *handle,
void *devptr);
cudaError_t (*cudaIpcCloseMemHandle)(void *devptr);
nvmlReturn_t (*nvmlInit_v2)(void);
nvmlReturn_t (*nvmlDeviceGetCount_v2)(unsigned int *deviceCount);
nvmlReturn_t (*nvmlShutdown)(void);
} cuda_ops
#if !ENABLE_CUDA_DLOPEN
#define CUDA_OPS_INIT(sym) .sym = sym,
= {
CUDA_DRIVER_FUNCS_DEF(CUDA_OPS_INIT)
CUDA_RUNTIME_FUNCS_DEF(CUDA_OPS_INIT)
NVML_FUNCS_DEF(CUDA_OPS_INIT)
}
#endif
;
cudaError_t ofi_cudaMemcpy(void *dst, const void *src, size_t size,
enum cudaMemcpyKind kind)
{
cudaError_t cuda_ret;
CUcontext data;
cuda_ret = cuda_ops.cudaMemcpy(dst, src, size, kind);
if (cuda_ret != cudaSuccess)
return cuda_ret;
/* If either dst or src buffer is not allocated,
* mapped by, or registered with a CUcontext, the
* cuPointerGetAttribute call will return
* CUDA_ERROR_INVALID_VALUE. In this case the
* cudaDeviceSynchronize() needs to be called
* to ensure data consistency.
*/
if (ofi_cuPointerGetAttribute(&data,
CU_POINTER_ATTRIBUTE_CONTEXT, (CUdeviceptr) dst) == CUDA_SUCCESS
&& ofi_cuPointerGetAttribute(&data,
CU_POINTER_ATTRIBUTE_CONTEXT, (CUdeviceptr) src) == CUDA_SUCCESS)
return cudaSuccess;
FI_WARN_ONCE(&core_prov, FI_LOG_CORE,
"Either dst or src buffer of cudaMemcpy is not allocated or registered"
" by cuda device. cudaDeviceSynchronize() will be performed to ensure"
" data consistency. The performance may be impacted.\n");
return cuda_ops.cudaDeviceSynchronize();
}
const char *ofi_cudaGetErrorName(cudaError_t error)
{
return cuda_ops.cudaGetErrorName(error);
}
const char *ofi_cudaGetErrorString(cudaError_t error)
{
return cuda_ops.cudaGetErrorString(error);
}
CUresult ofi_cuGetErrorName(CUresult error, const char** pStr)
{
return cuda_ops.cuGetErrorName(error, pStr);
}
CUresult ofi_cuGetErrorString(CUresult error, const char** pStr)
{
return cuda_ops.cuGetErrorString(error, pStr);
}
CUresult ofi_cuPointerGetAttribute(void *data, CUpointer_attribute attribute,
CUdeviceptr ptr)
{
return cuda_ops.cuPointerGetAttribute(data, attribute, ptr);
}
CUresult ofi_cuPointerGetAttributes(unsigned int num_attributes,
CUpointer_attribute *attributes,
void **data, CUdeviceptr ptr)
{
return cuda_ops.cuPointerGetAttributes(num_attributes, attributes,
data, ptr);
}
#define CUDA_DRIVER_LOG_ERR(cu_result, cuda_api_name) \
{ \
const char *cu_error_name; \
const char *cu_error_str; \
cuda_ops.cuGetErrorName(cu_result, &cu_error_name); \
cuda_ops.cuGetErrorString(cu_result, &cu_error_str); \
FI_WARN(&core_prov, FI_LOG_CORE, "%s failed: %s:%s\n", \
cuda_api_name, cu_error_name, cu_error_str); \
}
/**
* @brief Set CU_POINTER_ATTRIBUTE_SYNC_MEMOPS for a cuda ptr
* to ensure any synchronous copies are completed prior
* to any other access of the memory region, which ensure
* the data consistency for CUDA IPC.
*
* @param ptr the cuda ptr
* @return int 0 on success, -FI_EINVAL on failure.
*/
int cuda_set_sync_memops(void *ptr)
{
CUresult cu_result;
const char *cu_error_name;
const char *cu_error_str;
int true_flag = 1;
cu_result = cuda_ops.cuPointerSetAttribute(&true_flag,
CU_POINTER_ATTRIBUTE_SYNC_MEMOPS,
(CUdeviceptr) ptr);
if (cu_result == CUDA_SUCCESS)
return FI_SUCCESS;
ofi_cuGetErrorName(cu_result, &cu_error_name);
ofi_cuGetErrorString(cu_result, &cu_error_str);
FI_WARN(&core_prov, FI_LOG_CORE,
"Failed to perform cuPointerSetAttribute: %s:%s\n",
cu_error_name, cu_error_str);
return -FI_EINVAL;
}
CUresult ofi_cuMemGetAddressRange(CUdeviceptr* pbase, size_t* psize, CUdeviceptr dptr)
{
return cuda_ops.cuMemGetAddressRange(pbase, psize, dptr);
}
CUresult ofi_cuDeviceCanAccessPeer(int *canAccessPeer, CUdevice srcDevice,
CUdevice dstDevice)
{
return cuda_ops.cuDeviceCanAccessPeer(canAccessPeer, srcDevice, dstDevice);
}
cudaError_t ofi_cudaHostRegister(void *ptr, size_t size, unsigned int flags)
{
return cuda_ops.cudaHostRegister(ptr, size, flags);
}
cudaError_t ofi_cudaHostUnregister(void *ptr)
{
return cuda_ops.cudaHostUnregister(ptr);
}
static cudaError_t ofi_cudaGetDeviceCount(int *count)
{
return cuda_ops.cudaGetDeviceCount(count);
}
static nvmlReturn_t ofi_nvmlInit_v2(void)
{
return cuda_ops.nvmlInit_v2();
}
static nvmlReturn_t ofi_nvmlDeviceGetCount_v2(unsigned int *count)
{
return cuda_ops.nvmlDeviceGetCount_v2(count);
}
static nvmlReturn_t ofi_nvmlShutdown(void)
{
return cuda_ops.nvmlShutdown();
}
cudaError_t ofi_cudaMalloc(void **ptr, size_t size)
{
return cuda_ops.cudaMalloc(ptr, size);
}
cudaError_t ofi_cudaFree(void *ptr)
{
return cuda_ops.cudaFree(ptr);
}
int cuda_copy_to_dev(uint64_t device, void *dst, const void *src, size_t size)
{
cudaError_t cuda_ret;
cuda_ret = ofi_cudaMemcpy(dst, src, size, cudaMemcpyDefault);
if (cuda_ret == cudaSuccess)
return 0;
FI_WARN(&core_prov, FI_LOG_CORE,
"Failed to perform cudaMemcpy: %s:%s\n",
ofi_cudaGetErrorName(cuda_ret),
ofi_cudaGetErrorString(cuda_ret));
return -FI_EIO;
}
int cuda_copy_from_dev(uint64_t device, void *dst, const void *src, size_t size)
{
cudaError_t cuda_ret;
cuda_ret = ofi_cudaMemcpy(dst, src, size, cudaMemcpyDefault);
if (cuda_ret == cudaSuccess)
return 0;
FI_WARN(&core_prov, FI_LOG_CORE,
"Failed to perform cudaMemcpy: %s:%s\n",
ofi_cudaGetErrorName(cuda_ret),
ofi_cudaGetErrorString(cuda_ret));
return -FI_EIO;
}
int cuda_dev_register(const void *addr, size_t size, uint64_t *handle)
{
if (cuda_is_gdrcopy_enabled())
return cuda_gdrcopy_dev_register(addr, size, handle);
return -FI_ENOSYS;
}
int cuda_dev_unregister(uint64_t handle)
{
return cuda_gdrcopy_dev_unregister(handle);
}
int cuda_dev_reg_copy_to_hmem(uint64_t handle, void *dest, const void *src,
size_t size)
{
cuda_gdrcopy_to_dev(handle, dest, src, size);
return FI_SUCCESS;
}
int cuda_dev_reg_copy_from_hmem(uint64_t handle, void *dest, const void *src,
size_t size)
{
cuda_gdrcopy_from_dev(handle, dest, src, size);
return FI_SUCCESS;
}
int cuda_get_handle(void *dev_buf, size_t size, void **handle)
{
cudaError_t cuda_ret;
cuda_ret = cuda_ops.cudaIpcGetMemHandle((cudaIpcMemHandle_t *)handle,
dev_buf);
if (cuda_ret != cudaSuccess) {
FI_WARN(&core_prov, FI_LOG_CORE,
"Failed to perform cudaIpcGetMemHandle: %s:%s\n",
ofi_cudaGetErrorName(cuda_ret),
ofi_cudaGetErrorString(cuda_ret));
return -FI_EINVAL;
}
return FI_SUCCESS;
}
int cuda_open_handle(void **handle, size_t size, uint64_t device,
void **ipc_ptr)
{
cudaError_t cuda_ret;
cuda_ret = cuda_ops.cudaIpcOpenMemHandle(ipc_ptr,
*(cudaIpcMemHandle_t *)handle,
cudaIpcMemLazyEnablePeerAccess);
if (cuda_ret == cudaSuccess)
return FI_SUCCESS;
FI_WARN(&core_prov, FI_LOG_CORE,
"Failed to perform cudaIpcOpenMemHandle: %s:%s\n",
ofi_cudaGetErrorName(cuda_ret),
ofi_cudaGetErrorString(cuda_ret));
return (cuda_ret == cudaErrorAlreadyMapped) ? -FI_EALREADY:-FI_EINVAL;
}
int cuda_close_handle(void *ipc_ptr, void **handle)
{
cudaError_t cuda_ret;
cuda_ret = cuda_ops.cudaIpcCloseMemHandle(ipc_ptr);
if (cuda_ret == cudaSuccess)
return FI_SUCCESS;
FI_WARN(&core_prov, FI_LOG_CORE,
"Failed to perform cudaIpcCloseMemHandle: %s:%s\n",
ofi_cudaGetErrorName(cuda_ret),
ofi_cudaGetErrorString(cuda_ret));
return -FI_EINVAL;
}
int cuda_get_base_addr(const void *ptr, size_t len, void **base, size_t *size)
{
CUresult cu_result;
const char *cu_error_name;
const char *cu_error_str;
cu_result = ofi_cuMemGetAddressRange((CUdeviceptr *)base,
size, (CUdeviceptr) ptr);
if (cu_result == CUDA_SUCCESS)
return FI_SUCCESS;
ofi_cuGetErrorName(cu_result, &cu_error_name);
ofi_cuGetErrorString(cu_result, &cu_error_str);
FI_WARN(&core_prov, FI_LOG_CORE,
"Failed to perform cuMemGetAddressRange: %s:%s\n",
cu_error_name, cu_error_str);
return -FI_EIO;
}
/*
* Convenience macro to dynamically load symbols in cuda_ops struct
* Trailing semicolon is necessary for use with higher-order macro
*/
#define CUDA_FUNCS_DLOPEN(type, sym) \
do { \
cuda_ops.sym = dlsym(cuda_attr.type##_handle, #sym); \
if (!cuda_ops.sym) { \
FI_WARN(&core_prov, FI_LOG_CORE, \
"Failed to find " #sym "\n"); \
goto err_dlclose_nvml_lib; \
} \
} while (0);
#define CUDA_DRIVER_FUNCS_DLOPEN(sym) CUDA_FUNCS_DLOPEN(driver, sym)
#define CUDA_RUNTIME_FUNCS_DLOPEN(sym) CUDA_FUNCS_DLOPEN(runtime, sym)
#define NVML_LIB_FUNCS_DLOPEN(sym) CUDA_FUNCS_DLOPEN(nvml, sym)
static int cuda_hmem_dl_init(void)
{
#if ENABLE_CUDA_DLOPEN
/* Assume failure to dlopen CUDA runtime is caused by the library not
* being found. Thus, CUDA is not supported.
*/
cuda_attr.runtime_handle = dlopen("libcudart.so", RTLD_NOW);
if (!cuda_attr.runtime_handle) {
FI_INFO(&core_prov, FI_LOG_CORE,
"Failed to dlopen libcudart.so\n");
return -FI_ENOSYS;
}
cuda_attr.driver_handle = dlopen("libcuda.so", RTLD_NOW);
if (!cuda_attr.driver_handle) {
FI_WARN(&core_prov, FI_LOG_CORE,
"Failed to dlopen libcuda.so\n");
goto err_dlclose_cuda_runtime;
}
cuda_attr.nvml_handle = dlopen("libnvidia-ml.so", RTLD_NOW);
if (!cuda_attr.nvml_handle) {
FI_INFO(&core_prov, FI_LOG_CORE,
"Failed to dlopen libnvidia-ml.so. Trying libnvidia-ml.so.1\n");
cuda_attr.nvml_handle = dlopen("libnvidia-ml.so.1", RTLD_NOW);
if (!cuda_attr.nvml_handle) {
FI_WARN(&core_prov, FI_LOG_CORE,
"Failed to dlopen libnvidia-ml.so or libnvidia-ml.so.1, bypassing nvml calls\n");
}
}
CUDA_DRIVER_FUNCS_DEF(CUDA_DRIVER_FUNCS_DLOPEN)
CUDA_RUNTIME_FUNCS_DEF(CUDA_RUNTIME_FUNCS_DLOPEN)
if (cuda_attr.nvml_handle) {
NVML_FUNCS_DEF(NVML_LIB_FUNCS_DLOPEN)
}
return FI_SUCCESS;
err_dlclose_nvml_lib:
if (cuda_attr.nvml_handle)
dlclose(cuda_attr.nvml_handle);
dlclose(cuda_attr.driver_handle);
err_dlclose_cuda_runtime:
dlclose(cuda_attr.runtime_handle);
return -FI_ENODATA;
#else
return FI_SUCCESS;
#endif /* ENABLE_CUDA_DLOPEN */
}
static void cuda_hmem_dl_cleanup(void)
{
#if ENABLE_CUDA_DLOPEN
if (cuda_attr.nvml_handle)
dlclose(cuda_attr.nvml_handle);
dlclose(cuda_attr.driver_handle);
dlclose(cuda_attr.runtime_handle);
#endif
}
static int cuda_hmem_verify_devices(void)
{
nvmlReturn_t nvml_ret;
cudaError_t cuda_ret;
unsigned int nvml_device_count = 0;
/* Check w/ nvmlDeviceGetCount_v2() first, to avoid more expensive
* call to cudaGetDeviceCount() when possible.
*/
/* Check for NVIDIA devices, if NVML library is dlopen-ed*/
if (cuda_attr.nvml_handle) {
/* Make certain that the NVML routines are initialized */
nvml_ret = ofi_nvmlInit_v2();
if (nvml_ret != NVML_SUCCESS)
return -FI_ENOSYS;
/* Verify NVIDIA devices are present on the host. */
nvml_ret = ofi_nvmlDeviceGetCount_v2(&nvml_device_count);
if (nvml_ret != NVML_SUCCESS) {
ofi_nvmlShutdown();
return -FI_ENOSYS;
}
/* Make certain that the NVML routines get shutdown */
/* Note: nvmlInit / Shutdown calls are refcounted, so no harm in
* calling nvmlShutdown here, if the user has called nvmlInit.
*/
nvml_ret = ofi_nvmlShutdown();
if (nvml_ret != NVML_SUCCESS)
return -FI_ENOSYS;
FI_INFO(&core_prov, FI_LOG_CORE,
"Number of NVIDIA devices detected: %u\n",
nvml_device_count);
} else {
FI_INFO(&core_prov, FI_LOG_CORE,
"Skipping check for NVIDIA devices with NVML routines\n");
}
/* If NVIDIA devices are present, now perform more expensive check
* for actual GPUs.
*/
if (!cuda_attr.nvml_handle || nvml_device_count > 0) {
/* Verify CUDA compute-capable devices are present on the host. */
cuda_ret = ofi_cudaGetDeviceCount(&cuda_attr.device_count);
switch (cuda_ret) {
case cudaSuccess:
break;
case cudaErrorNoDevice:
return -FI_ENOSYS;
default:
FI_WARN(&core_prov, FI_LOG_CORE,
"Failed to perform cudaGetDeviceCount: %s:%s\n",
ofi_cudaGetErrorName(cuda_ret),
ofi_cudaGetErrorString(cuda_ret));
return -FI_EIO;
}
FI_INFO(&core_prov, FI_LOG_CORE,
"Number of CUDA devices detected: %d\n",
cuda_attr.device_count);
} else {
cuda_attr.device_count = 0;
}
if (cuda_attr.device_count <= 0)
return -FI_ENOSYS;
return FI_SUCCESS;
}
/**
* @brief Determine overall peer access support for the CUDA HMEM interface
*
* This checks each CUDA device visible to Libfabric for peer accessibility to
* the next visible device. #cuda_attr.p2p_access_supported is set to true only
* if every query between two devices indicates peer access support. Otherwise
* the function returns early, leaving #cuda_attr.p2p_access_supported
* unmodified.
*
* @return FI_SUCCESS if peer access check(s) are successful
* -FI_EIO upon CUDA API error
*/
static int cuda_hmem_detect_p2p_access_support(void)
{
CUresult cuda_ret;
CUdevice dev, peer;
int can_access_peer = 1;
if (cuda_attr.device_count <= 1)
return FI_SUCCESS;
/*
* CUDA API always enumerates available devices contiguously starting
* from index 0.
*/
for (dev = 0; dev < cuda_attr.device_count - 1; ++dev) {
peer = dev + 1;
cuda_ret = ofi_cuDeviceCanAccessPeer(&can_access_peer, dev, peer);
if (CUDA_SUCCESS != cuda_ret) {
CUDA_DRIVER_LOG_ERR(cuda_ret, "cuDeviceCanAccessPeer");
return -FI_EIO;
}
FI_INFO(&core_prov, FI_LOG_CORE,
"Peer access from CUDA device %d -> CUDA device %d : %s\n",
dev, peer, can_access_peer ? "Yes" : "No");
if (!can_access_peer)
return FI_SUCCESS;
}
cuda_attr.p2p_access_supported = true;
return FI_SUCCESS;
}
/**
* @brief detect dmabuf support in the current platform
* This checks the dmabuf support in the current platform
* by querying the property of cuda device 0
*
* @return FI_SUCCESS if dmabuf support check is successful
* -FI_EIO upon CUDA API error
*/
static int cuda_hmem_detect_dmabuf_support(void)
{
#if HAVE_CUDA_DMABUF
CUresult cuda_ret;
CUdevice dev;
int is_supported = 0;
cuda_ret = cuda_ops.cuDeviceGet(&dev, 0);
if (cuda_ret != CUDA_SUCCESS) {
CUDA_DRIVER_LOG_ERR(cuda_ret, "cuDeviceGet");
return -FI_EIO;
}
cuda_ret = cuda_ops.cuDeviceGetAttribute(&is_supported,
CU_DEVICE_ATTRIBUTE_DMA_BUF_SUPPORTED, dev);
if (cuda_ret != CUDA_SUCCESS) {
CUDA_DRIVER_LOG_ERR(cuda_ret, "cuDeviceGetAttribute");
return -FI_EIO;
}
FI_INFO(&core_prov, FI_LOG_CORE,
"cuda dmabuf support status: %d\n", is_supported);
cuda_attr.dmabuf_supported = (is_supported == 1);
#endif /* HAVE_CUDA_DMABUF */
return FI_SUCCESS;
}
/**
* @brief Get dmabuf fd and offset for a given cuda memory allocation
*
* @param addr the starting address of the cuda memory allocation
* @param size the length of the cuda memory allocation
* @param fd the fd of the dmabuf region
* @param offset the offset of the buf in the dmabuf region
* @return FI_SUCCESS if dmabuf fd and offset are retrieved successfully
* -FI_EOPNOTSUPP if dmabuf is not supported on the cuda device
* -FI_EIO upon CUDA API error
*/
int cuda_get_dmabuf_fd(const void *addr, uint64_t size, int *fd,
uint64_t *offset)
{
#if HAVE_CUDA_DMABUF
CUdeviceptr aligned_ptr;
CUresult cuda_ret;
int ret;
size_t aligned_size;
size_t host_page_size = ofi_get_page_size();
void *base_addr;
size_t total_size;
if (!cuda_is_dmabuf_supported())
return -FI_EOPNOTSUPP;
ret = cuda_get_base_addr(addr, size, &base_addr, &total_size);
if (ret)
return ret;
aligned_ptr = (uintptr_t) ofi_get_page_start(base_addr, host_page_size);
aligned_size = (uintptr_t) ofi_get_page_end((void *) ((uintptr_t) base_addr + total_size - 1),
host_page_size) - (uintptr_t) aligned_ptr + 1;
cuda_ret = cuda_ops.cuMemGetHandleForAddressRange(
(void *)fd,
aligned_ptr, aligned_size,
CU_MEM_RANGE_HANDLE_TYPE_DMA_BUF_FD,
0);
if (cuda_ret != CUDA_SUCCESS) {
CUDA_DRIVER_LOG_ERR(cuda_ret, "cuMemGetHandleForAddressRange");
return -FI_EIO;
}
*offset = (uintptr_t) addr - (uintptr_t) aligned_ptr;
FI_INFO(&core_prov, FI_LOG_CORE,
"Get dma buf handle with fd: %d, offset: %lu"
", page aligned base address: %p"
", page aligned size: %lu, cuda allocation address %p"
", cuda allocation length: %lu\n",
*fd, *offset,
(void *) aligned_ptr, aligned_size,
(void *) addr, size);
return FI_SUCCESS;
#else
return -FI_EOPNOTSUPP;
#endif /* HAVE_CUDA_DMABUF */
}
int cuda_hmem_init(void)
{
int ret;
int gdrcopy_ret;
fi_param_define(NULL, "hmem_cuda_use_gdrcopy", FI_PARAM_BOOL,
"Use gdrcopy to copy data to/from CUDA GPU memory. "
"If libfabric is not compiled with gdrcopy support, "
"this variable is not checked. (default: true)");
ret = cuda_hmem_dl_init();
if (ret != FI_SUCCESS)
return ret;
ret = cuda_hmem_verify_devices();
if (ret != FI_SUCCESS)
goto dl_cleanup;
ret = cuda_hmem_detect_p2p_access_support();
if (ret != FI_SUCCESS)
goto dl_cleanup;
ret = cuda_hmem_detect_dmabuf_support();
if (ret != FI_SUCCESS)
goto dl_cleanup;
ret = 1;
fi_param_get_bool(NULL, "hmem_cuda_use_gdrcopy",
&ret);
cuda_attr.use_gdrcopy = (ret != 0);
if (cuda_attr.use_gdrcopy) {
gdrcopy_ret = cuda_gdrcopy_hmem_init();
if (gdrcopy_ret != FI_SUCCESS) {
cuda_attr.use_gdrcopy = false;
if (gdrcopy_ret != -FI_ENOSYS)
FI_WARN(&core_prov, FI_LOG_CORE,
"gdrcopy initialization failed! "
"gdrcopy will not be used.\n");
}
}
/*
* CUDA IPC can be safely utilized if:
* - All devices on the bus have peer access to each other
* - This includes configurations with only a single CUDA device,
* regardless of the device's p2p capabilities
* - cudaMemcpy() is available
*/
cuda_attr.use_ipc =
cuda_attr.p2p_access_supported || cuda_attr.device_count == 1;
return FI_SUCCESS;
dl_cleanup:
cuda_hmem_dl_cleanup();
return ret;
}
int cuda_hmem_cleanup(void)
{
cuda_hmem_dl_cleanup();
if (cuda_attr.use_gdrcopy)
cuda_gdrcopy_hmem_cleanup();
return FI_SUCCESS;
}
bool cuda_is_addr_valid(const void *addr, uint64_t *device, uint64_t *flags)
{
CUresult cuda_ret;
unsigned int mem_type;
unsigned int is_managed;
uint64_t device_ord;
/* Each pointer in 'data' needs to have the same array index
as the corresponding attribute in 'cuda_attributes' */
void *data[] = {&mem_type, &is_managed, &device_ord};
CUpointer_attribute cuda_attributes[] = {
CU_POINTER_ATTRIBUTE_MEMORY_TYPE,
CU_POINTER_ATTRIBUTE_IS_MANAGED,
CU_POINTER_ATTRIBUTE_DEVICE_ORDINAL
};
cuda_ret = ofi_cuPointerGetAttributes(ARRAY_SIZE(cuda_attributes),
cuda_attributes, data,
(CUdeviceptr) addr);
switch (cuda_ret) {
case CUDA_SUCCESS:
if (mem_type == CU_MEMORYTYPE_DEVICE) {
if (flags && !is_managed)
*flags = FI_HMEM_DEVICE_ONLY;
if (device)
*device = device_ord;
return true;
}
break;
/* Returned if the buffer is not associated with the CUcontext support
* unified virtual addressing. Since host buffers may fall into this
* category, this is not treated as an error.
*/
case CUDA_ERROR_INVALID_VALUE:
break;
/* Returned if cuInit() has not been called. This can happen if support
* for CUDA is enabled but the user has not made a CUDA call. This is
* not treated as an error.
*/
case CUDA_ERROR_NOT_INITIALIZED:
break;
/* Returned if the CUcontext does not support unified virtual
* addressing.
*/
case CUDA_ERROR_INVALID_CONTEXT:
FI_WARN(&core_prov, FI_LOG_CORE,
"CUcontext does not support unified virtual addressing\n");
break;
default:
FI_WARN(&core_prov, FI_LOG_CORE,
"Unhandle cuPointerGetAttribute return code: ret=%d\n",
cuda_ret);
break;
}
return false;
}
int cuda_host_register(void *ptr, size_t size)
{
cudaError_t cuda_ret;
cuda_ret = ofi_cudaHostRegister(ptr, size, cudaHostRegisterDefault);
if (cuda_ret == cudaSuccess)
return FI_SUCCESS;
FI_WARN(&core_prov, FI_LOG_CORE,
"Failed to perform cudaHostRegister: %s:%s\n",
ofi_cudaGetErrorName(cuda_ret),
ofi_cudaGetErrorString(cuda_ret));
return -FI_EIO;
}
int cuda_host_unregister(void *ptr)
{
cudaError_t cuda_ret;
cuda_ret = ofi_cudaHostUnregister(ptr);
if (cuda_ret == cudaSuccess)
return FI_SUCCESS;
FI_WARN(&core_prov, FI_LOG_CORE,
"Failed to perform cudaHostUnregister: %s:%s\n",
ofi_cudaGetErrorName(cuda_ret),
ofi_cudaGetErrorString(cuda_ret));
return -FI_EIO;
}
bool cuda_is_ipc_enabled(void)
{
return cuda_attr.use_ipc;
}
int cuda_get_ipc_handle_size(size_t *size)
{
*size = sizeof(cudaIpcMemHandle_t);
return FI_SUCCESS;
}
bool cuda_is_gdrcopy_enabled(void)
{
return cuda_attr.use_gdrcopy;
}
bool cuda_is_dmabuf_supported(void)
{
return cuda_attr.dmabuf_supported;
}
#else
int cuda_copy_to_dev(uint64_t device, void *dev, const void *host, size_t size)
{
return -FI_ENOSYS;
}
int cuda_copy_from_dev(uint64_t device, void *host, const void *dev, size_t size)
{
return -FI_ENOSYS;
}
int cuda_hmem_init(void)
{
return -FI_ENOSYS;
}
int cuda_hmem_cleanup(void)
{
return -FI_ENOSYS;
}
bool cuda_is_addr_valid(const void *addr, uint64_t *device, uint64_t *flags)
{
return false;
}
int cuda_host_register(void *ptr, size_t size)
{
return -FI_ENOSYS;
}
int cuda_host_unregister(void *ptr)
{
return -FI_ENOSYS;
}
int cuda_dev_register(const void *addr, size_t size, uint64_t *handle)
{
return -FI_ENOSYS;
}
int cuda_dev_unregister(uint64_t handle)
{
return -FI_ENOSYS;
}
int cuda_dev_reg_copy_to_hmem(uint64_t handle, void *dest, const void *src,
size_t size)
{
return -FI_ENOSYS;
}
int cuda_dev_reg_copy_from_hmem(uint64_t handle, void *dest, const void *src,
size_t size)
{
return -FI_ENOSYS;
}