forked from SaschaWillems/Vulkan
-
-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathskeletalanimation.cpp
580 lines (478 loc) · 21.7 KB
/
skeletalanimation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
/*
* Vulkan Example - Skeletal animation
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <vulkanExampleBase.h>
#include <map>
#include <assimp/matrix4x4.h>
#include <assimp/anim.h>
#include <assimp/mesh.h>
#include <assimp/scene.h>
#include <glm/gtc/type_ptr.hpp>
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
// Vertex layout used in this example
struct Vertex {
glm::vec3 pos;
glm::vec3 normal;
glm::vec2 uv;
glm::vec3 color;
// Max. four bones per vertex
float boneWeights[4];
uint32_t boneIDs[4];
};
vks::model::VertexLayout vertexLayout{ {
vks::model::Component::VERTEX_COMPONENT_POSITION,
vks::model::Component::VERTEX_COMPONENT_NORMAL,
vks::model::Component::VERTEX_COMPONENT_UV,
vks::model::Component::VERTEX_COMPONENT_COLOR,
vks::model::Component::VERTEX_COMPONENT_DUMMY_VEC4,
vks::model::Component::VERTEX_COMPONENT_DUMMY_UINT4,
} };
// Maximum number of bones per mesh
// Must not be higher than same const in skinning shader
#define MAX_BONES 64
// Maximum number of bones per vertex
#define MAX_BONES_PER_VERTEX 4
// Skinned mesh class
// Per-vertex bone IDs and weights
struct VertexBoneData {
std::array<uint32_t, MAX_BONES_PER_VERTEX> IDs;
std::array<float, MAX_BONES_PER_VERTEX> weights;
// Ad bone weighting to vertex info
void add(uint32_t boneID, float weight) {
for (uint32_t i = 0; i < MAX_BONES_PER_VERTEX; i++) {
if (weights[i] == 0.0f) {
IDs[i] = boneID;
weights[i] = weight;
return;
}
}
}
};
// Stores information on a single bone
struct BoneInfo {
aiMatrix4x4 offset;
aiMatrix4x4 finalTransformation;
BoneInfo() {
offset = aiMatrix4x4();
finalTransformation = aiMatrix4x4();
};
};
class SkinnedMesh : public vks::model::Model {
public:
// Bone related stuff
// Maps bone name with index
std::map<std::string, uint32_t> boneMapping;
// Bone details
std::vector<BoneInfo> boneInfo;
// Number of bones present
uint32_t numBones = 0;
// Root inverese transform matrix
aiMatrix4x4 globalInverseTransform;
// Per-vertex bone info
std::vector<VertexBoneData> bones;
// Bone transformations
std::vector<aiMatrix4x4> boneTransforms;
// Modifier for the animation
float animationSpeed = 0.75f;
// Currently active animation
const aiScene* pScene{ nullptr };
aiAnimation* pAnimation{ nullptr };
uint32_t numAnimations{ 0 };
// Vulkan buffers
vks::model::Model meshBuffer;
// Reference to assimp mesh
// Required for animation
void onLoad(const vks::Context& context, Assimp::Importer& importer, const aiScene* pScene) override {
this->pScene = importer.GetOrphanedScene();
// Setup bones
// One vertex bone info structure per vertex
bones.resize(vertexCount);
numAnimations = pScene->mNumAnimations;
// Store global inverse transform matrix of root node
globalInverseTransform = pScene->mRootNode->mTransformation;
globalInverseTransform.Inverse();
// Load bones (weights and IDs)
for (uint32_t m = 0; m < pScene->mNumMeshes; m++) {
aiMesh* paiMesh = pScene->mMeshes[m];
if (paiMesh->mNumBones > 0) {
loadBones(m, paiMesh, bones);
}
}
}
void appendVertex(std::vector<uint8_t>& outputBuffer, const aiScene* pScene, uint32_t meshIndex, uint32_t vertexIndex) override {
const auto& part = parts[meshIndex];
const auto& bone = bones[part.vertexBase + vertexIndex];
const aiVector3D Zero3D(0.0f, 0.0f, 0.0f);
const aiMesh* paiMesh = pScene->mMeshes[meshIndex];
const aiVector3D* pPos = &(paiMesh->mVertices[vertexIndex]);
const aiVector3D* pNormal = &(paiMesh->mNormals[vertexIndex]);
const aiVector3D* pTexCoord = (paiMesh->HasTextureCoords(0)) ? &(paiMesh->mTextureCoords[0][vertexIndex]) : &Zero3D;
const aiVector3D* pTangent = (paiMesh->HasTangentsAndBitangents()) ? &(paiMesh->mTangents[vertexIndex]) : &Zero3D;
const aiVector3D* pBiTangent = (paiMesh->HasTangentsAndBitangents()) ? &(paiMesh->mBitangents[vertexIndex]) : &Zero3D;
aiColor3D pColor(0.f, 0.f, 0.f);
pScene->mMaterials[paiMesh->mMaterialIndex]->Get(AI_MATKEY_COLOR_DIFFUSE, pColor);
Vertex vertex;
vertex.pos = { pPos->x, -pPos->y, pPos->z };
vertex.pos *= scale;
vertex.pos += center;
vertex.normal = { pNormal->x, -pNormal->y, pNormal->z };
vertex.uv = { pTexCoord->x, pTexCoord->y };
vertex.uv *= uvscale;
vertex.color = { pColor.r, pColor.g, pColor.b };
// Fetch bone weights and IDs
for (uint32_t boneIndex = 0; boneIndex < MAX_BONES_PER_VERTEX; boneIndex++) {
vertex.boneWeights[boneIndex] = bone.weights[boneIndex];
vertex.boneIDs[boneIndex] = bone.IDs[boneIndex];
}
dim.max = glm::max(vertex.pos, dim.max);
dim.min = glm::min(vertex.pos, dim.min);
appendOutput(outputBuffer, vertex);
}
// Set active animation by index
void setAnimation(uint32_t animationIndex) {
assert(animationIndex < numAnimations);
pAnimation = pScene->mAnimations[animationIndex];
}
// Load bone information from ASSIMP mesh
void loadBones(uint32_t meshIndex, const aiMesh* pMesh, std::vector<VertexBoneData>& Bones) {
for (uint32_t i = 0; i < pMesh->mNumBones; i++) {
uint32_t index = 0;
assert(pMesh->mNumBones <= MAX_BONES);
std::string name(pMesh->mBones[i]->mName.data);
if (boneMapping.find(name) == boneMapping.end()) {
// Bone not present, add new one
index = numBones;
numBones++;
BoneInfo bone;
boneInfo.push_back(bone);
boneInfo[index].offset = pMesh->mBones[i]->mOffsetMatrix;
boneMapping[name] = index;
} else {
index = boneMapping[name];
}
for (uint32_t j = 0; j < pMesh->mBones[i]->mNumWeights; j++) {
uint32_t vertexID = parts[meshIndex].vertexBase + pMesh->mBones[i]->mWeights[j].mVertexId;
Bones[vertexID].add(index, pMesh->mBones[i]->mWeights[j].mWeight);
}
}
boneTransforms.resize(numBones);
}
// Recursive bone transformation for given animation time
void update(float time) {
float TicksPerSecond = (float)(pScene->mAnimations[0]->mTicksPerSecond != 0 ? pScene->mAnimations[0]->mTicksPerSecond : 25.0f);
float TimeInTicks = time * TicksPerSecond;
float AnimationTime = fmod(TimeInTicks, (float)pScene->mAnimations[0]->mDuration);
aiMatrix4x4 identity = aiMatrix4x4();
readNodeHierarchy(AnimationTime, pScene->mRootNode, identity);
for (uint32_t i = 0; i < boneTransforms.size(); i++) {
boneTransforms[i] = boneInfo[i].finalTransformation;
}
}
private:
// Find animation for a given node
const aiNodeAnim* findNodeAnim(const aiAnimation* animation, const std::string nodeName) {
for (uint32_t i = 0; i < animation->mNumChannels; i++) {
const aiNodeAnim* nodeAnim = animation->mChannels[i];
if (std::string(nodeAnim->mNodeName.data) == nodeName) {
return nodeAnim;
}
}
return nullptr;
}
// Returns a 4x4 matrix with interpolated translation between current and next frame
aiMatrix4x4 interpolateTranslation(float time, const aiNodeAnim* pNodeAnim) {
aiVector3D translation;
if (pNodeAnim->mNumPositionKeys == 1) {
translation = pNodeAnim->mPositionKeys[0].mValue;
} else {
uint32_t frameIndex = 0;
for (uint32_t i = 0; i < pNodeAnim->mNumPositionKeys - 1; i++) {
if (time < (float)pNodeAnim->mPositionKeys[i + 1].mTime) {
frameIndex = i;
break;
}
}
aiVectorKey currentFrame = pNodeAnim->mPositionKeys[frameIndex];
aiVectorKey nextFrame = pNodeAnim->mPositionKeys[(frameIndex + 1) % pNodeAnim->mNumPositionKeys];
float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime);
const aiVector3D& start = currentFrame.mValue;
const aiVector3D& end = nextFrame.mValue;
translation = (start + delta * (end - start));
}
aiMatrix4x4 mat;
aiMatrix4x4::Translation(translation, mat);
return mat;
}
// Returns a 4x4 matrix with interpolated rotation between current and next frame
aiMatrix4x4 interpolateRotation(float time, const aiNodeAnim* pNodeAnim) {
aiQuaternion rotation;
if (pNodeAnim->mNumRotationKeys == 1) {
rotation = pNodeAnim->mRotationKeys[0].mValue;
} else {
uint32_t frameIndex = 0;
for (uint32_t i = 0; i < pNodeAnim->mNumRotationKeys - 1; i++) {
if (time < (float)pNodeAnim->mRotationKeys[i + 1].mTime) {
frameIndex = i;
break;
}
}
aiQuatKey currentFrame = pNodeAnim->mRotationKeys[frameIndex];
aiQuatKey nextFrame = pNodeAnim->mRotationKeys[(frameIndex + 1) % pNodeAnim->mNumRotationKeys];
float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime);
const aiQuaternion& start = currentFrame.mValue;
const aiQuaternion& end = nextFrame.mValue;
aiQuaternion::Interpolate(rotation, start, end, delta);
rotation.Normalize();
}
aiMatrix4x4 mat(rotation.GetMatrix());
return mat;
}
// Returns a 4x4 matrix with interpolated scaling between current and next frame
aiMatrix4x4 interpolateScale(float time, const aiNodeAnim* pNodeAnim) {
aiVector3D scale;
if (pNodeAnim->mNumScalingKeys == 1) {
scale = pNodeAnim->mScalingKeys[0].mValue;
} else {
uint32_t frameIndex = 0;
for (uint32_t i = 0; i < pNodeAnim->mNumScalingKeys - 1; i++) {
if (time < (float)pNodeAnim->mScalingKeys[i + 1].mTime) {
frameIndex = i;
break;
}
}
aiVectorKey currentFrame = pNodeAnim->mScalingKeys[frameIndex];
aiVectorKey nextFrame = pNodeAnim->mScalingKeys[(frameIndex + 1) % pNodeAnim->mNumScalingKeys];
float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime);
const aiVector3D& start = currentFrame.mValue;
const aiVector3D& end = nextFrame.mValue;
scale = (start + delta * (end - start));
}
aiMatrix4x4 mat;
aiMatrix4x4::Scaling(scale, mat);
return mat;
}
// Get node hierarchy for current animation time
void readNodeHierarchy(float AnimationTime, const aiNode* pNode, const aiMatrix4x4& ParentTransform) {
std::string NodeName(pNode->mName.data);
aiMatrix4x4 NodeTransformation(pNode->mTransformation);
const aiNodeAnim* pNodeAnim = findNodeAnim(pAnimation, NodeName);
if (pNodeAnim) {
// Get interpolated matrices between current and next frame
aiMatrix4x4 matScale = interpolateScale(AnimationTime, pNodeAnim);
aiMatrix4x4 matRotation = interpolateRotation(AnimationTime, pNodeAnim);
aiMatrix4x4 matTranslation = interpolateTranslation(AnimationTime, pNodeAnim);
NodeTransformation = matTranslation * matRotation * matScale;
}
aiMatrix4x4 GlobalTransformation = ParentTransform * NodeTransformation;
if (boneMapping.find(NodeName) != boneMapping.end()) {
uint32_t BoneIndex = boneMapping[NodeName];
boneInfo[BoneIndex].finalTransformation = globalInverseTransform * GlobalTransformation * boneInfo[BoneIndex].offset;
}
for (uint32_t i = 0; i < pNode->mNumChildren; i++) {
readNodeHierarchy(AnimationTime, pNode->mChildren[i], GlobalTransformation);
}
}
};
class VulkanExample : public vkx::ExampleBase {
public:
struct {
vks::texture::Texture2D colorMap;
vks::texture::Texture2D floor;
} textures;
SkinnedMesh skinnedMesh;
struct {
vks::Buffer vsScene;
vks::Buffer floor;
} uniformData;
struct UboVS {
glm::mat4 projection;
glm::mat4 model;
glm::mat4 bones[MAX_BONES];
glm::vec4 lightPos = glm::vec4(0.0f, -250.0f, 250.0f, 1.0);
glm::vec4 viewPos;
} uboVS;
struct UboFloor {
glm::mat4 projection;
glm::mat4 model;
glm::vec4 lightPos = glm::vec4(0.0, 0.0f, -25.0f, 1.0);
glm::vec4 viewPos;
glm::vec2 uvOffset;
} uboFloor;
struct {
vk::Pipeline skinning;
vk::Pipeline texture;
} pipelines;
struct {
vks::model::Model floor;
} meshes;
vk::PipelineLayout pipelineLayout;
vk::DescriptorSet descriptorSet;
vk::DescriptorSetLayout descriptorSetLayout;
struct {
vk::DescriptorSet skinning;
vk::DescriptorSet floor;
} descriptorSets;
float runningTime = 0.0f;
VulkanExample() {
camera.type = camera.lookat;
zoomSpeed = 2.5f;
rotationSpeed = 0.5f;
camera.dolly(-150.0f);
camera.setRotation({ -25.5f, 128.5f, 180.0f });
title = "Vulkan Example - Skeletal animation";
}
~VulkanExample() {
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
device.destroyPipeline(pipelines.skinning);
device.destroyPipelineLayout(pipelineLayout);
device.destroyDescriptorSetLayout(descriptorSetLayout);
textures.colorMap.destroy();
uniformData.vsScene.destroy();
// Destroy and free mesh resources
skinnedMesh.destroy();
}
void updateDrawCommandBuffer(const vk::CommandBuffer& cmdBuffer) override {
cmdBuffer.setViewport(0, vks::util::viewport(size));
cmdBuffer.setScissor(0, vks::util::rect2D(size));
// Skinned mesh
cmdBuffer.bindDescriptorSets(vk::PipelineBindPoint::eGraphics, pipelineLayout, 0, descriptorSet, nullptr);
cmdBuffer.bindPipeline(vk::PipelineBindPoint::eGraphics, pipelines.skinning);
cmdBuffer.bindVertexBuffers(0, skinnedMesh.vertices.buffer, { 0 });
cmdBuffer.bindIndexBuffer(skinnedMesh.indices.buffer, 0, vk::IndexType::eUint32);
cmdBuffer.drawIndexed(skinnedMesh.indexCount, 1, 0, 0, 0);
// Floor
cmdBuffer.bindDescriptorSets(vk::PipelineBindPoint::eGraphics, pipelineLayout, 0, descriptorSets.floor, nullptr);
cmdBuffer.bindPipeline(vk::PipelineBindPoint::eGraphics, pipelines.texture);
cmdBuffer.bindVertexBuffers(0, meshes.floor.vertices.buffer, { 0 });
cmdBuffer.bindIndexBuffer(meshes.floor.indices.buffer, 0, vk::IndexType::eUint32);
cmdBuffer.drawIndexed(meshes.floor.indexCount, 1, 0, 0, 0);
}
void loadAssets() override {
textures.colorMap.loadFromFile(context, getAssetPath() + "textures/goblin_bc3.ktx", vk::Format::eBc3UnormBlock);
textures.floor.loadFromFile(context, getAssetPath() + "textures/pattern_35_bc3.ktx", vk::Format::eBc3UnormBlock);
meshes.floor.loadFromFile(context, getAssetPath() + "models/plane_z.obj", vertexLayout, 512.0f);
// Load a mesh based on data read via assimp
skinnedMesh.loadFromFile(context, getAssetPath() + "models/goblin.dae", vertexLayout, 1.0f,
aiProcess_FlipWindingOrder | aiProcess_Triangulate | aiProcess_CalcTangentSpace | aiProcess_GenSmoothNormals);
skinnedMesh.setAnimation(0);
}
void setupDescriptorPool() {
// Example uses one ubo and one combined image sampler
std::vector<vk::DescriptorPoolSize> poolSizes = {
vk::DescriptorPoolSize(vk::DescriptorType::eUniformBuffer, 2),
vk::DescriptorPoolSize(vk::DescriptorType::eCombinedImageSampler, 2),
};
descriptorPool = device.createDescriptorPool({ {}, 2, (uint32_t)poolSizes.size(), poolSizes.data() });
}
void setupDescriptorSetLayout() {
std::vector<vk::DescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
{ 0, vk::DescriptorType::eUniformBuffer, 1, vk::ShaderStageFlagBits::eVertex },
// Binding 1 : Fragment shader combined sampler
{ 1, vk::DescriptorType::eCombinedImageSampler, 1, vk::ShaderStageFlagBits::eFragment },
};
descriptorSetLayout = device.createDescriptorSetLayout({ {}, (uint32_t)setLayoutBindings.size(), setLayoutBindings.data() });
pipelineLayout = device.createPipelineLayout({ {}, 1, &descriptorSetLayout });
}
void setupDescriptorSet() {
vk::DescriptorSetAllocateInfo allocInfo{ descriptorPool, 1, &descriptorSetLayout };
descriptorSet = device.allocateDescriptorSets(allocInfo)[0];
vk::DescriptorImageInfo texDescriptor{ textures.colorMap.sampler, textures.colorMap.view, vk::ImageLayout::eGeneral };
std::vector<vk::WriteDescriptorSet> writeDescriptorSets{
// Binding 0 : Vertex shader uniform buffer
{ descriptorSet, 0, 0, 1, vk::DescriptorType::eUniformBuffer, nullptr, &uniformData.vsScene.descriptor },
// Binding 1 : Color map
{ descriptorSet, 1, 0, 1, vk::DescriptorType::eCombinedImageSampler, &texDescriptor },
};
device.updateDescriptorSets(writeDescriptorSets, nullptr);
// Floor
descriptorSets.floor = device.allocateDescriptorSets(allocInfo)[0];
texDescriptor.imageView = textures.floor.view;
texDescriptor.sampler = textures.floor.sampler;
writeDescriptorSets = {
// Binding 0 : Vertex shader uniform buffer
{ descriptorSets.floor, 0, 0, 1, vk::DescriptorType::eUniformBuffer, nullptr, &uniformData.floor.descriptor },
// Binding 1 : Color map
{ descriptorSets.floor, 1, 0, 1, vk::DescriptorType::eCombinedImageSampler, &texDescriptor },
};
device.updateDescriptorSets(writeDescriptorSets, nullptr);
}
void preparePipelines() {
// Skinned rendering pipeline
vks::pipelines::GraphicsPipelineBuilder pipelineCreator{ device, pipelineLayout, renderPass };
pipelineCreator.vertexInputState.appendVertexLayout(vertexLayout);
pipelineCreator.rasterizationState.frontFace = vk::FrontFace::eClockwise;
pipelineCreator.loadShader(getAssetPath() + "shaders/skeletalanimation/mesh.vert.spv", vk::ShaderStageFlagBits::eVertex);
pipelineCreator.loadShader(getAssetPath() + "shaders/skeletalanimation/mesh.frag.spv", vk::ShaderStageFlagBits::eFragment);
pipelines.skinning = pipelineCreator.create(context.pipelineCache);
pipelineCreator.destroyShaderModules();
pipelineCreator.loadShader(getAssetPath() + "shaders/skeletalanimation/texture.vert.spv", vk::ShaderStageFlagBits::eVertex);
pipelineCreator.loadShader(getAssetPath() + "shaders/skeletalanimation/texture.frag.spv", vk::ShaderStageFlagBits::eFragment);
pipelines.texture = pipelineCreator.create(context.pipelineCache);
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers() {
// Vertex shader uniform buffer block
uniformData.vsScene = context.createUniformBuffer(uboVS);
// Floor
uniformData.floor = context.createUniformBuffer(uboFloor);
updateUniformBuffers(true);
}
void updateUniformBuffers(bool viewChanged) {
if (viewChanged) {
uboFloor.projection = uboVS.projection = getProjection();
uboFloor.model = uboVS.model = glm::scale(glm::rotate(camera.matrices.view, glm::radians(90.0f), glm::vec3(1, 0, 0)), glm::vec3(0.025f));
uboFloor.viewPos = uboVS.viewPos = glm::vec4(0.0f, 0.0f, -camera.position.z, 0.0f);
uboFloor.model = glm::translate(uboFloor.model, glm::vec3(0.0f, 0.0f, -1800.0f));
}
// Update bones
skinnedMesh.update(runningTime);
for (uint32_t i = 0; i < skinnedMesh.boneTransforms.size(); i++) {
uboVS.bones[i] = glm::transpose(glm::make_mat4(&skinnedMesh.boneTransforms[i].a1));
}
uniformData.vsScene.copy(uboVS);
// Update floor animation
uboFloor.uvOffset.t -= 0.5f * skinnedMesh.animationSpeed * frameTimer;
uniformData.floor.copy(uboFloor);
}
void prepare() override {
ExampleBase::prepare();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
void render() override {
if (!prepared)
return;
draw();
if (!paused) {
runningTime += frameTimer * skinnedMesh.animationSpeed;
updateUniformBuffers(false);
}
}
void viewChanged() override { updateUniformBuffers(true); }
void changeAnimationSpeed(float delta) {
skinnedMesh.animationSpeed += delta;
std::cout << "Animation speed = " << skinnedMesh.animationSpeed << std::endl;
}
void keyPressed(uint32_t key) override {
switch (key) {
case KEY_KPADD:
case KEY_KPSUB:
changeAnimationSpeed((key == KEY_KPADD) ? 0.1f : -0.1f);
break;
}
}
};
RUN_EXAMPLE(VulkanExample)