-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
48 lines (36 loc) · 1.1 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# MSEntropy
<!-- badges: start -->
[![Lifecycle: experimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg)](https://www.tidyverse.org/lifecycle/#experimental)
<!-- badges: end -->
The goal of MSEntropy is to provide a set of optimzed multiscale entropy
calculation functions.
## Installation
You can install the development version directly from [GitHub](https://github.com/) with:
``` r
# install.packages("devtools")
devtools::install_github("jcaude/MSEntropy")
```
## Example
The MSEntropy package comes with some sample datasets:
```{r example}
library(MSEntropy)
## basic example code
data("EG_181117")
plot(EG_181117,type='l',xlab="Time (s)", ylab="EEG",main="EG_181117")
```
You can than compute the Multiscale Dispersion Entropy (MDE) using:
```{r}
plot(MDE(EG_181117,scales = 1:50),type='b',xlab="Scale",ylab="MDE",main="EG_181117")
```