-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscheduler.c
514 lines (482 loc) · 10.6 KB
/
scheduler.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
/**
* Project1 : Process scheduling algorithms
* 1. Nualrath Pojsomphong 5988026 Sec.1
* 2. Peerachai Banyongrakkul 5988070 Sec.1
*/
#include <stdio.h>
#define _GNU_SOURCE
#include <string.h>
#include <stdlib.h>
#include <stdbool.h>
typedef struct process {
int PID; //process ID
int BT; //burst time
int AT; //arrival time
int PRI; //priority
int WT,TAT,RPT; //waiting time, throughput, reponse time
int firstBT; //the first time that process gets control of CPU which is used to compute respond time (used in RR)
bool done; //whether it is done or not (used in RR)
}pc;
int isNumber(char x[]);
void FCFS(pc p[], int n);
void SJF(pc p[], int n);
void RR(pc p[], int n, int quan);
struct process createProcess(int numOfPro, pc p[], int data[]);
/**
* MAIN
*/
int main(int argc, char *argv[]) {
/* Verify the correct number of arguments */
if (argc != 3)
{
fprintf(stderr, "USAGE:./scheduler <input-file> <scheduling algorithm> \n");
exit(-1);
}
/* Initialize variable */
FILE *fp;
int check, quantum, o=0, i=0, count=0, numOfPro=0;
int data[500];
char *token;
char buff[255],cont[255],choice[500],filepath[500], ch;
char delimit[] = ",\n"; //delimiter for seperate input
/* copy arguments to varibles */
strcpy(filepath, argv[1]);
strcpy(choice, argv[2]);
/* open file */
fp = fopen( filepath , "r"); //read file
while (ch = fgetc(fp)) //character by character
{
if (feof (fp))
{
break;
}
buff[i] = ch;
i++;
count++;
}
fclose(fp);
/* close file */
for(i = 1 ; i<count ; i++) //keep everthing except the first line
{
cont[i-2] = buff[i];
}
token = strtok(cont, delimit); //split input by comma(,) and new line(\n)
while(token != NULL)
{
data[o] = atoi(token);
token = strtok(NULL, delimit);
o++;
}
numOfPro = buff[0] - '0'; //convert number of process to integer
struct process p[numOfPro];
*p = createProcess(numOfPro,p,data); //create all processes
printf("===========================\n"); //print list of processes
printf("PID\tBT\tAT\tPRI\n");
for (i = 0 ; i<numOfPro ; i++)
{
printf("%d\t%d\t%d\t%d\n", p[i].PID, p[i].BT, p[i].AT, p[i].PRI);
}
printf("===========================\n");
printf("\t OUTPUT");
/* part for checking input */
char str1[] = "FCFS";
char str2[] = "SJF";
check = isNumber(choice); //check whether it is digit or alphabet;
if (check == 0) //input is number
{
quantum = atoi(choice);
printf("\nRR with q = %d: ",quantum);
RR(p,numOfPro,quantum); //use RR algorithm
}
else //input is string
{
if(strcmp(str1, choice) == 0 )
{
printf("\nFCFS: ");
FCFS(p,numOfPro); //use FCFS algorithm
}
else if(strcmp(str2, choice) == 0 )
{
printf("\n\nSJF: ");
SJF(p,numOfPro); //use SJF algorithm
}
else
{
printf("\nWrong Input!!! *You allow to input \"FCFS\",\"SJF\",and number for RR only\n");
}
}
}
/**
* method for checking whether it is digit or alphabet;
*/
int isNumber(char x[])
{
int i,check = 0;
for(i = 0; i<strlen(x) ; i++)
{
if(48 > x[i] || 57 < x[i])
{
check = 1;
break;
}
}
return check;
}
/**
* Method for putting PID, BT, AT, PRI into struct after spliting process.
*/
struct process createProcess(int numOfPro, pc p[], int data[])
{
int n = 0;
int i = 0;
for(i=0; i<numOfPro; i++)
{
if(i==0)
{
p[i].PID = data[i];
p[i].BT = data[i+1];
p[i].AT = data[i+2];
p[i].PRI = data[i+3];
}
else
{
n = i*4;
p[i].PID = data[n];
p[i].BT = data[n+1];
p[i].AT = data[n+2];
p[i].PRI = data[n+3];
}
}
return *p;
}
/**
* Method for sorting process(es) by ascending arrival time which is used in FCFS algorithm.
*/
void sort_AT_FCFS(pc p[], int n)
{
pc temp;
int i,j;
for(i = 1 ; i<n ;i++)
{
for(j = 0; j<n-1 ; j++)
{
if(p[j].AT > p[j+1].AT)
{
temp = p[j];
p[j] = p[j+1];
p[j+1] = temp;
}
else if(p[j].AT == p[j+1].AT)
{
if(p[j].PRI > p[j+1].PRI)
{
temp = p[j];
p[j] = p[j+1];
p[j+1] = temp;
}
else if (p[j].PRI == p[j+1].PRI)
{
if(p[j].BT > p[j+1].BT)
{
temp = p[j];
p[j] = p[j+1];
p[j+1] = temp;
}
else if(p[j].BT == p[j+1].BT)
{
if(p[j].PID > p[j+1].PID)
{
temp = p[j];
p[j] = p[j+1];
p[j+1] = temp;
}
}
}
}
}
}
}
/**
* Method for sorting process(es) by ascending arrival time which is used in SJF algorithm.
*/
void sort_AT_SJF(pc p[], int n)
{
pc temp;
int i,j;
for(i = 1 ; i<n ;i++)
{
for(j = 0; j<n-1 ; j++)
{
if(p[j].AT > p[j+1].AT)
{
temp = p[j];
p[j] = p[j+1];
p[j+1] = temp;
}
else if(p[j].AT == p[j+1].AT)
{
if(p[j].BT > p[j+1].BT)
{
temp = p[j];
p[j] = p[j+1];
p[j+1] = temp;
}
else if (p[j].BT == p[j+1].BT)
{
if(p[j].PRI > p[j+1].PRI)
{
temp = p[j];
p[j] = p[j+1];
p[j+1] = temp;
}
else if(p[j].PRI == p[j+1].PRI)
{
if(p[j].PID > p[j+1].PID)
{
temp = p[j];
p[j] = p[j+1];
p[j+1] = temp;
}
}
}
}
}
}
}
/**
* Method for sorting process(es) by ascending arrival time which is used in RR algorithm.
*/
void sort_AT_RR(pc p[], int n)
{
pc temp;
int i,j;
for(i = 1 ; i<n ;i++)
{
for(j = 0; j<n-1 ; j++)
{
if(p[j].AT > p[j+1].AT)
{
temp = p[j];
p[j] = p[j+1];
p[j+1] = temp;
}
else if(p[j].AT == p[j+1].AT)
{
if(p[j].PRI > p[j+1].PRI)
{
temp = p[j];
p[j] = p[j+1];
p[j+1] = temp;
}
else if (p[j].PRI == p[j+1].PRI)
{
if(p[j].BT > p[j+1].BT)
{
temp = p[j];
p[j] = p[j+1];
p[j+1] = temp;
}
else if(p[j].BT == p[j+1].BT)
{
if(p[j].PID > p[j+1].PID)
{
temp = p[j];
p[j] = p[j+1];
p[j+1] = temp;
}
}
}
}
}
}
}
/**
* Method for applying short-term CPU scheduling with FCFS algorithm.
*/
void FCFS(pc p[], int n)
{
pc temp[n];
double sumRPT = 0, sumWT = 0, sumTAT = 0 , sTP = 0 , TP = 0;
double avgRPT = 0, avgWT = 0, avgTAT = 0;
int i,j;
sort_AT_FCFS(p,n); //sort processes by arrival time
for(i = 0 ; i < n ; i++)
{
temp[i] = p[i];
}
for(i = 0; i < n; i++)
{
if(i == 0)
{
temp[0].RPT = 0;
temp[0].WT = 0;
temp[0].TAT = temp[0].BT;
}
else
{
temp[i].RPT = temp[i].WT = (temp[i-1].BT + temp[i-1].AT + temp[i-1].WT) - temp[i].AT;
temp[i].TAT = temp[i].BT + temp[i].WT;
}
sTP += temp[i].BT;
sumRPT += temp[i].RPT;
sumWT += temp[i].WT;
sumTAT += temp[i].TAT;
printf("\n%d,%d,%d,%d",temp[i].PID,temp[i].RPT,temp[i].WT,temp[i].TAT);
}
TP = n/sTP;
avgRPT = sumRPT/n;
avgWT = sumWT/n;
avgTAT = sumTAT/n;
printf("\n%0.2lf,%0.2lf,%0.2lf,%0.2lf\n",TP,avgRPT,avgWT,avgTAT);
}
/**
* Method for applying short-term CPU scheduling with SJF algorithm.
*/
void SJF(pc p[], int n)
{
pc temp[n],tp;
double sumRPT = 0, sumWT = 0, sumTAT = 0, sTP = 0 , TP = 0;
double avgRPT = 0, avgWT = 0, avgTAT = 0;
int i,j,k,sum_Pre_BT = 0;
sort_AT_SJF(p, n); //sort processes by arrival time
for (i = 0; i< n; i++)
{
temp[i] = p[i];
}
for(i = 1 ; i < n-1 ; i++) //sort burst time with ascending order
{
for( j = 1 ; j < n-i ; j++)
{
if((j-1) == 0)
{
if(temp[j].BT > temp[j+1].BT && temp[j+1].AT < temp[j-1].BT)
{
tp = temp[j];
temp[j] = temp[j+1];
temp[j+1] = tp;
}
}
else
{
for(k = 0 ; k < j ; k++)
{
sum_Pre_BT += temp[k].BT;
}
if(temp[j].BT > temp[j+1].BT && temp[j+1].AT < sum_Pre_BT)
{
tp = temp[j];
temp[j] = temp[j+1];
temp[j+1] = tp;
}
sum_Pre_BT = 0;
}
}
}
for(i = 0; i < n; i++)
{
if(i == 0)
{
temp[0].RPT = 0;
temp[0].WT = 0;
temp[0].TAT = temp[0].BT;
}
else
{
temp[i].RPT = temp[i].WT = (temp[i-1].BT + temp[i-1].AT + temp[i-1].WT) - temp[i].AT;
temp[i].TAT = temp[i].BT + temp[i].WT;
}
sTP += temp[i].BT;
sumRPT += temp[i].RPT;
sumWT += temp[i].WT;
sumTAT += temp[i].TAT;
printf("\n%d,%d,%d,%d",temp[i].PID,temp[i].RPT,temp[i].WT,temp[i].TAT);
}
TP = n/sTP;
avgRPT = sumRPT/n;
avgWT = sumWT/n;
avgTAT = sumTAT/n;
printf("\n%0.2lf,%0.2lf,%0.2lf,%0.2lf\n",TP,avgRPT,avgWT,avgTAT);
}
/**
* Method for applying short-term CPU scheduling with RR algorithm.
*/
void RR(pc p[], int n, int quan)
{
pc temp[n];
double sumRPT = 0, sumWT = 0, sumTAT = 0, sTP = 0 , TP = 0;
double avgRPT = 0, avgWT = 0, avgTAT = 0;
int burstTime[n],firstTimePC[n];
int i,j,k = 0,q = 0,currentTime = 0, eTime = 0,allDone = 0, check = 0;
int quantum ;
quantum = quan;
sort_AT_RR(p,n); //sort processes by arrival time
for (i = 0 ; i < n ; i++)
{
temp[i] = p[i];
burstTime[i] = temp[i].BT;
}
for(i = 0 ; i < n ; i++) //Debugging
{
firstTimePC[i] = -1;
}
while(allDone != n) //keep going until all process have done
{
eTime = 0;
if( q > n-1 ) //keep returning to the first process
{
q = 0;
}
if(temp[q].done == false) //process hasn't done
{
if(temp[q].BT > 0)
{
for(j = 0; j<n ; j++)
{
if(temp[q].PID == firstTimePC[j]) //find the first burst time of each process for calculting respond time
{
check = 0;
break;
}
else
{
check = 1;
}
}
if(check == 1)
{
firstTimePC[k] = temp[q].PID;
temp[q].firstBT = currentTime;
check = 0;
k++;
}
while(temp[q].BT > 0 && eTime < quantum) //track current time and the burst time of process
{
temp[q].BT--;
eTime++;
currentTime++;
}
}
if(temp[q].BT == 0) //process doesn't remain burst time
{
temp[q].RPT = temp[q].firstBT - temp[q].AT;
temp[q].WT = currentTime - (burstTime[q] + temp[q].AT);
temp[q].TAT = currentTime - temp[q].AT;
sTP += burstTime[q];
sumRPT += temp[q].RPT;
sumWT += temp[q].WT;
sumTAT += temp[q].TAT;
printf("\n%d,%d,%d,%d",temp[q].PID,temp[q].RPT,temp[q].WT,temp[q].TAT);
temp[q].done = true; //process has done
allDone++;
}
}
q++; //context switching
}
TP = n/sTP;
avgRPT = sumRPT/n;
avgWT = sumWT/n;
avgTAT = sumTAT/n;
printf("\n%0.2lf,%0.2lf,%0.2lf,%0.2lf\n",TP,avgRPT,avgWT,avgTAT);
printf("\n***This output is ordered by termination of processes\n");
printf("***First ------> Last\n");
}