-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_pano_360Attention_Matterport.py
166 lines (128 loc) · 6.16 KB
/
test_pano_360Attention_Matterport.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import yaml
from torch.utils import data
from metric.iou import IoU
import cv2
import numpy as np
import torch.nn
from pathlib import Path
import argparse
# from model.trans4pano_map import Trans4map_segformer
# from model.trans4pano_deformable_detr import Trans4map_deformable_detr
# from model.front_view_segformer_matterport import front_view_segformer
from model.Attention360_pano_matterport import Attention360_pano
from utils.semantic_utils import color_label
from utils.lib2_mp3d.dataset import matterport_SemDataset33
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
########################################################################################################################
########################################################################################################################
parser = argparse.ArgumentParser(description="config")
parser.add_argument(
"--config",
nargs="?",
type=str,
default="configs/model_fv_mp3d.yml",
help="Configuration file to use",
)
args = parser.parse_args()
with open(args.config) as fp:
cfg = yaml.safe_load(fp)
########################################################################################################################
output_dir = cfg['output_dir']
Path(output_dir).mkdir(parents=True, exist_ok=True)
cfg_model = cfg['model']
###### init model
model = Attention360_pano(cfg_model, device) # 360Attention
# model = front_view_segformer(cfg_model, device) # trans4pass+
model = model.to(device)
model_path = cfg['model_path']
print('Loading pre-trained weights:', model_path)
state = torch.load(model_path)
print("best_iou:", state['best_iou'])
model_state = state['model_state']
print('model_state:', model_state.keys())
weights = {}
for k, v in model_state.items():
k = '.'.join(k.split('.')[1:])
weights[k] = v
model.load_state_dict(weights)
model.eval()
########################################################################################################################
test_loader = matterport_SemDataset33(cfg["data"], split=cfg["data"]["val_split"])
testingloader = data.DataLoader(
test_loader,
batch_size=1,
num_workers=cfg["training"]["n_workers"],
pin_memory=True,
# sampler=test_sampler,
multiprocessing_context='fork',
)
##### setup Metrics #####
obj_running_metrics_test = IoU(cfg['model']['n_obj_classes'])
cm = 0
with torch.no_grad():
for batch in testingloader:
# rgb, rgb_no_norm, masks_inliers, proj_indices, semmap_gt = batch
# rgb, rgb_no_norm, masks_inliers, proj_indices, semmap_gt, map_mask, map_heights = batch
rgb, semmap_gt, fname= batch
rgb = rgb.to(device)
observed_masks = (semmap_gt >= 0)
semmap_gt[~observed_masks] = 0
semmap_gt = semmap_gt.long()
semmap_pred, observed_mask = model(rgb, observed_masks)
if observed_masks.any():
semmap_pred = semmap_pred.permute(0,2,3,1)
############################################################################################################
pred = semmap_pred[observed_masks].softmax(-1)
pred = torch.argmax(pred, dim = 1).cpu()
num_classes = 20
gt = semmap_gt[observed_masks]
assert gt.min() >= 0 and gt.max() < num_classes and semmap_pred.shape[3] == num_classes
cm += np.bincount((gt * num_classes + pred).cpu().numpy(), minlength=num_classes**2)
############################################################################################################
semmap_pred_write = semmap_pred.data.max(-1)[1] + 1
semmap_pred_write[~observed_mask] = 0
semmap_pred_write = semmap_pred_write.squeeze(0)
############################ semmap projection to show #####################################################
semmap_pred_write_out = color_label(semmap_pred_write).squeeze(0)
semmap_pred_write_out = semmap_pred_write_out.permute(1, 2, 0)
semmap_pred_write_out = semmap_pred_write_out.cpu().numpy().astype(np.uint8)
semmap_pred_write_out = cv2.cvtColor(semmap_pred_write_out, cv2.COLOR_BGR2RGB)
file_name = fname[0]
################################################# test on semmap pred_write_out ############################
masked_semmap_gt = semmap_gt[observed_mask]
masked_semmap_pred = semmap_pred[observed_mask]
obj_gt_val = masked_semmap_gt
obj_pred_val = masked_semmap_pred.data.max(-1)[1]
obj_running_metrics_test.add(obj_pred_val, obj_gt_val)
conf_metric = obj_running_metrics_test.conf_metric.conf
conf_metric = torch.FloatTensor(conf_metric)
conf_metric = conf_metric.to(device)
conf_metric = conf_metric.cpu().numpy()
conf_metric = conf_metric.astype(np.int32)
tmp_metrics = IoU(cfg['model']['n_obj_classes'])
tmp_metrics.reset()
tmp_metrics.conf_metric.conf = conf_metric
_, mIoU, acc, _, mRecall, _, mPrecision = tmp_metrics.value()
print("val -- mIoU: {}".format(mIoU))
print("val -- mRecall: {}".format(mRecall))
print("val -- mPrecision: {}".format(mPrecision))
print("val -- Overall_Acc: {}".format(acc))
########################################################################################################################
## Summarize_haha
print(' Summarize_hohonet '.center(50, '='))
cm = cm.reshape(num_classes, num_classes)
# id2class = np.array(valid_dataset.ID2CLASS)
id2class = ['wall', 'floor', 'chair', 'door', 'table', 'picture', 'furniture', 'objects', 'window', 'sofa', 'bed', 'sink', 'stairs', 'ceiling', 'toilet', 'mirror', 'shower', 'bathtub', 'counter', 'shelving']
id2class = np.array(id2class)
valid_mask = (cm.sum(1) != 0)
print('valid_mask:', valid_mask)
cm = cm[valid_mask][:, valid_mask]
id2class = id2class[valid_mask]
inter = np.diag(cm)
union = cm.sum(0) + cm.sum(1) - inter
ious = inter / union
accs = inter / cm.sum(1)
for name, iou, acc in zip(id2class, ious, accs):
print(f'{name:20s}: iou {iou*100:5.2f} / acc {acc*100:5.2f}')
print(f'{"Overall":20s}: iou {ious.mean()*100:5.2f} / acc {accs.mean()*100:5.2f}')
# np.savez(os.path.join(args.out, 'cm.npz'), cm=cm)