@@ -31,15 +31,15 @@ private
31
31
32
32
contraInjective : ∀ (≈₂ : Rel B ℓ₂) → Injective ≈₁ ≈₂ f →
33
33
∀ {x y} → ¬ (≈₁ x y) → ¬ (≈₂ (f x) (f y))
34
- contraInjective _ inj p = contraposition inj p
34
+ contraInjective _ inj = contraposition inj
35
35
36
36
------------------------------------------------------------------------
37
37
-- Inverseˡ
38
38
39
39
inverseˡ⇒surjective : ∀ (≈₂ : Rel B ℓ₂) →
40
40
Inverseˡ ≈₁ ≈₂ f f⁻¹ →
41
41
Surjective ≈₁ ≈₂ f
42
- inverseˡ⇒surjective ≈₂ invˡ y = (_ , invˡ)
42
+ inverseˡ⇒surjective ≈₂ invˡ _ = (_ , invˡ)
43
43
44
44
------------------------------------------------------------------------
45
45
-- Inverseʳ
@@ -103,14 +103,15 @@ inverseʳ⇒strictlyInverseʳ : ∀ (≈₁ : Rel A ℓ₁) (≈₂ : Rel B ℓ
103
103
Reflexive ≈₂ →
104
104
Inverseʳ ≈₁ ≈₂ f f⁻¹ →
105
105
StrictlyInverseʳ ≈₁ f f⁻¹
106
- inverseʳ⇒strictlyInverseʳ _ _ refl sinv x = sinv refl
106
+ inverseʳ⇒strictlyInverseʳ {f = f} {f⁻¹ = f⁻¹} ≈₁ ≈₂ =
107
+ inverseˡ⇒strictlyInverseˡ {f = f⁻¹} {f⁻¹ = f} ≈₂ ≈₁
107
108
108
109
strictlyInverseʳ⇒inverseʳ : Transitive ≈₁ →
109
110
Congruent ≈₂ ≈₁ f⁻¹ →
110
111
StrictlyInverseʳ ≈₁ f f⁻¹ →
111
112
Inverseʳ ≈₁ ≈₂ f f⁻¹
112
- strictlyInverseʳ⇒inverseʳ trans cong sinv {x} y≈ f⁻¹x =
113
- trans (cong y≈f⁻¹x) (sinv x)
113
+ strictlyInverseʳ⇒inverseʳ {≈₁ = ≈₁} {≈₂ = ≈₂} { f⁻¹ = f⁻¹} {f = f} =
114
+ strictlyInverseˡ⇒inverseˡ {≈₂ = ≈₁} {≈₁ = ≈₂} {f = f⁻¹} {f⁻¹ = f}
114
115
115
116
------------------------------------------------------------------------
116
117
-- Theory of the section of a Surjective function
0 commit comments