@@ -24,31 +24,49 @@ open import Algebra.Definitions.RawMagma rawMagma public
24
24
using (_∣_; _∤_; _∥_; _∦_; _∣ˡ_; _∤ˡ_; _∣ʳ_; _∤ʳ_; _,_)
25
25
26
26
------------------------------------------------------------------------
27
- -- Properties of divisibility
27
+ -- Properties of right divisibility
28
28
29
- ∣-respʳ-≈ : _∣_ Respectsʳ _≈_
30
- ∣-respʳ-≈ y≈z (q , qx≈y) = q , trans qx≈y y≈z
29
+ ∣ʳ -respʳ-≈ : _∣ʳ_ Respectsʳ _≈_
30
+ ∣ʳ -respʳ-≈ y≈z (q , qx≈y) = q , trans qx≈y y≈z
31
31
32
- ∣-respˡ-≈ : _∣_ Respectsˡ _≈_
33
- ∣-respˡ-≈ x≈z (q , qx≈y) = q , trans (∙-congˡ (sym x≈z)) qx≈y
32
+ ∣ʳ -respˡ-≈ : _∣ʳ_ Respectsˡ _≈_
33
+ ∣ʳ -respˡ-≈ x≈z (q , qx≈y) = q , trans (∙-congˡ (sym x≈z)) qx≈y
34
34
35
- ∣-resp-≈ : _∣_ Respects₂ _≈_
36
- ∣-resp-≈ = ∣-respʳ-≈ , ∣-respˡ-≈
35
+ ∣ʳ -resp-≈ : _∣ʳ_ Respects₂ _≈_
36
+ ∣ʳ -resp-≈ = ∣ʳ -respʳ-≈ , ∣ʳ -respˡ-≈
37
37
38
- x∣yx : ∀ x y → x ∣ y ∙ x
39
- x∣yx x y = y , refl
38
+ x∣ʳyx : ∀ x y → x ∣ʳ y ∙ x
39
+ x∣ʳyx x y = y , refl
40
40
41
- xy≈z⇒y∣z : ∀ x y {z} → x ∙ y ≈ z → y ∣ z
42
- xy≈z⇒y∣z x y xy≈z = x , xy≈z
41
+ xy≈z⇒y∣ʳz : ∀ x y {z} → x ∙ y ≈ z → y ∣ʳ z
42
+ xy≈z⇒y∣ʳz x y xy≈z = x , xy≈z
43
+
44
+ ------------------------------------------------------------------------
45
+ -- Properties of left divisibility
46
+
47
+ ∣ˡ-respʳ-≈ : _∣ˡ_ Respectsʳ _≈_
48
+ ∣ˡ-respʳ-≈ y≈z (q , xq≈y) = q , trans xq≈y y≈z
49
+
50
+ ∣ˡ-respˡ-≈ : _∣ˡ_ Respectsˡ _≈_
51
+ ∣ˡ-respˡ-≈ x≈z (q , xq≈y) = q , trans (∙-congʳ (sym x≈z)) xq≈y
52
+
53
+ ∣ˡ-resp-≈ : _∣ˡ_ Respects₂ _≈_
54
+ ∣ˡ-resp-≈ = ∣ˡ-respʳ-≈ , ∣ˡ-respˡ-≈
55
+
56
+ x∣ˡxy : ∀ x y → x ∣ˡ x ∙ y
57
+ x∣ˡxy x y = y , refl
58
+
59
+ xy≈z⇒x∣ˡz : ∀ x y {z} → x ∙ y ≈ z → x ∣ˡ z
60
+ xy≈z⇒x∣ˡz x y xy≈z = y , xy≈z
43
61
44
62
------------------------------------------------------------------------
45
63
-- Properties of non-divisibility
46
64
47
65
∤-respˡ-≈ : _∤_ Respectsˡ _≈_
48
- ∤-respˡ-≈ x≈y x∤z y∣z = contradiction (∣-respˡ-≈ (sym x≈y) y∣z ) x∤z
66
+ ∤-respˡ-≈ x≈y x∤z y∣ʳz = contradiction (∣ʳ -respˡ-≈ (sym x≈y) y∣ʳz ) x∤z
49
67
50
68
∤-respʳ-≈ : _∤_ Respectsʳ _≈_
51
- ∤-respʳ-≈ x≈y z∤x z∣y = contradiction (∣-respʳ-≈ (sym x≈y) z∣y ) z∤x
69
+ ∤-respʳ-≈ x≈y z∤x z∣ʳy = contradiction (∣ʳ -respʳ-≈ (sym x≈y) z∣ʳy ) z∤x
52
70
53
71
∤-resp-≈ : _∤_ Respects₂ _≈_
54
72
∤-resp-≈ = ∤-respʳ-≈ , ∤-respˡ-≈
@@ -60,10 +78,10 @@ xy≈z⇒y∣z x y xy≈z = x , xy≈z
60
78
∥-sym = swap
61
79
62
80
∥-respˡ-≈ : _∥_ Respectsˡ _≈_
63
- ∥-respˡ-≈ x≈z (x∣y , y∣x ) = ∣-respˡ-≈ x≈z x∣y , ∣-respʳ-≈ x≈z y∣x
81
+ ∥-respˡ-≈ x≈z (x∣ʳy , y∣ʳx ) = ∣ʳ -respˡ-≈ x≈z x∣ʳy , ∣ʳ -respʳ-≈ x≈z y∣ʳx
64
82
65
83
∥-respʳ-≈ : _∥_ Respectsʳ _≈_
66
- ∥-respʳ-≈ y≈z (x∣y , y∣x ) = ∣-respʳ-≈ y≈z x∣y , ∣-respˡ-≈ y≈z y∣x
84
+ ∥-respʳ-≈ y≈z (x∣ʳy , y∣ʳx ) = ∣ʳ -respʳ-≈ y≈z x∣ʳy , ∣ʳ -respˡ-≈ y≈z y∣ʳx
67
85
68
86
∥-resp-≈ : _∥_ Respects₂ _≈_
69
87
∥-resp-≈ = ∥-respʳ-≈ , ∥-respˡ-≈
@@ -92,20 +110,20 @@ xy≈z⇒y∣z x y xy≈z = x , xy≈z
92
110
93
111
-- Version 2.2
94
112
95
- ∣-respˡ = ∣-respˡ-≈
113
+ ∣-respˡ = ∣ʳ -respˡ-≈
96
114
{-# WARNING_ON_USAGE ∣-respˡ
97
115
"Warning: ∣-respˡ was deprecated in v2.2.
98
- Please use ∣-respˡ-≈ instead. "
116
+ Please use ∣ʳ -respˡ-≈ instead. "
99
117
#-}
100
- ∣-respʳ = ∣-respʳ-≈
118
+ ∣-respʳ = ∣ʳ -respʳ-≈
101
119
{-# WARNING_ON_USAGE ∣-respʳ
102
120
"Warning: ∣-respʳ was deprecated in v2.2.
103
- Please use ∣-respʳ-≈ instead. "
121
+ Please use ∣ʳ -respʳ-≈ instead. "
104
122
#-}
105
- ∣-resp = ∣-resp-≈
123
+ ∣-resp = ∣ʳ -resp-≈
106
124
{-# WARNING_ON_USAGE ∣-resp
107
125
"Warning: ∣-resp was deprecated in v2.2.
108
- Please use ∣-resp-≈ instead. "
126
+ Please use ∣ʳ -resp-≈ instead. "
109
127
#-}
110
128
111
129
-- Version 2.3
@@ -150,3 +168,33 @@ Please use ∦-respʳ-≈ instead. "
150
168
"Warning: ∤∤-resp-≈ was deprecated in v2.3.
151
169
Please use ∦-resp-≈ instead. "
152
170
#-}
171
+
172
+ ∣-respʳ-≈ = ∣ʳ-respʳ-≈
173
+ {-# WARNING_ON_USAGE ∣-respʳ-≈
174
+ "Warning: ∣-respʳ-≈ was deprecated in v2.3.
175
+ Please use ∣ʳ-respʳ-≈ instead. "
176
+ #-}
177
+
178
+ ∣-respˡ-≈ = ∣ʳ-respˡ-≈
179
+ {-# WARNING_ON_USAGE ∣-respˡ-≈
180
+ "Warning: ∣-respˡ-≈ was deprecated in v2.3.
181
+ Please use ∣ʳ-respˡ-≈ instead. "
182
+ #-}
183
+
184
+ ∣-resp-≈ = ∣ʳ-resp-≈
185
+ {-# WARNING_ON_USAGE ∣-resp-≈
186
+ "Warning: ∣-resp-≈ was deprecated in v2.3.
187
+ Please use ∣ʳ-resp-≈ instead. "
188
+ #-}
189
+
190
+ x∣yx = x∣ʳyx
191
+ {-# WARNING_ON_USAGE x∣yx
192
+ "Warning: x∣yx was deprecated in v2.3.
193
+ Please use x∣ʳyx instead. "
194
+ #-}
195
+
196
+ xy≈z⇒y∣z = xy≈z⇒y∣ʳz
197
+ {-# WARNING_ON_USAGE xy≈z⇒y∣z
198
+ "Warning: xy≈z⇒y∣z was deprecated in v2.3.
199
+ Please use xy≈z⇒y∣ʳz instead. "
200
+ #-}
0 commit comments