-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprimes.erl
115 lines (97 loc) · 3.3 KB
/
primes.erl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
-module(primes).
-export([queue/1,
nth/1,
is_prime/1,
lazy_sieve/0,
prime_factors/1,
prime_factors/2,
count_factors/1,
count_factors/2
]).
%% use a priority queue, or skew heap, to store interators for primes
queue(2) -> [2];
queue(N) when N < 2 -> [];
queue(N) ->
sieve_queue(lists:seq(2, N)).
sieve_queue([]) ->
[];
sieve_queue([X|XS]) ->
Table = insert_prime(X, skew_kv:empty()),
[X | sieve_queue(XS, Table)].
insert_prime(P, Table) ->
skew_kv:insert(P*P, from(P*P, P), Table).
sieve_queue([], _Table) ->
[];
sieve_queue([X|XS], Table) ->
{NextComposite, _Value} = skew_kv:min(Table),
case NextComposite =< X of
true -> sieve_queue(XS, adjust(Table, X));
_Else -> [X | sieve_queue(XS, insert_prime(X, Table))]
end.
adjust(Table, X) ->
{N, [Nprime | NS]} = skew_kv:min(Table),
case N =< X of
true ->
T = skew_kv:delete_min(Table),
T2 = skew_kv:insert(Nprime, NS(), T),
adjust(T2, X);
_Else -> Table
end.
%% from http://www.erlang.org/cgi-bin/ezmlm-cgi?4:mss:177:khdaceipfabbicmifdhf
%% a lazy list that starts at K and increments by Inc
from(K, Inc) ->
[ K | fun()-> from(K+Inc, Inc) end ].
%% prime number iterator
%% [ { Prime, Position } | Rest() ]
lazy_sieve() ->
Table = insert_prime(2, skew_kv:empty()),
[ { 2, 1 } | fun() -> lazy_sieve({ 3, 2 }, Table) end ].
lazy_sieve({ X, Pos }, Table) ->
{NextComposite, _Value} = skew_kv:min(Table),
case NextComposite =< X of
true -> lazy_sieve({X+1, Pos}, adjust(Table, X));
_Else -> [ {X, Pos} | fun() -> lazy_sieve({X+1, Pos+1}, insert_prime(X,Table)) end]
end.
%% returns the nth prime
%% nth(1) -> 2
%% nth(2) -> 3
%% nth(3) -> 5
nth(N) ->
nth(lazy_sieve(), N).
% iterate through the lazy_sieve until the prime's position equals N
nth([ {Prime, N} | _Next], N) -> Prime;
nth([ {_Prime, _Pos} | Next], N) ->
nth(Next(), N).
%% primality test of N
is_prime(2) -> true;
is_prime(3) -> true;
is_prime(N) when N rem 2 =:= 0 orelse N rem 3 =:= 0 -> false;
is_prime(N) ->
Sqrt = round(math:sqrt(N)),
is_prime(N, 1, Sqrt+1).
is_prime(N, K, Sqrt) when 6*K+1 =< Sqrt ->
K1 = 6*K+1,
K2 = 6*K-1,
case N rem K1 =:= 0 orelse N rem K2 =:= 0 of
true -> false;
_Else -> is_prime(N, K+1, Sqrt)
end;
is_prime(_N, _K, _Sqrt) -> true.
prime_factors(N, CandidatePrimes) ->
PrimeFactors = [ X || X <- CandidatePrimes, N rem X =:= 0 ],
find_factors(PrimeFactors, N, 0, []).
prime_factors(N) ->
prime_factors(N, primes:queue(N div 2)).
count_factors(N, CandidatePrimes) ->
length([ X || X <- CandidatePrimes, N rem X =:= 0 ]).
count_factors(N) ->
count_factors(N, primes:queue(N div 2)).
%% X is a prime factor, N is what's left, C is the count for X, L is the prime factor and count of exponents
%% returns a list of primes and their exponents of the factorization
%% so if 108 factors to 2^2 * 3^3, first arg will be [2, 3] and return [{2,2},{3,3}]
find_factors([], _N, _C, L) -> lists:reverse(L);
find_factors([X | _T], 1, C, L) -> lists:reverse([{X, C} | L]);
find_factors([X | T], N, C, L) when N rem X =:= 0 ->
find_factors([X | T], N div X, C+1, L);
find_factors([X | T], N, C, L) ->
find_factors(T, N, 0, [{X, C} | L]).