-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcorrelation_analysis.R
348 lines (242 loc) · 10.9 KB
/
correlation_analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
library(Hmisc)
#################
flattenCorrMatrix <- function(cormat, pmat) {
ut <- upper.tri(cormat)
data.frame(
row = rownames(cormat)[row(cormat)[ut]],
column = rownames(cormat)[col(cormat)[ut]],
cor =(cormat)[ut],
p = pmat[ut]
)
}
#
df_yue_cor_nonames <- column_to_rownames(df_yue_cor)
yue_test_cor_res <-rcorr(as.matrix(df_yue_cor_nonames), type = "spearman")
yue_test_cor_res_P <-yue_test_cor_res$P
yue_test_cor_res_r<-yue_test_cor_res$r
Yue_flatten_test <- flattenCorrMatrix(yue_test_cor_res_r, yue_test_cor_res_P)
Yue_flatten_test_filtered <- Yue_flatten_test %>% filter(p<0.05 & abs(cor)> 0.6)
saveRDS(Yue_flatten_test_filtered, "results_tables/Yue_cor_res.rds")
rm(Yue_flatten_test)
rm(yue_test_cor_res_P)
rm(yue_test_cor_res_r)
rm(yue_test_cor_res)
##################################################################################
df_laustriat_10mm_cor_nonames <- column_to_rownames(df_laustriat_10mm_cor)
laustriat_10mm_test_cor_res <-rcorr(as.matrix(df_laustriat_10mm_cor_nonames),
type = "spearman")
laustriat_10mm_cor_res_P <-laustriat_10mm_test_cor_res$P
laustriat_10mm_cor_res_r<-laustriat_10mm_test_cor_res$r
laustriat_10mm_test <- flattenCorrMatrix(laustriat_10mm_cor_res_r,
laustriat_10mm_cor_res_P)
laustriat_10mm_filtered <- laustriat_10mm_test %>% filter(p<0.05 & abs(cor)> 0.6)
saveRDS(laustriat_10mm_filtered, "results_tables/laustriat_10mm_cor_res.rds")
rm(laustriat_10mm_test)
rm(laustriat_10mm_test_cor_res)
rm(laustriat_10mm_cor_res_P)
rm(laustriat_10mm_cor_res_r)
####################################################################3
df_laustriat_25mm_cor_nonames <- column_to_rownames(df_laustriat_25mm_cor)
laustriat_25mm_test_cor_res <-rcorr(as.matrix(df_laustriat_25mm_cor_nonames),
type = "spearman")
laustriat_25mm_cor_res_P <-laustriat_25mm_test_cor_res$P
laustriat_25mm_cor_res_r<-laustriat_25mm_test_cor_res$r
laustriat_25mm_test <- flattenCorrMatrix(laustriat_25mm_cor_res_r,
laustriat_25mm_cor_res_P)
laustriat_25mm_filtered <- laustriat_25mm_test %>% filter(p<0.05 & abs(cor)> 0.6)
rm(laustriat_25mm_test)
rm(laustriat_25mm_test_cor_res)
rm(laustriat_25mm_cor_res_P)
rm(laustriat_25mm_cor_res_r)
saveRDS(laustriat_25mm_filtered, "results_tables/laustriat_25mm_cor_res.rds")
#####################################################################3
#
df_Xie_kidney_cor_nonames <- column_to_rownames(df_Xie_kidney_cor)
#
Xie_kidney_cor_res <-rcorr(as.matrix(df_Xie_kidney_cor_nonames),
type = "spearman")
#
Xie_kidney_cor_res_P <-Xie_kidney_cor_res$P
#
Xie_kidney_cor_res_r<-Xie_kidney_cor_res$r
#
#
Xie_kidney_test <- flattenCorrMatrix(Xie_kidney_cor_res_r,
Xie_kidney_cor_res_P)
#
Xie_kidney_filtered <- Xie_kidney_test %>% filter(p<0.05 & abs(cor)> 0.6)
rm(Xie_kidney_test)
rm(Xie_kidney_cor_res_r)
rm(Xie_kidney_cor_res_P)
rm(Xie_kidney_cor_res)
#
saveRDS(Xie_kidney_filtered, "results_tables/Xie_kidney_cor_res.rds")
#
#####################################################################3
#
df_Xie_lung_cor_nonames <- column_to_rownames(df_Xie_lung_cor)
Xie_lung_cor_res <-rcorr(as.matrix(df_Xie_lung_cor_nonames),
type = "spearman")
Xie_lung_cor_res_P <-Xie_lung_cor_res$P
Xie_lung_cor_res_r<-Xie_lung_cor_res$r
Xie_lung_test <- flattenCorrMatrix(Xie_lung_cor_res_r,
Xie_lung_cor_res_P)
Xie_lung_filtered <- Xie_lung_test %>% filter(p<0.05 & abs(cor)> 0.6)
rm(Xie_lung_test)
rm(Xie_lung_cor_res_P)
rm(Xie_lung_cor_res_r)
rm(Xie_lung_cor_res)
saveRDS(Xie_lung_filtered, "results_tables/Xie_lung_cor_res.rds")
#
#####################################################################3
df_luizon_cor_nonames <- column_to_rownames(df_luizon_cor)
Luizon_cor_res <-rcorr(as.matrix(df_luizon_cor_nonames),
type = "spearman")
Luizon_cor_res_P <-Luizon_cor_res$P
Luizon_cor_res_r<-Luizon_cor_res$r
Luizon_test_flatten <- flattenCorrMatrix(Luizon_cor_res_r,
Luizon_cor_res_P)
Luizon_test_flatten_filtered <- Luizon_test_flatten %>% filter(p<0.05 & abs(cor)> 0.6)
rm(Luizon_cor_res)
rm(Luizon_cor_res_P)
rm(Luizon_cor_res_r)
rm(Luizon_test_flatten)
saveRDS(Luizon_test_flatten_filtered, "results_tables/Luizon_cor_res.rds")
###########################################################################
#############################################################################
############################################################################
laustriat_10mm_test <- readRDS("results_tables/laustriat_10mm_cor_res.rds")
laustriat_25mm_test <-readRDS("results_tables/laustriat_25mm_cor_res.rds")
Luizon_test_flatten <-readRDS("results_tables/Luizon_cor_res.rds")
Xie_kidney_test <-readRDS("results_tables/Xie_kidney_cor_res.rds")
Xie_lung_test <-readRDS("results_tables/Xie_lung_cor_res.rds")
Yue_flatten_test <-readRDS("results_tables/Yue_cor_res.rds")
###########################################################################
#filter results of corr analysis
only_lncRNA <-txtogenesv37 %>% filter(transcript_type == "lncRNA")
yue_test_lncRNA <- Yue_flatten_test %>% filter(row %in% only_lncRNA$transcript_name |
column %in% only_lncRNA$transcript_name)
Xie_lung_lncRNA <- Xie_lung_test %>% filter(row %in% only_lncRNA$transcript_name |
column %in% only_lncRNA$transcript_name)
Xie_kidney_lncRNA <- Xie_kidney_test %>% filter(row %in% only_lncRNA$transcript_name |
column %in% only_lncRNA$transcript_name)
luizon_lncRNA <- Luizon_test_flatten %>% filter(row %in% only_lncRNA$transcript_name |
column %in% only_lncRNA$transcript_name)
laustriat10mm_lncRNA <- laustriat_10mm_test %>% filter(row %in% only_lncRNA$transcript_name |
column %in% only_lncRNA$transcript_name)
laustriat25mm_lncRNA <- laustriat_25mm_test %>% filter(row %in% only_lncRNA$transcript_name |
column %in% only_lncRNA$transcript_name)
####################################################
saveRDS(yue_test_lncRNA, "yue_test_lncRNA_filt.rds")
saveRDS(Xie_lung_lncRNA, "Xie_lung_lncRNA_filt.rds")
saveRDS(Xie_kidney_lncRNA, "Xie_kidney_lncRNA_filt.rds")
saveRDS(luizon_lncRNA, "luizon_lncRNA_filt.rds")
saveRDS(laustriat10mm_lncRNA, "laustriat10mm_lncRNA_filt.rds")
saveRDS(laustriat25mm_lncRNA, "laustriat25mm_lncRNA_filt.rds")
yue_test_lncRNA<-readRDS("yue_test_lncRNA_filt.rds")
Xie_lung_lncRNA<-readRDS("Xie_lung_lncRNA_filt.rds")
Xie_kidney_lncRNA<-readRDS("Xie_kidney_lncRNA_filt.rds")
luizon_lncRNA<-readRDS("luizon_lncRNA_filt.rds")
laustriat10mm_lncRNA<-readRDS("laustriat10mm_lncRNA_filt.rds")
laustriat25mm_lncRNA<-readRDS("laustriat25mm_lncRNA_filt.rds")
####################
###########################################
###########################################
##########################################
laustriat25mm_lncRNA_pairs <-laustriat25mm_lncRNA %>%
mutate(pairs = paste(row, column)) %>%
select(pairs, p) %>% filter(p < 0.01)
laustriat10mm_lncRNA_pairs <-laustriat10mm_lncRNA %>%
mutate(pairs = paste(row, column)) %>%
select(pairs, p) %>% filter(p < 0.01)
luizon_lncRNA_pairs <-luizon_lncRNA %>%
mutate(pairs = paste(row, column)) %>%
select(pairs, p)%>% filter(p < 0.01)
Xie_kidney_lncRNA_pairs <-Xie_kidney_lncRNA %>%
mutate(pairs = paste(row, column)) %>%
select(pairs, p)%>% filter(p < 0.01)
Xie_lung_lncRNA_pairs <-Xie_lung_lncRNA %>%
mutate(pairs = paste(row, column)) %>%
select(pairs, p)%>% filter(p < 0.01)
yue_test_lncRNA_pairs <-yue_test_lncRNA %>%
mutate(pairs = paste(row, column)) %>%
select(pairs, p)%>% filter(p < 0.01)
left_join_1 <-Xie_lung_lncRNA_pairs %>% left_join(laustriat25mm_lncRNA_pairs, by = "pairs")
left_join_2 <- left_join_1 %>% left_join(Xie_kidney_lncRNA_pairs, by = "pairs")
left_join_3 <- left_join_2 %>% left_join(yue_test_lncRNA_pairs, by = "pairs")
left_join_4 <- left_join_3 %>% left_join(luizon_lncRNA_pairs, by = "pairs")
left_join_5 <- left_join_4 %>% left_join(laustriat10mm_lncRNA_pairs, by = "pairs")
###
countNA <- function(df) apply(df, MARGIN = 1, FUN = function(x) length(x[is.na(x)]))
na_count <- countNA(left_join_5)
cor_all_series <- left_join_5[na_count < 2,]
#############################################################
##########################
laustriat25mm_lncRNA_pairs_cor <-laustriat25mm_lncRNA %>%
mutate(pairs = paste(row, column)) %>%
select(pairs, cor)
laustriat10mm_lncRNA_pairs_cor <-laustriat10mm_lncRNA %>%
mutate(pairs = paste(row, column)) %>%
select(pairs, cor)
luizon_lncRNA_pairs_cor <-luizon_lncRNA %>%
mutate(pairs = paste(row, column)) %>%
select(pairs, cor)
Xie_kidney_lncRNA_pairs_cor <-Xie_kidney_lncRNA %>%
mutate(pairs = paste(row, column)) %>%
select(pairs, cor)
Xie_lung_lncRNA_pairs_cor <-Xie_lung_lncRNA %>%
mutate(pairs = paste(row, column)) %>%
select(pairs, cor)
yue_test_lncRNA_pairs_cor <-yue_test_lncRNA %>%
mutate(pairs = paste(row, column)) %>%
select(pairs, cor)
left_join_1 <-Xie_lung_lncRNA_pairs_cor %>% left_join(laustriat25mm_lncRNA_pairs_cor, by = "pairs")
left_join_2 <- left_join_1 %>% left_join(Xie_kidney_lncRNA_pairs_cor, by = "pairs")
left_join_3 <- left_join_2 %>% left_join(yue_test_lncRNA_pairs_cor, by = "pairs")
left_join_4 <- left_join_3 %>% left_join(luizon_lncRNA_pairs_cor, by = "pairs")
left_join_5 <- left_join_4 %>% left_join(laustriat10mm_lncRNA_pairs_cor, by = "pairs")
###
countNA <- function(df) apply(df, MARGIN = 1, FUN = function(x) length(x[is.na(x)]))
na_count <- countNA(left_join_5)
cor_all_series_cor <- left_join_5[na_count <= 2,]
#####
cor_all_series_cor_inall <- left_join_5[na_count < 2,]
#Yue_flatten_test_joinedpairs <- Yue_flatten_test %>% mutate(pairs = paste(row, column))
#
#Yue_flatten_joinedpairs<- Yue_flatten_test_joinedpairs %>% dplyr::select(pairs, cor, p)
#
#
#laustriat_10mm_joinedpairs <- laustriat_10mm_test %>%
# mutate(pairs = paste(row, column)) %>%
# select(pairs, p)
#
#names(laustriat_10mm_joinedpairs) <- c("pairs", "pval_laustriat10mm")
#
#
#laustriat_25mm_joinedpairs <- laustriat_25mm_test %>%
# mutate(pairs = paste(row, column)) %>%
# select(pairs, p)
#
#names(laustriat_25mm_joinedpairs) <- c("pairs", "pval_laustriat25mm")
#
#
#xie_kidney_joinedpairs <- Xie_kidney_test %>%
# mutate(pairs = paste(row, column)) %>%
# select(pairs, p)
#
#names(xie_kidney_joinedpairs) <- c("pairs", "pval_xiekidney")
#
#
#xie_lung_joinedpairs <- Xie_lung_test %>%
# mutate(pairs = paste(row, column)) %>%
# select(pairs, p)
#
#names(xie_lung_joinedpairs) <- c("pairs", "pval_xielung")
#
#
#luizon_joinedpairs <- Luizon_test_flatten %>%
# mutate(pairs = paste(row, column)) %>%
# select(pairs, p)
#
#names(luizon_joinedpairs) <- c("pairs", "pval_luizon")
#