-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathattacks.py
177 lines (141 loc) · 5.89 KB
/
attacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from abc import ABC
from abc import abstractmethod
import tensorflow as tf
import numpy as np
import time
class Attack(ABC):
def __init__(self, model, **kwargs) -> None:
self.model = model
@abstractmethod
def __call__(self, x, y):
pass
@abstractmethod
def get_name(self):
pass
class Shuffle(Attack):
def __init__(self, model, seed=9, **kwargs) -> None:
super().__init__(model, **kwargs)
self.seed = seed
def get_name(self):
return "Shuffle"
def __call__(self, x, y):
rnd = np.random.RandomState(self.seed)
x_shuffle = np.array(x, copy=True)
seq_length = x.shape[1]
for i in range(x.shape[0]):
idxs = rnd.permutation(seq_length)
x_shuffle[i] = x[i][idxs]
return x_shuffle, y
class Uniform(Attack):
def __init__(self, model, seed=9, **kwargs) -> None:
super().__init__(model, **kwargs)
self.seed = seed
def get_name(self):
return "Uniform"
def __call__(self, x, y):
rnd = np.random.RandomState(self.seed)
x_uni = np.array(x, copy=True, dtype=np.float32)
shape = x[0].shape
for i in range(x_uni.shape[0]):
x_uni[i] = rnd.uniform(0, 1, shape)
return x_uni, y
class GenSeq(Attack):
def __init__(self, model, seed=9, **kwargs) -> None:
super().__init__(model, **kwargs)
self.seed = seed
def get_name(self):
return "GenSeq"
def __call__(self, x, y):
rnd = np.random.RandomState(self.seed)
x_gen = np.zeros_like(x, dtype=np.float32)
sample_shape = x[0].shape
seq_idxs = np.arange(0, sample_shape[0])
for i in range(x_gen.shape[0]):
random_ids = rnd.randint(0, 4, sample_shape[0])
x_gen[i, seq_idxs, random_ids] = 1
# print(np.mean(x_gen[i], axis=0))
return x_gen, y
class MiddleCrop(Attack):
def __init__(self, model, seq_length, **kwargs) -> None:
super().__init__(model, **kwargs)
self.seq_length = seq_length
def get_name(self):
return "MiddleCrop"
def __call__(self, x, y):
dim_to_crop = x.shape[1] - self.seq_length
if dim_to_crop == 0:
return x, y
elif dim_to_crop < 0:
raise Exception('seq length must be lower or equal to {0}'.format(x.shape[1]))
return x[:, dim_to_crop // 2:-dim_to_crop // 2], y
class RandomCrop(Attack):
def __init__(self, model, seq_length, **kwargs) -> None:
super().__init__(model, **kwargs)
self.seq_length = seq_length
def get_name(self):
return "RandomCrop"
def __call__(self, x, y):
x_crop = np.zeros((x.shape[0], self.seq_length, x.shape[2]), dtype=np.float32)
for i in range(x.shape[0]):
x_crop[i] = tf.image.random_crop(x[i], size=[self.seq_length, x.shape[2]])
return x_crop, y
class WorstCrop(Attack):
def __init__(self, model, seq_length, loss='zero-one', attack_batch=64, n_try=None, debug=False,
seed=9,
**kwargs) -> None:
super().__init__(model, **kwargs)
self.rnd = np.random.RandomState(seed)
self.n_try = n_try
self.seq_length = seq_length
self.batch_size = attack_batch
self.debug = debug
if loss == 'zero-one':
self.loss = lambda p, y: np.argmax(p, axis=1) != np.argmax(y, axis=1)
elif loss == 'mse':
self.loss = lambda p, y: np.sum(np.square(p - y), axis=1)
elif loss == 'xe':
# Numerically unstable
# self.loss = lambda p, y: -np.sum(np.log(p) * y, axis=1)
# self.loss = lambda p, y: -np.log(np.sum(p * y, axis=1))
eps = 1e-4
self.loss = lambda p, y: -np.log(np.maximum(np.sum(p * y, axis=1), eps))
elif loss == 'bce':
eps = 1e-4
self.loss = lambda p, y: np.mean(np.where(y, -np.log(np.maximum(p, eps)), -np.log(np.maximum(1 - p, eps))),
axis=1)
def get_name(self):
return "WorstCrop"
def pred_slides(self, x, shifts):
dim_to_crop = x.shape[1] - self.seq_length
x_slides = []
for i in shifts:
x_slides.append(x[:, i:x.shape[1] - (dim_to_crop - i)])
pred_all = self.model.predict(np.concatenate(x_slides, axis=0), self.batch_size)
pred_slds = []
for i in range(shifts.shape[0]):
pred_slds.append(pred_all[i * x.shape[0]:(i + 1) * x.shape[0]])
return pred_slds
def __call__(self, x, y):
dim_to_crop = x.shape[1] - self.seq_length
x_adv = x[:, :-dim_to_crop]
shifts = np.arange(dim_to_crop + 1) if self.n_try is None else self.rnd.choice(np.arange(dim_to_crop + 1),
self.n_try, replace=False)
preds = self.pred_slides(x, shifts)
l_val = self.loss(preds[0], y)
n = dim_to_crop + 1 if self.n_try is None else self.n_try
if self.debug:
print('Progress: {:.3f} {:.5f}'.format(1 / n, np.mean(l_val)), end='\r')
for idx, i in enumerate(shifts[1:]):
if self.debug:
time.sleep(1)
print('Progress: {:.3f} {:.5f}'.format((idx + 2) / n, np.mean(l_val)), end='\r')
x_adv_i = x[:, i:x.shape[1] - (dim_to_crop - i)]
pred_i = preds[idx + 1]
l_vali = self.loss(pred_i, y)
improved = l_vali > l_val
if np.any(improved):
x_adv = tf.where(tf.reshape(improved, (improved.shape[0], 1, 1)), x_adv_i, x_adv)
l_val[improved] = l_vali[improved]
if self.debug:
print('')
return x_adv, y