-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlane_process.py
131 lines (113 loc) · 4.86 KB
/
lane_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import pandas as pd
import numpy as np
import os
import pickle as pk
def create_lane_pk(data_file_fn="./preprocessing/data/"):
lane_cnt = 4
lane = {}
for i in range(lane_cnt):
lane[i] = np.zeros((0, 2))
for filename in os.listdir(data_file_fn):
if os.path.isdir(os.path.join(data_file_fn, filename, 'processed')):
lane_df = {}
lane_name = filename + "_lane"
print(os.path.join(data_file_fn, filename, 'processed', lane_name))
data_dir = os.path.join(data_file_fn, filename, 'processed')
filename = lane_name
for k in range(3):
filepath = os.path.join(data_dir, filename)
file_name = filepath + str(k)
df = pd.read_csv(file_name + '_corrected_smoothed.csv')
lane_df[k] = df['Lane_Boundary_Left_Global']
lane_df[3] = df['Lane_Boundary_Right_Global']
for k in range(lane_cnt):
lane_ = np.zeros((len(df), 2))
for i in range(len(df)):
# print(df.at[i,'Lane_Boundary_Left_Global'][2:-2].split(']\n ['))
a = np.array(
list(map(lambda x: np.array(x.split()).astype(np.float) * 3.28,
lane_df[k][i][2:-2].split(']\n ['))))
lane_[i, :] = a[len(a) // 2]
if lane_[i, 0] < 1500000:
print(lane_[i, :])
lane_.T[[0, 1]] = lane_.T[[1, 0]]
lane[k] = np.concatenate([lane[k], lane_], axis=0)
lane_dir = "./preprocessing/lane"
length = 10000
for i in range(lane_cnt):
indexes = np.unique(lane[i], return_index=True, axis=0)[1]
print(lane[i][indexes][:10])
lane[i] = lane[i][indexes]
indexes = [int(m * len(lane[i]) / length) for m in range(length)]
lane[i] = lane[i][indexes]
max_value = -1
for k in range(1, len(lane[i])):
value = abs(lane[i][k, 0] - lane[i][k - 1, 0]) + abs(lane[i][k, 1] - lane[i][k - 1, 1])
if value >= 1:
if value > max_value:
max_value = value
print(lane[i][k, 0], lane[i][k - 1, 0])
print(lane[i][k, 1], lane[i][k - 1, 1])
print("max value is {}".format(max_value))
f = open(os.path.join(lane_dir, ('lane' + str(i) + '.pk')), 'wb')
pk.dump(lane[i], f)
def generate_boundary(lane_dir="./preprocessing/lane"):
lanes = dict()
lane_cnt = 4
final_dir = "./data"
for i in range(lane_cnt):
f = open(os.path.join(lane_dir, ('lane' + str(i) + '.pk')), 'rb')
lanes[i] = pk.load(f)
centers = {}
for l in range(lane_cnt - 1):
j = 0
centers[l] = np.zeros(lanes[l].shape)
for i in range(len(lanes[l])):
dis1 = dis2 = dis3 = 1e9
if j > 0:
dis1 = np.linalg.norm(lanes[l][i, :] - lanes[l + 1][j - 1, :])
dis2 = np.linalg.norm(lanes[l][i, :] - lanes[l + 1][j, :])
if j + 1 < len(lanes[l + 1]):
dis3 = np.linalg.norm(lanes[l][i, :] - lanes[l + 1][j + 1, :])
k = j
if dis3 <= dis2 and dis3 <= dis1 and j < len(lanes[l + 1]):
k = j + 1
j += 1
elif dis1 < dis2 and dis1 < dis3:
k = j - 1
centers[l][i, :] = (lanes[l][i, :] + lanes[l + 1][k, :]) / 2
boundary_fn = os.path.join(final_dir, 'boundariesHOLO.txt')
f = open(boundary_fn, 'wb')
f.write(b'BOUNDARIES\n')
f.write((str((lane_cnt - 1) * 2) + '\n').encode())
for i in range(lane_cnt - 1):
f.write(('BOUNDARY ' + str(2 * i + 1) + '\n').encode())
f.write((str(len(lanes[i])) + '\n').encode())
np.savetxt(f, lanes[i], fmt=(' %.5f %.5f'))
f.write(('BOUNDARY ' + str(2 * i + 2) + '\n').encode())
f.write((str(len(lanes[i + 1])) + '\n').encode())
np.savetxt(f, lanes[i + 1], fmt=(' %.5f %.5f'))
f.close()
print("boundariesHOLO.txt has been saved to {}".format(boundary_fn))
centerline_fn = os.path.join(final_dir, 'centerlinesHOLO.txt')
f = open(centerline_fn, 'wb')
f.write(b'CENTERLINES\n')
f.write((str(lane_cnt - 1) + '\n').encode())
for i in range(lane_cnt - 1):
f.write(('CENTERLINE\n').encode())
f.write(('centerline' + str(i + 1) + '\n').encode())
f.write((str(len(lanes[i])) + '\n').encode())
np.savetxt(f, centers[i], fmt=(' %.5f %.5f'))
f.close()
print("centerlinesHOLO.txt has been saved to {}".format(centerline_fn))
def generate_roadway():
import julia
j = julia.Julia()
j.using("NGSIM")
base_dir = os.path.expanduser('~/Autoenv/data/')
j.write_roadways_to_dxf(base_dir)
j.write_roadways_from_dxf(base_dir)
if __name__ == "__main__":
create_lane_pk()
generate_boundary()
generate_roadway()