-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaudio_features.py
executable file
·115 lines (83 loc) · 2.66 KB
/
audio_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import numpy as np
import nolds
def a(d):
return np.array(d)
def IEMG(data):
return np.sum(np.square(data.astype(np.float)))
def MAV(data):
return np.mean(np.absolute(data.astype(np.float)))
def MMAV1(data):
N = (data.shape[0])
s = 0.0
for i in range(N):
if 0.25*N <= i <= 0.75*N:
w = 1
else:
w = 0.5
s += w * abs(float(data[i]))
return s/N
def MMAV2(data):
N = (data.shape[0])
s = 0.0
for i in range(N):
if 0.25*N <= i <= 0.75*N:
w = 1
elif 0.25*N > i:
w = 4*i/N
else:
w = 4*(i-N)/N
s += w * abs(float(data[i]))
return s/N
def VAR(data):
return np.var([x**2 for x in data])
def RMS(data):
return np.sqrt(np.mean(np.square(data)))
def WL(data):
data = data.astype(np.float)
N = float(data.shape[0])
return sum([ abs(data[i+1]-data[i]) for i in range(int(N)-1)])
def ZC(data):
mdata = data.copy().astype(np.float) - 0.5
return (np.diff(np.sign(mdata)) != 0).sum()
def SSC(data):
mdata = data.copy().astype(np.float) - 0.5
return sum(1 for i in range(1, len(mdata)-1) if mdata[i-1]*mdata[i]<0 and mdata[i]*mdata[i+1]<0)
def WAMP(data, threashold=0.2):
mdata = data.copy().astype(np.float) - 0.5
return sum(1 for i in range(1, len(mdata)) if abs(mdata[i-1]*mdata[i])>= threashold)
def STDDEV(data):
data = data.astype(np.float)
N = float(len(data))
mean = np.mean(data)
summation = sum([(x - mean)**2 for x in data])
qq = summation*(1/(N-1))
return np.sqrt(qq)
def SSI(data):
return np.sum(np.square(data))
def absval_temp(data):
N = float(data.shape[0])
summation = sum([ abs(data[i+1]-data[i]) for i in range(int(N)-1)])
return (1/(N-1))*summation
def mean_absval_second_diff(data):
N = float(data.shape[0])
summation = sum([ abs(data[i+2]-data[i]) for i in range(int(N)-2)])
return (1/(N-2))*summation
def mean_absval_third_diff(data):
N = float(data.shape[0])
summation = sum([ abs(data[i+3]-data[i]) for i in range(int(N)-3)])
return (1/(N-3))*summation
def mean_absval_fourth_diff(data):
N = float(data.shape[0])
summation = sum([ abs(data[i+4]-data[i]) for i in range(int(N)-4)])
return (1/(N-4))*summation
def getmean(data):
return np.mean(data.astype(np.float))
def ENT(data):
return nolds.sampen(data.astype(np.float))
def get_features_from_stream(
strea,
fncs = [MAV, MMAV1, MMAV2, SSI, VAR, RMS, WL, ZC, SSC, WAMP, STDDEV]
):
return a([ f(strea) for f in fncs])
def get_ff():
return ["MAV", "MMAV1", "MMAV2", "SSI", "VAR", "RMS", "WL", "ZC", "SSC", "WAMP", "STDDEV"]