forked from exo-explore/exo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatgpt_api.py
363 lines (309 loc) · 15.3 KB
/
chatgpt_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import uuid
import time
import asyncio
import json
from pathlib import Path
from transformers import AutoTokenizer
from typing import List, Literal, Union, Dict
from aiohttp import web
import aiohttp_cors
import traceback
from exo import DEBUG, VERSION
from exo.download.download_progress import RepoProgressEvent
from exo.helpers import PrefixDict
from exo.inference.shard import Shard
from exo.inference.tokenizers import resolve_tokenizer
from exo.orchestration import Node
from exo.models import model_base_shards
from typing import Callable
class Message:
def __init__(self, role: str, content: Union[str, List[Dict[str, Union[str, Dict[str, str]]]]]):
self.role = role
self.content = content
def to_dict(self):
return {"role": self.role, "content": self.content}
class ChatCompletionRequest:
def __init__(self, model: str, messages: List[Message], temperature: float):
self.model = model
self.messages = messages
self.temperature = temperature
def to_dict(self):
return {"model": self.model, "messages": [message.to_dict() for message in self.messages], "temperature": self.temperature}
def generate_completion(
chat_request: ChatCompletionRequest,
tokenizer,
prompt: str,
request_id: str,
tokens: List[int],
stream: bool,
finish_reason: Union[Literal["length", "stop"], None],
object_type: Literal["chat.completion", "text_completion"],
) -> dict:
completion = {
"id": f"chatcmpl-{request_id}",
"object": object_type,
"created": int(time.time()),
"model": chat_request.model,
"system_fingerprint": f"exo_{VERSION}",
"choices": [{
"index": 0,
"message": {"role": "assistant", "content": tokenizer.decode(tokens)},
"logprobs": None,
"finish_reason": finish_reason,
}],
}
if not stream:
completion["usage"] = {
"prompt_tokens": len(tokenizer.encode(prompt)),
"completion_tokens": len(tokens),
"total_tokens": len(tokenizer.encode(prompt)) + len(tokens),
}
choice = completion["choices"][0]
if object_type.startswith("chat.completion"):
key_name = "delta" if stream else "message"
choice[key_name] = {"role": "assistant", "content": tokenizer.decode(tokens)}
elif object_type == "text_completion":
choice["text"] = tokenizer.decode(tokens)
else:
ValueError(f"Unsupported response type: {object_type}")
return completion
def remap_messages(messages: List[Message]) -> List[Message]:
remapped_messages = []
last_image = None
for message in messages:
if not isinstance(message.content, list):
remapped_messages.append(message)
continue
remapped_content = []
for content in message.content:
if isinstance(content, dict):
if content.get("type") in ["image_url", "image"]:
image_url = content.get("image_url", {}).get("url") or content.get("image")
if image_url:
last_image = {"type": "image", "image": image_url}
remapped_content.append({"type": "text", "text": "[An image was uploaded but is not displayed here]"})
else:
remapped_content.append(content)
else:
remapped_content.append(content)
remapped_messages.append(Message(role=message.role, content=remapped_content))
if last_image:
# Replace the last image placeholder with the actual image content
for message in reversed(remapped_messages):
for i, content in enumerate(message.content):
if isinstance(content, dict):
if content.get("type") == "text" and content.get("text") == "[An image was uploaded but is not displayed here]":
message.content[i] = last_image
return remapped_messages
return remapped_messages
def build_prompt(tokenizer, _messages: List[Message]):
messages = remap_messages(_messages)
prompt = tokenizer.apply_chat_template([m.to_dict() for m in messages], tokenize=False, add_generation_prompt=True)
image_str = None
for message in messages:
if not isinstance(message.content, list):
continue
for content in message.content:
# note: we only support one image at a time right now. Multiple is possible. See: https://github.com/huggingface/transformers/blob/e68ec18ce224af879f22d904c7505a765fb77de3/docs/source/en/model_doc/llava.md?plain=1#L41
# follows the convention in https://platform.openai.com/docs/guides/vision
if isinstance(content, dict) and content.get("type", None) == "image":
image_str = content.get("image", None)
break
return prompt, image_str
def parse_message(data: dict):
if "role" not in data or "content" not in data:
raise ValueError(f"Invalid message: {data}. Must have 'role' and 'content'")
return Message(data["role"], data["content"])
def parse_chat_request(data: dict):
return ChatCompletionRequest(
data.get("model", "llama-3.1-8b"),
[parse_message(msg) for msg in data["messages"]],
data.get("temperature", 0.0),
)
class PromptSession:
def __init__(self, request_id: str, timestamp: int, prompt: str):
self.request_id = request_id
self.timestamp = timestamp
self.prompt = prompt
class ChatGPTAPI:
def __init__(self, node: Node, inference_engine_classname: str, response_timeout: int = 90, on_chat_completion_request: Callable[[str, ChatCompletionRequest, str], None] = None):
self.node = node
self.inference_engine_classname = inference_engine_classname
self.response_timeout = response_timeout
self.on_chat_completion_request = on_chat_completion_request
self.app = web.Application(client_max_size=100*1024*1024) # 100MB to support image upload
self.prompts: PrefixDict[str, PromptSession] = PrefixDict()
self.prev_token_lens: Dict[str, int] = {}
self.stream_tasks: Dict[str, asyncio.Task] = {}
cors = aiohttp_cors.setup(self.app)
cors_options = aiohttp_cors.ResourceOptions(
allow_credentials=True,
expose_headers="*",
allow_headers="*",
allow_methods="*",
)
cors.add(self.app.router.add_get("/models", self.handle_get_models), {"*": cors_options})
cors.add(self.app.router.add_get("/v1/models", self.handle_get_models), {"*": cors_options})
cors.add(self.app.router.add_post("/chat/token/encode", self.handle_post_chat_token_encode), {"*": cors_options})
cors.add(self.app.router.add_post("/v1/chat/token/encode", self.handle_post_chat_token_encode), {"*": cors_options})
cors.add(self.app.router.add_post("/chat/completions", self.handle_post_chat_completions), {"*": cors_options})
cors.add(self.app.router.add_post("/v1/chat/completions", self.handle_post_chat_completions), {"*": cors_options})
cors.add(self.app.router.add_get("/v1/download/progress", self.handle_get_download_progress), {"*": cors_options})
self.static_dir = Path(__file__).parent.parent / "tinychat"
self.app.router.add_get("/", self.handle_root)
self.app.router.add_static("/", self.static_dir, name="static")
self.app.middlewares.append(self.timeout_middleware)
self.app.middlewares.append(self.log_request)
async def timeout_middleware(self, app, handler):
async def middleware(request):
try:
return await asyncio.wait_for(handler(request), timeout=self.response_timeout)
except asyncio.TimeoutError:
return web.json_response({"detail": "Request timed out"}, status=408)
return middleware
async def log_request(self, app, handler):
async def middleware(request):
if DEBUG >= 2: print(f"Received request: {request.method} {request.path}")
return await handler(request)
return middleware
async def handle_root(self, request):
return web.FileResponse(self.static_dir/"index.html")
async def handle_get_models(self, request):
return web.json_response([{"id": model_name, "object": "model", "owned_by": "exo", "ready": True } for model_name, _ in model_base_shards.items()])
async def handle_post_chat_token_encode(self, request):
data = await request.json()
shard = model_base_shards.get(data.get("model", "llama-3.1-8b"), {}).get(self.inference_engine_classname)
messages = [parse_message(msg) for msg in data.get("messages", [])]
tokenizer = await resolve_tokenizer(shard.model_id)
return web.json_response({"length": len(build_prompt(tokenizer, messages)[0])})
async def handle_get_download_progress(self, request):
progress_data = {}
for node_id, progress_event in self.node.node_download_progress.items():
if isinstance(progress_event, RepoProgressEvent):
progress_data[node_id] = progress_event.to_dict()
else:
print(f"Unknown progress event type: {type(progress_event)}. {progress_event}")
return web.json_response(progress_data)
async def handle_post_chat_completions(self, request):
data = await request.json()
if DEBUG >= 2: print(f"Handling chat completions request from {request.remote}: {data}")
stream = data.get("stream", False)
chat_request = parse_chat_request(data)
if chat_request.model and chat_request.model.startswith("gpt-"): # to be compatible with ChatGPT tools, point all gpt- model requests to llama instead
chat_request.model = "llama-3.1-8b"
if not chat_request.model or chat_request.model not in model_base_shards:
if DEBUG >= 1: print(f"Invalid model: {chat_request.model}. Supported: {list(model_base_shards.keys())}. Defaulting to llama-3.1-8b")
chat_request.model = "llama-3.1-8b"
shard = model_base_shards[chat_request.model].get(self.inference_engine_classname, None)
if not shard:
supported_models = [model for model, engines in model_base_shards.items() if self.inference_engine_classname in engines]
return web.json_response(
{"detail": f"Unsupported model: {chat_request.model} with inference engine {self.inference_engine_classname}. Supported models for this engine: {supported_models}"},
status=400,
)
tokenizer = await resolve_tokenizer(shard.model_id)
if DEBUG >= 4: print(f"Resolved tokenizer: {tokenizer}")
prompt, image_str = build_prompt(tokenizer, chat_request.messages)
request_id = str(uuid.uuid4())
if self.on_chat_completion_request:
try:
self.on_chat_completion_request(request_id, chat_request, prompt)
except Exception as e:
if DEBUG >= 2: traceback.print_exc()
# request_id = None
# match = self.prompts.find_longest_prefix(prompt)
# if match and len(prompt) > len(match[1].prompt):
# if DEBUG >= 2:
# print(f"Prompt for request starts with previous prompt {len(match[1].prompt)} of {len(prompt)}: {match[1].prompt}")
# request_id = match[1].request_id
# self.prompts.add(prompt, PromptSession(request_id=request_id, timestamp=int(time.time()), prompt=prompt))
# # remove the matching prefix from the prompt
# prompt = prompt[len(match[1].prompt):]
# else:
# request_id = str(uuid.uuid4())
# self.prompts.add(prompt, PromptSession(request_id=request_id, timestamp=int(time.time()), prompt=prompt))
callback_id = f"chatgpt-api-wait-response-{request_id}"
callback = self.node.on_token.register(callback_id)
if DEBUG >= 2: print(f"Sending prompt from ChatGPT api {request_id=} {shard=} {prompt=} {image_str=}")
try:
await asyncio.wait_for(
asyncio.shield(asyncio.create_task(self.node.process_prompt(shard, prompt, image_str, request_id=request_id))),
timeout=self.response_timeout
)
if DEBUG >= 2: print(f"Waiting for response to finish. timeout={self.response_timeout}s")
if stream:
response = web.StreamResponse(
status=200,
reason="OK",
headers={
"Content-Type": "text/event-stream",
"Cache-Control": "no-cache",
},
)
await response.prepare(request)
async def stream_result(_request_id: str, tokens: List[int], is_finished: bool):
prev_last_tokens_len = self.prev_token_lens.get(_request_id, 0)
self.prev_token_lens[_request_id] = max(prev_last_tokens_len, len(tokens))
new_tokens = tokens[prev_last_tokens_len:]
finish_reason = None
eos_token_id = tokenizer.special_tokens_map.get("eos_token_id") if hasattr(tokenizer, "_tokenizer") and isinstance(tokenizer._tokenizer,
AutoTokenizer) else getattr(tokenizer, "eos_token_id", None)
if len(new_tokens) > 0 and new_tokens[-1] == eos_token_id:
new_tokens = new_tokens[:-1]
if is_finished:
finish_reason = "stop"
if is_finished and not finish_reason:
finish_reason = "length"
completion = generate_completion(
chat_request,
tokenizer,
prompt,
request_id,
new_tokens,
stream,
finish_reason,
"chat.completion",
)
if DEBUG >= 2: print(f"Streaming completion: {completion}")
try:
await response.write(f"data: {json.dumps(completion)}\n\n".encode())
except Exception as e:
if DEBUG >= 2: print(f"Error streaming completion: {e}")
if DEBUG >= 2: traceback.print_exc()
def on_result(_request_id: str, tokens: List[int], is_finished: bool):
if _request_id == request_id: self.stream_tasks[_request_id] = asyncio.create_task(stream_result(_request_id, tokens, is_finished))
return _request_id == request_id and is_finished
_, tokens, _ = await callback.wait(on_result, timeout=self.response_timeout)
if request_id in self.stream_tasks: # in case there is still a stream task running, wait for it to complete
if DEBUG >= 2: print("Pending stream task. Waiting for stream task to complete.")
try:
await asyncio.wait_for(self.stream_tasks[request_id], timeout=30)
except asyncio.TimeoutError:
print("WARNING: Stream task timed out. This should not happen.")
await response.write_eof()
return response
else:
_, tokens, _ = await callback.wait(
lambda _request_id, tokens, is_finished: _request_id == request_id and is_finished,
timeout=self.response_timeout,
)
finish_reason = "length"
eos_token_id = tokenizer.special_tokens_map.get("eos_token_id") if isinstance(getattr(tokenizer, "_tokenizer", None), AutoTokenizer) else tokenizer.eos_token_id
if DEBUG >= 2: print(f"Checking if end of tokens result {tokens[-1]=} is {eos_token_id=}")
if tokens[-1] == eos_token_id:
tokens = tokens[:-1]
finish_reason = "stop"
return web.json_response(generate_completion(chat_request, tokenizer, prompt, request_id, tokens, stream, finish_reason, "chat.completion"))
except asyncio.TimeoutError:
return web.json_response({"detail": "Response generation timed out"}, status=408)
except Exception as e:
if DEBUG >= 2: traceback.print_exc()
return web.json_response({"detail": f"Error processing prompt (see logs with DEBUG>=2): {str(e)}"}, status=500)
finally:
deregistered_callback = self.node.on_token.deregister(callback_id)
if DEBUG >= 2: print(f"Deregister {callback_id=} {deregistered_callback=}")
async def run(self, host: str = "0.0.0.0", port: int = 8000):
runner = web.AppRunner(self.app)
await runner.setup()
site = web.TCPSite(runner, host, port)
await site.start()