-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
122 lines (96 loc) · 2.6 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
<html>
<head>
<title>Processing on the Web</title>
<script type="text/javascript" src="processing.js"></script>
<!-- JavaScript Bundle with Popper -->
<style type="text/css">
pre {
background-color: "#282C34";
padding: 15px;
}
#theCanvas {
width: 1000px;
height: 1000px;
margin: auto;
border: 5px solid "#282C34";
display: block;
}
#theCanvas2 {
width: 1000px;
height: 1000px;
margin: auto;
border: 5px solid "#282C34";
display: block;
}
#Titler{
margin: auto;
border: 5px solid "#282C34";
display: block;
}
h1{
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif;
color: aliceblue;
}
h3{
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif;
color: aliceblue;
}
#centered{
float: left;
position: relative;
left: 36.9%;
}
</style>
</head>
<body bgcolor= "#202124">
<div style="text-align:center"><h1>-Fractals-</h1>
<h3>press on the canvas to change the seed</h3>
<br>
<h3>Fractal canopy</h3>
</div>
<canvas id="theCanvas" data-processing-sources="Fractals.pde"></canvas>
<br>
<br>
<br>
<div style="text-align:center">
<h3>Sierpiński triangle</h3>
</div>
<canvas id="theCanvas2" data-processing-sources="Fractals2.pde"></canvas>
<br>
<br>
<br>
<div style="text-align:center">
<br>
<div id="centered" style="display: inline-block; text-align: left;">
<h3>
Fractals and recursion<br>
A fractal is a never-ending pattern. Fractals <br>
are infinitely complex patterns that are <br>
self-similar across different scales. <br>
They are created by repeating a <br>
simple process over and over in an ongoing <br>
feedback loop. <br>
</h3>
<h3>
Driven by recursion, <br>
fractals are images of dynamic systems –<br>
the pictures of Chaos. <br>
</h3>
<h3>
Geometrically, they exist in between our familiar <br>
dimensions. Fractal patterns are extremely familiar, <br>
since nature is full of fractals. For instance: <br>
trees, rivers, coastlines, mountains, clouds, seashells, <br>
hurricanes, etc. <br>
</h3>
<h3>
Abstract fractals – such as the Mandelbrot Set – <br>
can be generated by a computer<br>
calculating a simple equation over and over,<br>
and as a computer sience engineer , i like <br>
to be able to show to people the beauty of <br>
the math in practice , using recursuin..<br>
</h3>
</div>
</body>
</html>