forked from extreme-bert/extreme-bert
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_pretraining.sh
executable file
·100 lines (93 loc) · 3.69 KB
/
run_pretraining.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#!/bin/bash
# Copyright 2022 Statistics and Machine Learning Research Group at HKUST. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===== Normally fixed parameters
dataset_name=$1 # e.g. "wikipedia-20200501.en,bookcorpus"
dataset_path=$2 # e.g. data_generated/wikipedia-20200501.en,bookcorpus
# = where all `train/test_shard_xxx.hdf5` lies
effective_batch_size=$3 # e.g. 4096
warmup_proportion=$4 # e.g. 0.06 (a float between [0, 1]
num_step=$5 # e.g. 1000000
# = Number of steps
micro_batch_size=$6 # e.g. 16 (around 9G GPU memory)
# = the batch will be devided into multiple synced
# micro batches so that we can afford large
# batches with even limited GPU memory.
data_loader_type=$7 # e.g. dist
# ===== Normally changing parameters
prefix=$8 # e.g. "inverse-time-decay"
init_lr=$9 # e.g. 2e-5
lr_curve_conf_file=${10} # e.g. conf/lr-scheduler_elastic-step-decay.conf
# = Path to learning rate curve conf file
optimizer_conf_file=${11} # e.g. conf/optimizer_vanilla-sgd.conf
# = Path to optimizer conf file
num_device=${12}
log_dir="log/pretrain/${dataset_name}"
tmp_dir="tmp/pretrain/${dataset_name}"
output_dir="saved_models/pretrain/${dataset_name}/${prefix}"
mkdir -p ${log_dir} ${tmp_dir} ${output_dir}
# Skips experiments if it has been run before
if [ -f ${tmp_dir}/${prefix}.mark ]; then
exit
fi
# If the experiments was killed by signals like Ctrl+C, remove its skip mark
trap "rm -f ${tmp_dir}/${prefix}.mark" SIGINT
touch "${tmp_dir}/${prefix}.mark"
deepspeed --num_gpus=${num_device} \
run_pretraining.py \
--model_type bert-mlm --tokenizer_name bert-large-uncased \
--hidden_act gelu \
--hidden_size 1024 \
--num_hidden_layers 24 \
--num_attention_heads 16 \
--intermediate_size 4096 \
--hidden_dropout_prob 0.1 \
--attention_probs_dropout_prob 0.1 \
--encoder_ln_mode pre-ln \
--lr ${init_lr} \
--train_batch_size ${effective_batch_size} \
--train_micro_batch_size_per_gpu ${micro_batch_size} \
--lr_schedule step \
--curve customized \
--curve_conf_file ${lr_curve_conf_file} \
--warmup_proportion ${warmup_proportion} \
--gradient_clipping 0.0 \
--optimizer_type customized \
--optimizer_conf_file ${optimizer_conf_file} \
--weight_decay 0.01 \
--adam_beta1 0.9 \
--adam_beta2 0.98 \
--adam_eps 1e-6 \
--max_steps ${num_step} \
--total_training_time 24000.0 \
--early_exit_time_marker 24000.0 \
--dataset_path ${dataset_path} \
--output_dir ${output_dir} \
--print_steps 100 \
--num_epochs_between_checkpoints 10000 \
--job_name pretraining_experiment \
--project_name budget-bert-pretraining \
--validation_epochs 3 \
--validation_epochs_begin 1 \
--validation_epochs_end 1 \
--validation_begin_proportion 0.05 \
--validation_end_proportion 0.01 \
--validation_micro_batch ${micro_batch_size} \
--deepspeed \
--data_loader_type ${data_loader_type} \
--do_validation \
--seed 42 \
--fp16 \
> ${log_dir}/${prefix}.log \
2> ${log_dir}/${prefix}.err